W
=1
P

J. J. Charatonik

{51 — On the Moore triodic theorem, Bull. de 1'Académie Polonaise des Sciences,
Série Mathématique, Astronomique et Physique 8 (1960), pp. 271-276.

[6] K. Menger, Kurventheorie, Leipzig und Berlin 1832.

[7] H. C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950),
pp. 179-194.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCLAWSKIEGO
INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

Regu par lo Rédaction le 14. 7. 1961

On the representation of «-complete lattices *
by
C. C. Chang and A. Horn (Los Angeles, Calif.)

This paper is concerned with the problem of representation for
a-complete lattices. It is well known that a lattice is isomorphie with
a ring of sets if and only if it is distributive. However for an a-complete
lattice L even the condition of (a, a) distributivity is not sufficient for
it to be isomorphic with an a-ring of sets. A necessary and sufficient
condition for such a representation is the following: whenever » < ¥,
there exists an a-complete prime ideal P containing z such that L—P
contains 4 and is a-complete. On the other hand, necessary and sufficient
conditions for a Boolean algebra to be a-representable (that is, to be
isomorphic with an a-field of sets modulo an a-ideal) are known ([1],
[5], [8], [4], [7]). In this paper, we deal with the problem of representing
an a-complete lattice as an a-ring of sets modulo an a-jdeal. Such lattices
are called a-representable.

We shall present a characterization of a-representable lattices which
is a natural generalization of a known characterization for a-representable
Boolean algebras ([5], [1]). There are several differences between the
results for Boolean algebras and those we obtain for lattices. For instance,
while every w-complete Boolean algebra is w-representable ([3], [61)
in order that an o-complete lattice L be w-representable, it is necessary
and sufficient that L satisfy the condition of (2, ») distributivity, which
is satisfied by all Boolean algebras. Also, while every a-complete, (a, a)
distributive Boolean algebra is a-representable, we shall give an example
of a complete, completely distributive lattice which is not a-representable
for any a 3> 2°. The paper concludes with a discussion of a-representable
chains.

1. Definitions. If a is a cardinal, an a-system is a system {z,
i ¢ I, whose index set I has power < a. By an a-complete lattice, we mean
a lattice L in which every non-empty a-system {2}, eI, has a least
upper bound Z L@, and a greatest lower bound ]_[ + #:. We do not require

i€l

that L have a smallest or largest element.

* An abstract of this paper was presented to the American Mathematical Society
and will appear in the Notices of the A.M.S. This research was supported by National

Science Foundation grant G14092.
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By an a-normal sublattice of a lattice M, we mean a subset I such
that if {x;} is any a-system contained in L such that Z 1 @; exists, then
1

' D ar @; exists and is equal to 2 L%, and similarly for products. In particular,
7 i

if L has a smallest element 0, then 0 is also the smallest element of M.

An a-ring of sets is a family of sets closed under unions and inter-
sections of non-empty a-systems. An a-field of sets is an a-ring of gets
closed under complements. We denote the empty set by . By an a-tdeal
in an a-ring R of sets, we mean an ideal in R which is closed under unions
of non-empty a-systems. If I is an a-ideal in an a-ring R of sets, then T
determines a congruence relation in R: » =y (modl) if and only if
x+2 =vy-+=2 for some z in I. The set R/I of congruence classes is an
a-complete lattice. Let x/I denote the congruence class containing z.
We have 2/I < y/I if and only if 2 C y U 2 for some 2 in I. If {;} is a non-
empty a-system in R, then Z(mf/I) = ¢ @)/I, and ]J(a%/I) = (| m)[L.

. b 1 i

A lattice L is called (a,p) distributive if it satisfies the following
conditions:

If {#i}, 1€ I, j ed, is any a, f-system (that is, I has power < a, and J
has power < B) in L such that 2; J Jaz;,- ewists, and Z; @i, g2y €wists for every

1€l j€ 1€
fed', then 3 J]asy exists and is equal to D, [ zy. In addition, we
feJlier* iel jeJ

require the dual of this condition.

An (a, co) distributive lattice is one which is (a, B) distributive for all B.

If L is a distributive lattice, and @ ¢ L, we denote by # the set of
prime filters containing ». As is well known, the family of all sets & is
a ring L of sets isomorphic with L. - -

2. Let R, be the set of all lattices isomorphic with a B-normal
sublattice of an a-ring of sets modulo an a-ideal.

THEOREM 1. Let a and B be infinite cardinals with 8 < a. A lattice L
i8 in Rug if and only if L is isomorphic with a B-normal sublattice of an
a-field of sets modulo an a-ideal.

Proof. Let L be a f-normal sublattice of R/I, where R is an «-ring
of sets and I is an a-ideal. Let ¥ be the a-field of sets generated by R,
and J be the ideal in F generated by I. Then J is an «-ideal. If x, y are
in R, then x/I <y/I if and only if /J < y/J. The mapping ¢ defined by
@(x/I) = z]J is therefore an isomorphism of R[I into FJJ. Furthermore ¢
is an a-homomorphism. Thus R/I is isomorphic with an a-normal sub-
lattice of F[J, and therefore L is isomorphic with a f-normal sublattice
of FlJ.

Lewwa 1. Let L be an a-complete lattice with a smallest element. If L
98 in Ru, then L is a-representable.
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Proof. Suppose that L is an a-normal sublattice of R/I, where R
is an a-ring of sets and I is an a-ideal. Let S be the set of elements «
of R such that x/I ¢ L. Then § is an o-ring of sets containing I. The
mapping ¢ defined by ¢((#/I)s) = (z/I)r is clearly an isomorphism of
S/I onto L.

LeMMA 2. Any (2, a) distributive lattice L is isomorphic with an
a-normal sublattice of a complete Boolean algebra.

Proof. We identify L with its representation £ as a ring of subsets

of the set X of all prime ideals of L. Let F' be the field of sets generated
by L. Every element of F is a finite intersection () (@x w by), where a;
k<n

and bx are members of Lu {@}u {X}, and @ is the complement of ay.
Letx = ZL x;, where {;} is an a-system in L. We wish to show z = mei.
i i

Tet y e ¥ and y D =; for all 4. If y =[ (@ v by), then aza; C by for each
k

4 and k. Using the (2, o) distributivity of L, it follows that zasC by for
all k, and hence « C y. We omit the dual proof for products. If B is the
normal completion of F, L is thus an a-normal sublattice of B.

In the above proof, F is independent of o. Therefore we have a very
gimple proof of the following result of Funayama [2].

THEOREM 2. A lattice L is normally embeddable in a Boolean algebra
if and only if L is (2, oo) distributive.

THEOREM 3. A lattice L is in Rae, if and only if L is (2, w) distributive.

Proof. The necessity of the condition is clear. Suppose that L is
(2, ®) distributive. By Lemma 2, L is isomorphic with an -normal
sublattice of an «-complete Boolean algebra. By the Loomis-Sikorski
Theorem ([3], [6]), every such Boolean algebra is w-representable.

COROLLARY. An w-complete lattice I with a smallest element is o -re-
presentable if and only if L is (2, w) distributive. ’

Proof. This follows immediately from Theorem 3 and Lemma 1.

DEFINITION. A filter P iy’ said to preserve the product | if U z;e P
if and only if #; ¢ P for all <. An ideal @ is said o preserve the sum ,Z @;
if Yw;eQ if and only if #; € Q for all 4.

THEOREM 4. If <, a lattice L is in Rus if and only if L satisfies the
following condition:

(Top): If @,y eL, and o £y, and {ay}, {bs} iel, jed, are a,f
systems in L such that 11577 a;; and ];’ by ewist for each i e I, then there ewists
d prime filter P such that z ¢ P, y ¢ P, and such that for each i eI, P pre-
serves the product [j Tas; and L--P preserves the sum ;’ byj.


GUEST


256 C. C. Chang and A. Horn

Proof. Let L € Ryy. By Theorem 1, we may assume that L is a f-nor-
mal sublattice of F/B, where F is an o-field of sets and F is an a-ideal
Let @, y, {ay;)}, {bij} satisfy the hypotheses of (Tep)- By [4], there exists
a prime filter P in F/E containing #—y ‘and preserving the produects
H ay and nb,, for each i eI. Let @ be the prime ideal F/E—P. Then

z sP, Y eQ, and @ preserves the sums Zb,j If we set P,=P AL and

Q, =Q ~ L, then P;is a filter in L, ¢, is an ideal in L, and P, ~ Q, =90.
Tt is well known that P, can be enlarged to a prime filter P, disjoint
from Q,. Clearly P, is the desired prime filter.

Conversely, suppose that L satisfies condition (Tgp). We first show L
i distributive. Let =, y, 2z be elements of L. Obwously x(y+2) =ay +oe.
Suppose #(y+2) < 2y +az. Let P be a prime filter containing =(y+2)
but not zy +x2. P contains « and y + 2, and therefore P contains either y
or z. But then P contains zy or zz, contradieting ‘wy +-x2é P

Let 8 be the a-ring of sets generated by L. Let F be the a-ideal
in § generated by all sets of the form ﬂ&;j— H £ &;, or of the form

L J&;, where {®;}, jed, i3 any 8- system m L such that Zw, or

H % emsts We define a mapping of L into S/E by ¢(z) = 2/E. ¢ is ob-

wougly monotone. Suppose ¢(z) < ¢(y), but zty. Then 3 C§ vz for
some z ¢ E. There exist «, f systems {ay}, {by}, i€, j ¢J, such that for
each i eI, [ay and Dby exist and

i, 7

(1) 2C p (D &ij—Hdij) v p(zaii—yﬁ'f) .

Observe that a prime filter P of L belongs to the right side of (1)
if and only if P fails to preserve |]a; for some i eI, or L—P fails to
i

preserve Z b;; for some % ¢ I. Since z <y, the hypothesis implies that

there exis%s a prime filter P such that P e @, P¢ §, and P ¢ 2. Since this
contradicts # C§ w», we see that ¢ is an isomorphism. Let {z;} be
a B-system in L such that @ = Dr#; exists. Then & = |J#; (modE),
and therefore ¢(z) = #/B = (U#3))|B = Jsn(3/B) = Dz p(2;). Similarly
@ preserves all existing products of p-systems in I. Therefore L is iso-
morphic with a f-normal sublattice of S/E. The proof is complete.
Remark. Theorem 3 may be derived directly from Theorem 4

without making use of the Loomis-Sikorski Theorem. Algo, the necessity
of the condition (T,) in Theorem 4 can be shown directly without making
use of the corresponding result for Boolean algebras.

- CorROLLARY 1. An a-complete lattice L with a smallest element is
a-representable if and only if it satisfies condition (Ta).
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Proof. This follows from Theorem 4 and Lemma 1.

COROLLARY 2. Let a and B be infinite cardinals with B < a. If L is
any B-complete distributive lattice, there exists a congruence relation K.z in
L such that L|K . € Ry, and L € Ry if and only if K.p reduces to the identity
relation.

Proof. The mapping ¢ defined in the proof of Theorem 4 is a f-homo-
morphism of L onto a f-normal sublattice of S/F. Let K, be the set
of all pairs (z,y) in L such that ¢(s) = ¢(y), that is, /B = §/E. Then
L/K . is isomorphic with the range of ¢. If L ¢ R,s, then I satisfies (Ty),
which implies that (z,y) e Ky if and only if z =y.

3. THEOREM 5. Let L be a chain. Then L e Ry, if and only if every
closed interval of L without gaps or jumps has power > a.

Proof. Necessity: Let [y, 2] be a closed interval without gaps
or jumps. Suppose that [y, x] has power < a. If # is any element such
that ¥y <z <z, we let {b,;} be an a-system consisting of all elements w
such that ¥ < w < 2. For each 2 such.that y <2z <, we let {a;;} be an
a-system consisting of all w such that 2 < w < . Since L has no jumps,
we have z = ;’ b.; and z = [1] a,; for each such 2. By Theorem 4, there

exists an ideal @ in L such that y €@, x¢ @, @ preserves each sum P
7

and L—Q preserves each product [[a.;. Now @ ~ [y, 2] is an ideal in
i

[y, «], and since [y, #] has no gaps, every ideal in [y, #] has a least upper

bound. Therefore @ has a least upper bound % e[y,x]. If u €@, then

uw <o and a,é¢Q for all j. Since []ay; = u €@, this contradicts the fact
i

that L—@ preserves the product []a,;. If u ¢ @, then @ consists of all
. i

elements of L which are < u. Therefore y < # and byy ¢ @ for all j, while
>'bu; = u é Q. This contradicts the fact that @ preserves the sum Y by;.
7 ' !

Sufficiency: Let z,v, {ay}, and {b;} satisfy the hypothesis of
condition (T.) of Theorem 4. If the closed interval [y, ] has a jump
[w, v], let @ be the principal ideal with upper element «. Then @ preserves
all sums, while L—@ preserves all products. In a chain all proper ideals
are prime ideals. Suppose that [y, #] has a gap. Then there exists an
ideal @ in [y, «] which has no least upper bound. The ideal in I generated
by @ has the same property, and its complement with respect to L has
no greatest lower bound. It is easy to see that an ideal without a least
upper bound preserves all sums, and dually.

There remains the case where [, #] has more than a elements. Let
z be an element such that y <z < x, and such that for all ¢, z 5* ];]a,ﬁ.

The principal ideal @ with upper element 2 preserves all sums. If a;; > 2
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for all j, then [Jay; > 2, since z [ a;;. Hence L—@ preserves all the
P 7
products []a;;. Thus I satisties (To,) and by Theorem 4, L e R,
i

CoRrOLIARY. If L is an a-complete chain with a smallest element, then
L is a-representable if and only if every densely ordered interval of L has
power > a.

Proof. Let L be an a-complete chain in By, Let [y, 2] be a closed
interval of L without jumps. If [y, 4] has power <a, then by the a-com-
pleteness of L, [y, #] has no gaps. Therefore, by Theorem 5, [y, z] must
have power > a. Conversely, if every densely ordered interval of I has
power > a, then L is a-representable by Theorem 5 and Lemma 1.

THEEOREM 6. There exists a complete chain L (and therefore a complete,
completely distributive lattice. L) such that for every a > 2°, L is not a-re-
‘presentable.

Proof. Let L be the set of all real numbers in the closed interval
[0,1] with the natural ordering. By the corollary to Theorem 5, L is
not a-representable for any o > 2°.

4. A Boolean algebra B with an ordered basis is an algebra which
is generated by a chain. If B i§ generated by a chain L (or even by any
sublattice L), and B is isomorphic with an a-normal subalgebra of an
a-field of sets modulo an a-ideal, then L ¢ R,,. The converse does not
hold, as may be shown by the example where L consists of all irrationals
in [0,1], and « > 2°. Theorem 4 and its analogue for Boolean algebras
can be used to give a criterion that B be so representable. However no
criterion as simple as that of Theorem 5 seems to hold.
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On o-homomorphic images of o-rings of sets*
by
A. Horn (Los Angeles, Calif.)

In this paper we consider the question of characterizing those
a-complete lattices which are a-homomorphic images of a-rings of sets.
In [2] 2 necessary and sufficient condition for a lattice to be isomorphic
with an «-ring of sets modulo an a-ideal was given. However, in contrast
with the situation for Boolean algebras, not every homomorphic image
of a ring of sets iy isomorphic with a quotient of the ring by an ideal.

It is not hard to see that the class K, of all a-homomorphic images
of a-rings of sets is closed under the operations of taking direct products,
a-sublattices, and a«-homomorphisms. Therefore, by the extension of
Birkhoff’s Theorem [1] to algebras with infinitary operations, K, is an
equational class. We shall determine a set of equations which charac-
terizes K,. A simple sufficient condition is (a, 2%) distributivity in either
sense. Finally the class of a-retracts of a-rings of sets is discussed.

1. Definitions. We adopt the terminology of [2]. Let a be an
infinite cardinal. An «-complete lattice is not assumed to have a largest
or smallest element.

An o-sublattice of an a-complete lattice I is a subset M such thatb
2ra € M, and ]J @ € M for any non-empty a-system {z;} in M.

?

A family F of sets is called a-independent if the intersection of an
a-gystem {z;} in F is contained in the union of an a-system {y;} in F
only when some a; = some y;. There exist a-independent families of
any power. For example, if § is any cardinal, then for each iepf, let
2; be the set of all subsets of # which contain ¢. The family {z;} is a-in-
dependent for any a.

Let K, be the set of all a-homomorphic images of a-rings of sets.
A lattice I in K, is said to be a free lattice of class K, with B generators
if T has a subset W with the following properties:

1) W has power p.

* An abstract of this paper was preaente& to the American Mathematical Society
and will appear in the Notices of the A.M.S. This research was supported by National
Science Foundation grant G14092.
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