

On weakly chainable continua

by

A. Lelek (Wrocław)

A finite sequence of sets X_1, \ldots, X_m is said to be a *chain* provided that

(*)
$$X_i \cap X_j \neq 0$$
 if and only if $|i-j| \leqslant 1$ $(i, j = 1, ..., m)$.

A continuum C (i.e. a compact connected metric space) is said to be chainable provided that there are, for every $\varepsilon > 0$, open sets $G_1, ..., G_m$ in C such that $C = G_1 \cup ... \cup G_m$, the diameter $\delta(G_i)$ of G_i is less than ε for i = 1, ..., m and the sequence of sets $G_1, ..., G_m$ is a chain. Let us remark that the chain $G_1, ..., G_m$ can then easily be improved so that the sequence of closures $\overline{G}_1, ..., \overline{G}_m$ in C is also a chain. Obviously, each subcontinuum of a chainable continuum is chainable.

In 1922 Knaster constructed a hereditarily indecomposable chainable plane continuum K. In 1948 Moise showed that there existed an indecomposable plane continuum M which, like any arc, was homeomorphic to each of its nondegenerate subcontinua. Then M was hereditarily indecomposable. Bing proved, also in 1948, that there existed hereditarily indecomposable and topologically homogeneous chainable plane continua, and in 1951—that each chainable continuum was homeomorphic to a subset of the plane and each hereditarily indecomposable chainable continuum was homeomorphic to K. So K had all properties of M, and at that time it began to be called a pseudo-arc. This term became usual also for denoting every hereditarily indecomposable chainable continuum, i.e. every continuum homeomorphic to K (1).

If C is a chainable continuum, then there evidently exists an infinite sequence G_1, G_2, \ldots of finite open covers of C such that each G_n is a chain, each element of G_n has diameter less than 1/n and each element of G_{n+1} is contained in some element of G_n $(n=1,2,\ldots)$. But if each element G_i of a chain $G=(G_1,\ldots,G_m)$ is contained in some element

⁽¹⁾ The reader can find other historical remarks and references in nearly all of numerous papers concerning these things; for instance, among the recent papers, in one of Lida K. Barrett, The structure of decomposable snakelike continua, Duke Math. J. 28 (1961), pp. 515-522.

 $\textit{G}'_{\textit{k}_{\textit{i}}} \ \ \text{of} \ \ \text{a} \ \ \text{chain} \ \ \textit{G}' = (\textit{G}'_{1}, \, \dots, \, \textit{G}'_{\textit{m}'}), \ \text{then} \ \ |i-j| \leqslant 1 \ \ \text{implies} \ \ 0 \neq \textit{G}_{i} \, \cap \, \textit{G}_{i}$ $\subset G'_{k_i} \cap G'_{k_j}$, which gives $|k_i - k_j| \leqslant 1$, according to (*), for i, j = 1, ..., m. This leads to the notion of weakly chainable continua.

Namely, a finite sequence of sets $X_1, ..., X_m$ is said to be a weak chain provided that

(**)
$$X_i \cap X_j \neq 0$$
 if $|i-j| \leq 1$ $(i, j = 1, ..., m)$.

Since (*) yields (**), every chain is a weak chain.

A weak chain $X = (X_1, ..., X_m)$ is said to be a refinement of a weak chain $X' = (X'_1, ..., X'_{m'})$, symbolically $X \prec X'$, provided that each element X_i of X is contained in some element X'_{k_i} of X' such that

$$(**)$$
 $|k_i - k_j| \le 1$ if $|i - j| \le 1$ $(i, j = 1, ..., m)$.

The relation \prec is transitive, i.e. if X, X' and X'' are weak chains with $X \prec X'$ and $X' \prec X''$, then $X \prec X''$.

A continuum C is said to be weakly chainable provided that there exists an infinite sequence G_1, G_2, \dots of finite open covers of C such that each G_n is a weak chain, each element of G_n has diameter less than 1/nand G_{n+1} is a refinement of G_n (n = 1, 2, ...). Every chainable continuum is, of course, weakly chainable.

If a continuum C is weakly chainable, then the weak chains G_n which exist by the definition can be modified so that each G_{n+1} , besides being a refinement of G_n , has its first and last elements in the first and last elements of G_n , respectively.

More precisely, a weak chain $X = (X_1, ..., X_m)$ is said to be an exact refinement of a weak chain $X' = (X'_1, ..., X'_{m'})$, symbolically $X \prec_e X'$, provided that each element X_i of X is contained in some element X'_{ki} of X' such that $k_1 = 1$, $k_m = m'$ and $\binom{**}{*}$ holds.

Then if C is a weakly chainable continuum, there exists an infinite sequence I_1, I_2, \dots of finite open covers of C such that each I_n is a weak chain (2), each element of I_n has diameter less than 1/n and I_{n+1} is an exact refinement of I_n (n=1,2,...).

To prove this, it is convenient to consider weak chains X whose elements have not indices from 1 to m. Namely, X is only assumed to be a finite ordered sequence (possibly with repetitions) of m sets which, after being provided with successive indices from 1 to m, form a weak chain X' in the sense described above. In the sequel we shall identify Xwith X'.

For any weak chain $X = (X_1, X_2, ..., X_m)$ and positive integers a and b such that $1 \le a \le b \le m$, we denote by X(a, b) the weak chain

$$X(a, b) = (X_a, X_{a+1}, ..., X_b).$$

For any two weak chains $X = (X_a, X_{a+1}, ..., X_b)$ and $Y = (Y_c, Y_c, Y_c)$ Y_{c+1}, \ldots, Y_d) such that $X_b = Y_c$, we define a weak chain X + Y by the formula

$$X+Y = (X_a, X_{a+1}, ..., X_b, Y_{c+1}, ..., Y_d).$$

Further, for any weak chain $X = (X_a, ..., X_{b-1}, X_b)$, we denote by -X the weak chain

$$-X = (X_b, X_{b-1}, ..., X_a),$$

and also assume the notation (-1)X = -X.

Now let G_n be weak chains given by the definition of the weakly chainable continuum C. Denote by m_n the number of elements of G_n (n=1,2,...). As $G_{n+1} \prec G_n$, there is a function k_n mapping the set $\{1, \ldots, m_{n+1}\}$ into the set $\{1, \ldots, m_n\}$ so that the *i*-th element of G_{n+1} is contained in the $k_n(i)$ -th element of G_n for $i=1,\ldots,m_{n+1}$, and condition (**) holds for $k_i = k_n(i)$ and $m = m_{n+1}$. It follows that the function k_n has the Darboux property, i.e. if integers $a \leq b$ are the values under k_n of a' and b', respectively, then each integer l satisfying $a \leqslant l \leqslant b$ is the value under k_n of an integer in the segment with end-points a' and b'.

For every n=1,2,... and i=0,1,..., let a_n^i and b_n^i denote the minimum and the maximum of the function $k_n k_{n+1} \dots k_{n+i}(j)$, where $j=1,\ldots,m_{n+i+1}$, respectively. So we have

$$1\leqslant a_n^0\leqslant a_n^1\leqslant ...\leqslant b_n^1\leqslant b_n^0\leqslant m_n$$

for every n=1,2,..., and therefore there exist positive integers i_n , a_n and b_n such that $1 \leqslant a_n \leqslant b_n \leqslant m_n$, $a_n^i = a_n$ and $b_n^i = b_n$ for $i \geqslant i_n$ (n=1,2,...). Then, for every n=1,2,..., the function k_n maps the segment $a_{n+1} \leqslant j \leqslant b_{n+1}$ of integers j into the segment $a_n \leqslant j \leqslant b_n$, and the extrema a_n and b_n must be the values under k_n of some integers in the segment $a_{n+1} \leq j \leq b_{n+1}$, i.e. there are positive integers c_n and d_n such that $a_{n+1} \leqslant c_n \leqslant b_{n+1}$, $a_{n+1} \leqslant d_n \leqslant b_{n+1}$, $k_n(c_n) = a_n$ and $k_n(d_n) = b_n$.

Consequently, each element of the weak chain

$$H_n = G_n(a_n, b_n)$$

⁽²⁾ Let us observe that, in the case where C is chainable, weak chains cannot be here replaced by chains. In fact, let C_1 be the well-known indecomposable chainable plane continuum, which is the union of all demi-circumferences D with the centre (1,0) such that D joins the points of the Cantor ternary set T and lies in the demi-plane $y \ge 0$, and of all demi-circumferences D' with centres $(5/2 \cdot 3^n, 0)$ such that D' joins the points of T contained in the segment $2/3^n \le x \le 1/3^{n-1}$ and lies in the demi-plane $y \leq 0$ for $n = 1, 2, \dots$ Let C_2 be any set homeomorphic to C_1 , so that the point (0, 0)is a fixed point of this homeomorphism and the unique common point of C_1 and its image C_2 . Then the union $C = C_1 \cup C_2$ is a chainable continuum and there exists no infinite sequence I_1, I_2, \dots of finite open covers of C such that each I_n is a chain, each element of I_n has diameter less that 1/n and I_{n+1} is an exact refinement of I_n $(n=1,2,\ldots)$

has diameter less than 1/n and $H_{n+1} \prec H_n$ for n = 1, 2, ... Moreover, we have $G_{n+i_n+1} \prec H_n$, whence each H_n is an open cover of C.

A. Lelek

We define the required weak chains I_n inductively, so that they are all of the form

$$I_n = (-1)^{v_n} [-H_n(a_n, s_n) + H_n - H_n(t_n, b_n)],$$

where s_n , t_n and v_n are integers, $a_n \leqslant s_n \leqslant b_n$ and $a_n \leqslant t_n \leqslant b_n$. Namely, we first put $s_1 = a_1$, $t_1 = b_1$ and $v_1 = 0$, that is $I_1 = H_1$. Suppose now that the weak chain I_n is defined. To define I_{n+1} , it is sufficient to choose suitable integers s_{n+1} , t_{n+1} and v_{n+1} . We shall do it so that the condition $I_{n+1} \prec_{\varepsilon} I_n$ will be satisfied.

Indeed, we have $c_n \leq d_n$ or $d_n \leq c_n$. In the case where both inequalities hold (then $a_n = b_n$), we consider only one of them. The function k_n having the Darboux property, the integers s_n and t_n are the values under k_n of integers in the segment with end-points c_n and d_n . If $c_n \leq d_n$ (or $d_n \leq c_n$), we define s_{n+1} as the minimum of integers j satisfying $c_n \leq j \leq d_n$ and $k_n(j) = s_n$ (or $d_n \leq j \leq c_n$ and $k_n(j) = t_n$)— t_{n+1} as the maximum of integers j satisfying $c_n \leq j \leq d_n$ and $k_n(j) = t_n$ (or $d_n \leq j \leq c_n$ and $k_n(j) = s_n$), and finally put $v_{n+1} = v_n$ (or $v_{n+1} = v_n + 1$, respectively).

THEOREM. A continuum is weakly chainable if and only if it is a continuous image of the pseudo-arc (3).

Proof. If a continuum C is a continuous image of the pseudo-arc K under a mapping f, then for every n=1,2,... there exists a number $\varepsilon_n>0$ such that $\delta(A)<\varepsilon_n$ implies $\delta[f(A)]<1/3n$ for each $A\subset K$. Since K is chainable, there is an infinite sequence of chains $D_1,D_2,...$ such that every D_n is a finite open cover of K, $D_{n+1}\prec D_n$ and $\delta(D)<\varepsilon_n$ for $D\in D_n$ (n=1,2,...). Suppose that $D_n=(D_1,...,D_m)$ for an arbitrary n=1,2,... Consider $G_n=(G_1,...,G_m)$, where G_i is the set of points of C whose distances from some points of $f(D_i)$ are less than 1/3n (i=1,...,m). Then G_n is a finite open cover of C and $\delta(G_i)<1/n$ for i=1,...,m. Further, $|i-j|\leqslant 1$ implies $0\neq f(D_i\cap D_j)\subset f(D_i\cap f(D_j)\subset G_i\cap G_j$ (i,j=1,...,m), whence G_n is a weak chain. Moreover, $D_{n+1}\prec D_n$ gives $G_{n+1}\prec G_n$ (n=1,2,...), and so C is weakly chainable.

Conversely, let us suppose that C is weakly chainable and denote by I_1, I_2, \ldots weak chains constituting the already modified sequence of covers of C. So each element of I_n has diameter less than 1/n and I_{n+1} is an exact refinement of I_n $(n = 1, 2, \ldots)$. Let m_n be the number of elements of I_n $(n = 1, 2, \ldots)$. As K is the pseudo-arc, there exist points p and q and an infinite sequence D_1, D_2, \ldots of finite open covers of K such that each D_n is a chain from p to q, each element of D_n has diameter less than 1/n, the closure of each element of D_{n+1} is contained in some element

of D_n and D_{n+1} is crooked in D_n (see [2], p. 370 and 374). Then the number of elements of D_n tends to infinity with n, and thus there is a consolidation E_1 of some D_{n_1} (ibidem) that consists of m_1 elements. This is the beginning of the definition, by induction, of an infinite sequence E_1, E_2, \ldots of finite open covers of K.

Namely, suppose a consolidation E_l of D_{n_l} is defined so that E_l consists of m_l elements, for instance $E_l = (E'_1, ..., E'_{n_l})$. Then D_{n_l+1} is crooked in E_l (ibidem, Lemma 1). Let us write

$$I_{l+1} = (I_1, ..., I_{m_{l+1}}), I_l = (I'_1, ..., I'_{m_l})$$

and take, by virtue of the relation $I_{l+1} \prec_e I_l$, positive integers

$$1 = k_1, k_2, ..., k_{m_{l+1}} = m_l$$

such that $I_i \subset I'_{k_l}$ for $i=1, ..., m_{l+1}$ and condition (**) holds for $m=m_{l+1}$. According to the Bing theorem (ibidem, Theorem 1), there exist an integer $n_{l+1} > n_l$ and a consolidation $E_{l+1} = (E_1, ..., E_{m_{l+1}})$ of $D_{n_{l+1}}$ such that $\overline{E}_i \subset E'_{k_l}$ for $i=1, ..., m_{l+1}$.

Using the chains $E_1, E_2, ...$ we define a mapping f of K onto C as follows. For any x belonging to K, let $J_n(x)$ denote the union of elements I_i of I_n such that x belongs to elements E_i of E_n , having the same indices. Since $x \in E_i \cap E_j$ implies $|i-j| \leq 1$, by (*), and thus $I_i \cap I_j \neq 0$, by (**), the open subset $J_n(x)$ of C is the union of at most two elements of I_n , which intersect. It follows that the diameter of $J_n(x)$ is less than 2/n for every $x \in K$ and n = 1, 2, ... Moreover, if I_i is one of elements of I_{i+1} that form $J_{l+1}(x)$, then $x \in E_i \subset E'_{k_l}$, whence $I'_{k_l} \subset J_l(x)$, and so $I_i \subset J_l(x)$ as $I_i \subset I'_{k_l}$. Consequently, $J_{l+1}(x) \subset J_l(x)$ for every $x \in K$ and l = 1, 2, ... Therefore $\bar{J}_1(x), \bar{J}_2(x), ...$ is a decreasing sequence of compact subsets of C whose diameters tend to zero. We define

$$f(x) = \bigcap_{n=1}^{\infty} \bar{J}_n(x) .$$

Since every $y \in C$ belongs to some elements of each I_n , the closures of the unions of elements of E_n , having the same indices, as previously form a decreasing sequence of compact subsets of K (whose diameters need not tend to zero now). Hence they have at least one point x in common. We obtain $y \in J_n(x)$ for n = 1, 2, ..., which gives y = f(x); the equality C = f(K) follows.

Finally, for an arbitrary $\varepsilon > 0$, let us choose a positive integer n such that $4/n < \varepsilon$, and denote by $\eta > 0$ the Lebesgue number of the cover E_n of K. Then, for every points x, $x' \in K$ whose distance is less than η , the sets $J_n(x)$ and $J_n(x')$ intersect, whence their union has diameter less than or equal to $\delta[J_n(x)] + \delta[J_n(x')] < 4/n < \varepsilon$. But, as $f(x) \in \bar{J}_n(x)$ and $f(x') \in \bar{J}_n(x')$, the distance between f(x) and f(x') is less than ε . Consequently, f is a continuous mapping.

^(*) Note that this theorem gives an answer to a question proposed by Fort (see [1], p. 541, Question 3).

276

COROLLARY 1. Every continuous image of a weakly chainable continuum is weakly chainable.

COROLLARY 2. Every locally connected continuum is weakly chainable.

COROLLARY 3. Every chainable continuum is a continuous image of the pseudo-arc (4).

In 1930 Whyburn constructed a non-degenerate plane continuum W whose every non-degenerate subcontinuum cut the plane. Now we prove that there exists a weakly chainable plane continuum X like continuum W (5). According to the theorem, the pseudo-arc K can therefore be mapped onto X, though no subcontinuum of K cuts the plane (8). Moreover, X then contains only degenerate chainable continua (7).

Example 1. A weakly chainable non-degenerate plane continuum whose every non-degenerate subcontinuum cuts the plane.

The description of Example 1 requires introducing some notions of geometrical character. In construction we shall use special plane weak chains which will be shortly called d-chains. Namely, we first assume that a d-chain D is a weak chain whose every element, called a link of D, is an open disk lying on the plane, i.e. a bounded subset of the plane, homeomorphic to the set of interior points of the circle. It is also assumed that every two disjoint links of a d-chain $D = (D_1, ..., D_m)$ have disjoint closures, D_1 meets only D_2 , D_m meets only D_{m-1} , and no three different links of D (links are different if their indices are different) have a point in common, i.e. the nerve of D is 1-dimensional. Further, we require that every link of D intersects at most three other links of D, i.e. the nerve of D has ramification at most 3, and that the union of closures of all links of D, different than some D_i , does not cut D_i . Any sequence $L = (D_i, ..., D_j)$, where i+1 < j and $D_i \cap D_j \neq 0$, is called a loop of the d-chain D. Then the links D_i , D_j are called end links of the loop L, and the links D_{i-1} , D_{i+1} —adjacent links of the loop L. We assume on each pair L, L' of different loops in a d-chain D that either one of them is contained in the other, or they are disjoint, i.e. no link of L meets any link of L'. Moreover, we fix an orientation of the plane and assume that every loop L of a d-chain D must be "on the right side" of D, which means that the sequence of links of L, ordered by their indices in D and corresponding to the irreducible cycle in the nerve of D to which the end links of L belong, induces the positive orientation of the plane (see fig. 1, where a d-chain with two loops is presented). This completes the definition of d-chains.

F1g. 2

Now we establish some operations on d-chains, which are needed in the construction of Example 1. Let $\mathbf{D} = (D_1, ..., D_m)$ be a d-chain; let us take an arbitrary point p_{ij} in the set $D_i \cap D_j$ for every pair of links D_i and D_j having a point in common. A simple refinement of \mathbf{D} is understood to mean any refinement \mathbf{D}' of \mathbf{D} which is a d-chain and is obtained from \mathbf{D} by replacing every link D_{i_0} of \mathbf{D} by a chain in D_{i_0} (see fig. 2), successively joining the points p_{i_0j} (j may assume at most three values), so that the nerve of \mathbf{D}' is a simplicial subdivision of the nerve of \mathbf{D} the closure of every link of \mathbf{D}' lies in a link and meets no 3 links of \mathbf{D} .

According to the Janiszewski theorem, the union of links of any loop L of a d-chain cuts the plane between some points p and q. Then we shall shortly write that the loop L cuts the plane between p and q. Similarly, we shall write that a set Y is contained in the loop L instead of that Y is contained in the union of links of L. Suppose D and D' are d-chains with loops L and L', respectively, and $D' \prec D$. The loop L' is said to be related to the loop L if the end links of L' are contained in the end links of L, respectively, and L' cuts the plane between every pair of points p and q such that L cuts the plane between p and q. We see that if D' is a simple refinement of D, the relationship is a 1-1 correspondence between loops of D' and those of D. In this case any loop of D' is, moreover, contained in the loop of D to which it is related.

Let D be a d-chain with loop $L = (D_i, ..., D_j)$ and let n be a positive integer. We define a refinement $\Omega(D, L, n)$ of D as follows. Take a simple refinement D' of D such that the union of every two adjacent links of D' is contained in a link of D and has diameter less than 1/n and less than the distance between the sets \overline{D}_{i-1} and \overline{D}_j . Then there exists a link

⁽⁴⁾ This has recently been proved in another way by Mioduszewski (this volume, p. 179).

^(*) Perhaps, already Whyburn's original continuum W (see [3], p. 319) is weakly chainable, but to show this it seems necessary to have another definition of W, similar to the definition of X which is given below.

^(*) A problem raised by Knaster (see Colloq. Math. 8 (1961), p. 139, Problem 324) is thus settled.

^(*) This answers in the negative some of my question (ibidem 7 (1960), p. 109, Problem 289).

 D'_h of D' such that $D'_h \subset D_i - (D_{i-1} \cup D_j)$ (see fig. 3). The d-chain $\Omega(D, L, n)$, being a refinement of D, is obtained from D' by replacing the link D'_h by a chain C joining the links D'_{h-1} and D'_{h+1} so that the closure of the union of every two adjacent links of C is contained in

a link of L and has diameter less than 1/n, every link of L contains a link of C, and the nerve of $\Omega(D, L, n)$ is a simplicial subdivision of the nerve of D' (more precisely, only the star of the vertex corresponding to D'_h is divided). Let us observe that if the loop L is maximal in D, i.e. L is no proper subloop of any loop of D, then each continuum contained in the union of links of $\Omega(D, L, n)$ and joining the adjacent links of L must intersect every link of L and both adjacent links of the loop of $\Omega(D, L, n)$, related to L (see fig. 4, where D has 14 links and $\Omega(D, L, n)$ is presented as a line). Moreover, the relationship of loops is a 1-1 correspondence between loops of $\Omega(D, L, n)$ and those of D.

Denoting by L_1, \ldots, L_m all the loops of D, we define a refinement $\Omega(D,n)$ of D by finite induction. Namely, let $\Omega_1=\Omega(D,L_1,n)$ and suppose that Ω_k is defined. Let L'_{k+1} be the loop of Ω_k related to L_{k+1} . We put $\Omega_{k+1}=\Omega(\Omega_k,L'_{k+1},n)$. Let $\Omega(D,n)=\Omega_m$. So $\Omega(D,n) \prec D$ and $\Omega(D,n)$ is a d-chain. Since each link of $\Omega(D,n)$ is contained in a link of Ω_1 whose closure lies in a link of D, the closure of the union of links of $\Omega(D,n)$ is contained in the union of links of $\Omega(D,n)$ has diameter less than 1/n and every two adjacent links of $\Omega(D,n)$ are contained in the same link of D. Moreover, the relationship of loops is here also a 1-1 correspondence between loops of $\Omega(D,n)$ and those of D.

Except the operation Ω , just defined on d-chains having loops, another operation Π on d-chains is needed. D being a d-chain, we choose a point p_{ij} in $D_i \cap D_j$ for every pair of links D_i and D_j of D which have a point in common. The d-chain $\Pi(D) \prec D$ is obtained from D by

replacing every link D_i of D which intersects only D_{i-1} and D_{i+1} by a d-chain D_i joining the points $p_{i,i-1}$ and $p_{i,i+1}$ so that D_i has exactly one loop L_i , every link of L_i is contained in $D_i - (D_{i-1} \cup D_{i+1})$ (see fig. 5) and any loop of the whole $\Pi(D)$ either is related to a loop of D or is one of the loops L_i .

We now define the continuum X constituting Example 1. Let E_0 be any d-chain with a loop. We define d-chains E_n for n=1,2,... inductively by putting

$$\mathbf{E}_n = \Pi[\Omega(\mathbf{E}_{n-1}, n)].$$

Hence every link of E_n has diameter less than 1/n, $E_n \lt E_{n-1}$ and the closure F_n of the union of links of E_n is contained in E_{n-1} (n = 1, 2, ...). Obviously each F_n is a continuum and so

$$X = \bigcap_{n=1}^{\infty} F_n$$

is a non-degenerate plane continuum. Since E_{n+1} is a refinement of E_n (n=1,2,...), X is weakly chainable. It is thus sufficient to show that every non-degenerate subcontinuum C of X cuts the plane.

Let us choose a positive integer n_0 such that $1/n_0 < \delta(C)$. Then the continuum C is contained in none of the links of E_n for $n \ge n_0$. Moreover, if C is contained in a loop L of E_n , where $n > n_0$, then L is related to a loop of E_{n_0} , because if it were not so, L would be contained in a link of E_{n-1} and hence in a link of E_{n_0} .

We consider two cases:

Case 1. There exists an integer $n_1 \ge n_0$ such that the continuum C is contained in none of the loops of E_{n_1} . Then there is a link E_s of E_{n_1} such that E_s belongs to no loop of E_{n_1} and C contains a point of E_s which belongs to no link of E_{n_1} different from E_s . The link E_s meets therefore at most two other links of E_{n_1} , namely E_{s-1} and E_{s+1} . Since C is not

contained in E_s , it has a point which belongs to one of the links E_{s-1} and E_{s+1} , to E_{s+1} say, and does not belong to E_s . Thus C meets $E_s - E_{s+1}$ and $E_{s+1} - E_s$. But, according to the definition of Ω , the operation Ω applied to the d-chain E_{n_1} transforms it into a d-chain differing from a simple refinement of E_{n_1} only inside the loops of E_{n_1} . Hence the part of

$$\mathbf{E}' = \Omega(\mathbf{E}_{n_1}, n_1 + 1)$$

which lies in the link E_s coincides with that of a simple refinement, E_s belonging to no loop of E_{n_1} . It follows that the part of C lying in $E_s - E_{s+1}$ is joined to the part of C lying in $E_{s+1} - E_s$ with some links of E' that form a chain. On the other hand, every two adjacent links of E' are contained in some link of E_{n_1} . Hence there is a link E'_t of E' such that $E'_t \subset E_s \cap E_{s+1}$, E'_t intersects only the links E'_{t-1} and E'_{t+1} of E', adjacent to E'_t , E'_t belongs to no loop of E' and C meets both E'_{t-1} and E'_{t+1} (see fig. 6, where only four points of C are presented). But we have $E_{n_1+1} = H(E')$ and, according to the definition of H, there is a loop H of H is maximal in H in the continuum H meets both adjacent links of H.

Let L_k be the loop of E_{n_1+k} related to L_1 (k=1,2,...). Each loop L_k is thus maximal in E_{n_1+k} . Suppose that C meets both adjacent links of L_k ; then, since the continuum $C \subset X$ is contained in

$$E^{\prime\prime}=\Omega(E_{n_1+k},L_k,n_1+k+1),$$

C must intersect every link of L_k and both adjacent links of the loop of E'' related to L_k (compare p. 278). Hence C must also intersect both adjacent links of the loop L_{k+1} of E_{n_1+k+1} related to L_k , as L_k is maximal in E_{n_1+k} .

We have thus proved by induction that C intersects every link of L_k for k=1,2,... Let p and q be points between which L_1 cuts the plane. It follows that every loop L_k cuts the plane between p and q (k=1,2,...). Take an arbitrary $\varepsilon > 0$ and a continuum V joining p and q on the plane. Then for k sufficiently large each link of L_k has diameter less than ε . But since V meets some link of every L_k , V must have a point whose distance to a point of C is less than ε . Hence C and V intersect and it is shown that C cuts the plane between p and q.

Case 2. For every integer $n \ge n_0$ the continuum C is contained in a loop of E_n . Let us denote by L_n the *minimal* loop of E_n containing C ($n \ge n_0$), i.e. such that C is contained in L_n but in no proper subloop of L_n . Further, let L'_n denote the loop of E_{n_0} to which L_n is related $(n > n_0)$. Since, obviously, each L'_n is a subloop of L'_{n+1} and E_{n_0} has only a finite number of loops, all loops L'_n coincide beginning at some integer $n_2 > n_0$. Therefore every loop L_n is related to L_{n_2} for $n \ge n_2$. Let us denote by M_n ($n \ge n_2$) the collection of the links of L_n corresponding to the vertices

of the irreducible cycle in the nerve of L_n to which the end links of L_n belong. Then the union of links of M_{n_2} cuts the plane between some points p and q, and the union of links of M_n does the same for every $n \geq n_2$. Take an arbitrary $\varepsilon > 0$ and a continuum V joining p and q on the plane. Then for $n \geq n_2$ sufficiently large each link of M_n has diameter less than ε . Suppose that C intersects every link of M_n for $n \geq n_2$. Since V meets some link of every M_n $(n \geq n_2)$, V must have a point whose distance to a point of C is less than ε . Consequently, C and V intersect, and so C cuts the plane between p and q.

We can, therefore, assume that there exists an integer $m \ge n_2$ and a link E_u of L_m , belonging to M_m , such that C and E_u are disjoint. Let E_v and E_w (v+1 < w) be end links of the loop L_m . The continuum C is thus contained in the union of links of the d-chain

$$E = (E_{u+1}, E_{u+2}, ..., E_w, E_v, E_{v+1}, ..., E_{u-1}),$$

but C is contained in none of the loops of E, since L_m is the minimal loop of E_m containing C. In this way, Case 2 reduces to Case 1.

Fig. 8

Example 2. A plane continuum that is not weakly chainable.

As has been proved by Fort (see [1], p. 542), a plane continuum which does not cut the plane cannot be mapped onto the continuum Y which consists of two circumferences and of two spiral lines converging to them. More precisely, Y is the set of points having polar coordinates (r, θ) for which r = 1, r = 2 or $r = (2 + e^{\theta})/(1 + e^{\theta})$. The pseudo-arc being a plane continuum which does not cut the plane, it follows from the theorem (see p. 274) that Y is not weakly chainable.

Similarly, the continuum A (see fig. 7), which consists of a circumference and of a spiral line converging to it, is not weakly chainable. One can easily verify, however, that the continuum B (see fig. 8), which consists of a circumference and of another line converging to it, is weakly chainable.

282

Since A can be embedded into a square which is weakly chainable by Corollary 2, we see that, unlike chainable continua, a subcontinuum of a weakly chainable continuum needs not be weakly chainable.

References

[1] M. K. Fort, Jr., Images of plane continua, Amer. J. Math. 81 (1959), pp. 541-546.

[2] G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc. 98 (1961), pp. 369-394.

[3] G. T. Whyburn, A continuum every subcontinuum of which separates the plane, Amer. J. Math. 52 (1930), pp. 319-330.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 23, 12, 1961

On a family of 2-dimensional AR-sets

by

K. Borsuk (Warszawa)

In the present note we construct a family consisting of 2^{\aleph_0} two-dimensional AR-sets (compact) such that none of them contains a 2-dimensional closed subset homeomorphic to a subset of any other set. We also give some applications of this family to the problem of existence of universal n-dimensional AR-sets and to the theory of r-neighbours.

1. Zone of a triangulation. Let Δ be a triangle lying in the Euclidean 3-space E^3 and let b_{Δ} denote the barycentre of Δ . For every positive ε , let us denote by $L(\Delta, \varepsilon)$ the segment perpendicular to the plane of the triangle Δ with length 2ε and centre b_{Δ} . By the ε -zone of the triangle Δ we understand the minimal convex subset of E^3 containing the sets Δ and $L(\Delta, \varepsilon)$. It will be denoted by $Z(\Delta, \varepsilon)$. Evidently $Z(\Delta, \varepsilon)$ is the union of two 3-dimensional simplexes having Δ as their common base and the endpoints of the segment $L(\Delta, \varepsilon)$ — as opposite vertices. The polytope $Z(\Delta, \varepsilon)$ is a neighbourhood of every point lying in the interior of the triangle Δ . The segment $L(\Delta, \varepsilon)$ is said to be the axis of the zone $Z(\Delta, \varepsilon)$.

Now let T be a triangulation of a polytope P. The union of all m-dimensional simplexes of T is said to be the m-skeleton of T. Evidently the polytope P is homogeneously n-dimensional if and only if it coincides with the n-skeleton of T. In this case we understand by the boundary of P the union P of all (n-1)-dimensional simplexes of T incident exactly to one n-dimensional simplex of T, and by the edge of P the set P^* of all points $x \in P$ such that no neighbourhood of x in P is homeomorphic to a subset of the Euclidean n-space E^n . Evidently P and P^* are unions of some simplexes of the triangulation T, but they do not depend on the choice of this triangulation.

Now let us consider a homogeneously 2-dimensional polytope $P \subset E^3$ with a triangulation T and let ε be a positive number. One easily sees that for ε sufficiently small the common part of the zones of different triangles of the triangulation T coincides with the common part of the boundaries of those triangles. A positive number ε satisfying this condition is said to be suitable for the triangulation T.