On weakly chainable continua
by
A. Lelek (Wroclaw)

A finite sequence of sets Xi, ..., X,, is said to be a chain provided
that

(*) XinX;#0 if and only if |i—j|<1 (i,j=1,..,m).

A continuum O (i.e. a compact connected metric space) is said to be
chainable provided that there are, for every &> 0, open sets Gy, ..., Gm
in C sueh that ¢ = G, U ... U Gy, the diameter (G;) of G; is less than &
for i =1, ...,m and the sequence of sets G, ..., @n is a chain. Let ug
remark that the chain G, ..., G, can then eagily be improved so that
the sequence of closures @1, vy G in C is also a chain. Obvmusly, each
subcontinuum of a chainable contmuum is chainable.

In 1922 Knaster constructed a hereditarily indecomposable chainable
plane continuum K. In 1948 Moise showed that there existed an inde-
composable plane continuum M which, like any are, was homeomorphic
to each of its nondegenerate subcontinua. Then M was-hereditarily in-
decomposable. Bing proved, also in 1948, thaf there existed hereditarily
indecomposable and topologically homogeneous chainable plane continua,
and in 1951—that each chainable continuum was homeomorphic to
a subset of the plane and each hereditarily indecomposable chainable
continuum was homeomorphic to K. So K had all properties of M, and
at that time it began to be called a pseudo-arc. This term became usual
also for denoting every hereditarily indecomposable chainable continuum,
i.e. every continuum homeomorphic to K ().

If ¢ is a chainable continuum, then there evidently exmts an in-
finite sequence G, Gy, ... of finite open covers of € such that each G,
is a chain, each element; of G, has diameter less than 1/n and each element
of Gy, is contained in some element of @, (n =1,2,...). But if each
element @; of a chain G = (G, ..., Gn) is contained in some element

() The reader can find other historical remarks and references in neaxly all of
numerous papers concerning these things; for instance, among the recent papers, in
one of Lida K. Barrett, The structure of d posabl kelike contt Duke Math.
J. 28 (1961), pp. 515-522.
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&, of a chain G’ =(Gi, ..., Gw), then li—i] <1 imp]iefs .0 # G~ Gy
C @4, ~ G#,, which gives |ki—Fk;| < 1, according to (%), for i, =1, ..., m.
This leads to the notion of weakly chainable continua.

Namely, a finite sequence of sets Xy, .., Xn is said to be a weak
chain provided that

(#) Xin X A0 i [i—j] <1 (i =1,..,m).

Sinee (#) yields (#x), every chain is a weak chain.

A weak chain X = (X, ..., X,,) is said to be a refinement of a weak
chain X' = (Xi, ..., Xpy), symbolically X < X', provided that each
element X; of X is contained in some element Xj, of X' such that
(%) |Bi— ks <1 if [i—jl <1 (5, =21,..,m).

The relation < is transitive, i.e. if X, X' and X'’ are weak chains
with X 2 X’ and X’ < X", then X 3 X"

A continuum ¢ is said to be weakly chainable provided that there
exists an infinite sequence G, G,, ... of finite open covers of ¢ such that
each G, is a weak chain, each element of G, has diameter less than 1/n
and G, is a refinement of G, (n =1, 2, ...). Bvery chainable continuum
is, of course, weakly chainable.

Tf a continuum ¢ is weakly chainable, then the weak chains G, which
exist by the definition can be modified so that each Gy, besides being
a refinement of G,, has its first and last elements in the first and last
elements of G,, respectively.

More precisely, a weak chain X = (X, ..., X,) is said to be an
exact refinement of a weak chain X' = (Xj, ..., X;y), symbolically X <. X',
provided that each element X; of X is contained in some element Xj,
of X’ such that &k =1, %y =m’ and (%*) holds.

Then if C is o weakly chainable continuum, there evists an infinite
sequence I, I, ... of finite open covers of C such that each I, is a weak
chain (%), each element of I, has diameter less than 1/n and I, ., is an evact
refinement of I,"(n=1,2,..).

(?) Let us observe that, in the case where ( ig chainable, weak chaing cannot be
here replaced by chains. In fact, let €, be the well-known indecomposable chainable
plane continuum, which is the union of all demi-circumferences D with the centre
(3, 0) such that D joins the points of the Cantor ternary set 7' and lies in the demi-plane
y = 0, and of all demi-circumferences D’ with centres (5/2-3", 0) such that D’ joins
the points of 7' contained in the segment 2/3" < z < 1/8"* and lies in the demi-plane
y < 0for n=1,2,.. Let C, be any set homeomorphic to C, so that the point (0, 0}
ig a fized point of this homeomorphism and the unique common point of C, and its
image C,. Then the union € = (, v (, is a chainable continuum and there exists no
infinite sequence I, I, ... of finite open covers of C such that each I, is a chain, each
element of I bas diameter less that 1/n and Iy, is an exact refinement of Lin=1, 2, ...)
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To prove this, it is convenient to consider weak chains X whose
elements have not indices from 1 to m. Namely, X is only assumed to
be a finite ordered sequence (possibly with repetitions) of m sets which,
after being provided with successive indices from 1 to m, form a weak
chain X’ in the sense deseribed above. In the sequel we ghall identify X
with X'. :

For any weak chain X = (X,, X,, ..., X,) and positive integers a
and b such that 1 <a <b<m, we denote by X(a,b) the weak chain

X(a,b) =(Xa, Xat1y ory Xp) -

For any two weak chaing X = (X,, Xg41,..., Xp) and ¥ = (Y,
Y41y ooy ¥g) such that X, = Y., we define a weak chain X +Y by the
formula

X4+Y = (Ko, Xasa, ooy Xo, Tesn, ony Ta).

Further, for any weak chain X = (X,, ..., X4_1, Xp), we denote by
—X the weak chain
—X = (—Xb: Xb—lr e Xa) ’

and also assume the notation (—1)X = —X.

Now let G, be weak chains given by the definition of the weakly
chainable continuum C. Denote by m, the number of elements of G,
(n =1,2,...). As Gyt = G,, there iz a function %k, mapping the set
{1, ..., My} into the set {1,..., m,} so that the i-th element of G, is
contained in the k,(i)-th element of G, for ¢ =1, ..., myy:, and con-
dition (*%¥) holds for k; = k(%) and m = myy.. It follows that the funetion
%, has the Darboux property, ie. if integers a < b are the values under
ks, of o’ and b’, respectively, then each integer 1 satisfying a <1< b is
the value under %, of an integer in the segment with end-points o’ and b’

For every n =1,2,... and ¢ =0,1,..., let o’ and b} denote the
minimum and the maximum of the function kyknii...knie(j), Where
j =1, ..., Mpyii+1, respectively. So we have

0 1 _- 1 0
1<a/n<an§-..<bn<bn<mn

for every n =1,2, .., and therefore there exist positive integers i,,
a, and b, such that 1 < a, < b, < My, @t = a, and b}, =b, for i3> i,
(n =1,2,..). Then, for every n =1, 2, ..., the function %, maps the
segment i1 < j < byyq of integers j into the segment ay < § < by, and
the extremsa a, and b, must be the values under %k, of some integers in
the segment @,., < § < byy1, i.e. there are positive integers ¢, and d,
such that Ont1 < Cn < bn+1, An+1 < dn < b‘n+17 knr(cn) = On and kﬂ(dn) = bn'
Consequently, each element of the weak chain

Hn = Gn(a"ny b-n)
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has diameter less than 1/n and Hyy: <3 H, for » =1, 2, ... Moreover,
we have Gpys+1 < Hn, Whence each Hy, is an open cover of C.
We define the required weak chaing I, inductively, so that they are
all of the form
I, = (ﬁl)vﬂf‘Hn(am $n) +Hy—Hy(tny bn)]

where $,, t, and v, are integers, an < $» < b, and ay, < i, < by,. Namely,
we first put s, = @, ¢, = b, and v, =0, that is I, = H,. Suppose now
that the weak chain I, is defined. To define I,.., it is sufficient to choose
suitable integers sui1, tnr1 a0d Vnyq1. We shall do it so that the condition
I 3. I, will be satisfied.

Indeed, we have ¢, < d, or d, < ¢,. In the case where both inequalities
hold (then a, = b,), we consider only one of them. The function %, having
the Darboux property, the integers s, ahd #, are the values under %, of
integers in the segment with end-points ¢, and d,. If ¢, < d» (or dy < ¢2),
we define $,4, as the minimum of integers j satisfying ¢, <j < d, and
knlj) = 8 (OF dp < § < €n a0 Kn(f) = tp)—Tn+1 a8 the maximum of integers
j satistying ¢, <j < dn and kn(f) =t (or dp <j <on and ku(f) = sa),
and finally put v,11 = 9, (Or v,41 = v, +1, respectively).

THEOREM. A continuum is weakly chainable if and only if 4t is a con-
tinuous image of the pseudo-arc (3).

Proof. If a continuum C is a continuous image of the psendo-arc K
under a mapping f, then for every n =1, 2, ... there exists a number
&, > 0 such that 6(4) < e, implies 8[f(A4)] <1/3n for each A C K. Since
K is chainable, there is an infinite sequence of chains D,, D,, ... such
that every .D, is a finite open:cover of K, D,y < D, and (D) < &, for
DeD, (n=1,2,..). Suppose that B, = (Dy, ..., Dy) for an arbitrary
n=1,2,.. Consider G, = (G, ..., Gn), where G; is the set of points
of C whose distances from some points of f(D;) are less than 1/3n
(i =1,...,m). Then G, is a finite open cover of ¢ and &(G;) < 1/n for
i=1,..,m Further, |i—j| <1 implies 0 # f(D; ~ D;)C f(Ds) ~ (Dy)
CG@ G (i,§j=1,..,m), whence G, is a weak chain. Moreover, Dyiy
<D, gives G112 G, (n =1,2,..), and so O is weakly chainable.

Conversely, let us suppose that ¢ is weakly chainable and denote
by I, I, ... weak chains constituting the already modified sequence of
covers of C. So each element of I, has diameter less than 1/n and I,y is
an exact refinement of I, (»n = 1, 2, ...). Let m, be the number of elements
of I, (n =1,2,..). As K is the pseudo-are, there exist points p and ¢
and an infinite sequence Dy, D,, ... of finite open covers of K such that
each D, is a chain from p to g, each element of D,, has diameter less than
1/n, the closure of each element of D,i; is contained in some element

(%) Note that this theorem gives an answer to a question proposed by Fort (see [1],
p. 541, Question 3).
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of D, and D, is crooked in D, (see [2], p. 370 and 374). Then the number
of elements of D, tends to infinity with », and thus there is a consoli-
dation E,; of some D,, (ibidem) that consists of m, elements. This is the
beginning of the definition, by induection, of an infinite sequence E,, E,, ...
of finite open covers of K.

Namely, suppose a consolidation E; of Dy, is defined so that E; con-
sists of m; elements, for instance E; = (B, ..., By,). Then D,,., is crooked
in E; (ibidem, Lemma 1). Let us write

Ly = (I ., Iy, h=(I, .., Iow)
and take, by virtue of the relation I, 3.k, positivé integers
1=k Kay wony By =M

such that I; C I}, for 4 =1, ..., my;, and condition (%*) holds for m = myy, .
According to the Bing theorem (ibidem, Theorem 1), there exist an
integer mi.y > and a consolidation Eyy = (B, ..., Bn,,) of Dy, such
that #;C B, for ¢ =1, ..., myyq. .

Using the chains E;, E,, ... we define a mapping f of K onto C as
follows. For any = belonging to K, let J,(x) denotfe the union of elements
I; of I, such that » belongs to elements F; of E;, having the same indices.
Since « ¢ H; ~ B; implies |1 —j| <1, by (%), and thus I; ~ I; # 0, by (+#),
the open subset J,(z) of C is the union of at most two elements of I,,
which intersect. It follows that the diameter of J,(x) is less than 2/n for
every v ¢ K and » =1,2, .. Moreover, if I; is one of elements of Iy,
that form Jy..(2), then « e E;C By, whence Iy, CJiy(z), and so I; C Jy(x)
ag I; C Ip,. Consequently, Jy.i(2) C Jy(z) for every ze K and 1=1,2, ...
Therefore Jy(x),J,(@), ... i8 a decreasing sequence of compact. subsets
of O whose diameters tend to zero. We define

1@ =\ Ju@).

Since every y e C belongs to some elements of each I, the closures
of the unions of elements of E,, having the same indices, as previously
form a decreasing sequence of compact sibsets of K (whose diameters
need not tend to zero now). Hence they have at least one point » in
common. We obtain ¥ eJn(x) for n =1,2,.., which gives y = f(2);
the equality C =7(K) follows.

Finally, for an arbitrary ¢ > 0, let us choose a positive integer =
such that 4/n < ¢, and denote by n > 0 the Lebesgue number of the cover
E, of K. Then, for every points «, ' « K whose distance is less than 7,
the gets Jn(®) and J,(2’) intersect, whence their union has diameter less
than or equal to 8[J,(@)]=+8[Jn(e')] < 4/n < &. But, as f(z) ¢ Ju(z) and
f(@') e Jo('), the distance between f(z) and f(z') is less than e Con-
sequently, f is a continuous mapping.

Fundamenta Mathematicae, T. LI 19
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COROLLARY 1. Every continuous image of a weakly chainadle continuum
is weakly chainable.

COROLLARY 2. Hvery locally connected continuwm is weakly chainable.

COROLLARY 3. Hvery chainable continuum is a continuous tmage of
the pseudo-are (%).

In 1930 Whyburn constructed a non-degenerate plane continuum W
whose every non-degenerate subcontinuum cut the plane. Now we prove
that there exists a weakly chainable plane continuum X like continuum
W (5). According to the theorem, the pseudo-arc K. can therefore be
mapped onto X, though no subcontinuum of K cuts the plane (°). More-
over, X then contains only degenerate chainable continua (7)..

BxAwpLE 1. A weakly chainable non-degenerate plane continuum
whose every non-degenerate subcontinuum cuts the plane.

The description of Example 1 requires introducing some notions
of geometrical character. In construction we shall use special plane weak
chains which will be shortly called d-chains. Namely, we firgt assume
that a d-chain D is a weak chain whose every element, called a link of D,
is an open disk lying on the plane, i.e. a bounded subset of the plane,
homeomorphic to the set of interior points of the circle. It is also agsumed
that every two disjoint links of a d-chain D = (Dy, ..., D) have disjoint
closures, D; meets only D,, D,, meets only Dy_1, and no three different
links of D (links are different if their indices are different) have a point
in common, ie. the nerve of D is 1-dimensional. Further, we require
that every link of D intersects at most three other links of D, i.e. the
nerve of D has ramification at most 3, and that the union of closures
of all links of D, different than some D;, does not cut D;. Any sequence
L = (D;, ..., D;), where i+1 <j and D; ~n D; # 0, is called a loop of
the d-chain D. Then the links D;, D; are called end links of the loop L,
and the links D;_;, D;y1—adjacent links of the loop L. We assume on
each pair L, L' of different loops in a d-chain D that either one of them
is contained in the other, or they are disjoint, i.e. no link of L meets any
link of L’. Moreover, we fix an orientation of the plane and assume that
every loop L of a d-chain D must be ‘“‘on the right side” of D, which
means that the sequence of links of L, ordered by their indices in D and

(*) This has recently been proved in another way by Mioduszewski (this volumie,
p. 179). )

(). Perhape, already Whyburn’s original continuum W (see [3], p. 319) is weakly
chainable, but to show this it seems necessary to have another definition of W, similar
to the definition of X which is given below.

{*) A problem raised by Knaster (see Collog. Math. § (1961), p. 139, Problem 324)
is thus gettled.

(") This answers in the negative some of my question (ibidem 7 (1960), p. 109,
Problem 289).
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corresponding to the irreducible cycle in the nerve of D to which the
end links of L belong, induces the positive orientation of the plane
(see fig. 1, where a d-chain with two loops is presented). This completes
the definition of d-chains.

Fig. 1

Fig. 2

Now we establish some operations on d-chains, which are needed
in the construction of Example 1. Let D = (D,, ..., D,,) be a d-chain;
et us take an-arbitrary point p;; in the set D; ~ D; for every pair of links
D; and D; having a point in common. A simple refinement of D is under-
stood to mean any refinement D’ of D which is a d-chain and is obtained
from D by replacing every link D;, of D by a chain in D;, (see fig. 2),
successively joining the points ps; (j may assume at most three values),
so that the nerve of D' is a simplicial subdivision of the nerve of D the
closure of every link of D’ lies in a link and meets no 3 links of D.

According to the Janiszewski theorem, the wunion of links of any
loop L of a d-chain cuts the plane between some points p and g. Then
we ghall ghortly write that the loop L cuts the plane between p and g.
Similarly, we shall write that a set Y is contained in the loop L instead
of that Y is contained in the union of links of L. Suppose D and D’ are
d-chains with loops L and L’, respectively, and D'< D. The loop L’
is said to be related to the loop L if the end links of L’ are contained in
the end links of L, respectively, and L' cuts the plane between every
pair of points p and ¢ such that L cuts the plane between p and q. We
see that if D’ is a simple refinement of D, the relationship is a 1-1 cor-
respondence between loops of D' and those of D. In this case any loop
of D’ is, moreover, contained in the loop of D to which it is related.

Let D be a d-chain with loop L = (D;, ..., D;) and let' n be a positive
integer. We define a refinement (D, L, n) of D as follows. Take a simple
refinement D’ of D such that the union of every two adjacent links of
D’ ig_contained in a link of D and has diameter less than 1/n and less
than the distance between the sets D;_; and D;. Then there exists a link

19*
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D, of D' such that DjC.D;—(D;_1v D;) (see fig. 3). The d-chain
Q(D,L,n), being a refinement of D, is obtained from D’ by replacing
the link Dj by a chain C joining the links Dj— and Dj.: so that the
closure of the union of every two adjacent links of C is contained in

Fig. 3 Fig. 4

a link of L and has diameter less than 1/n, every link of L contains a link
of C, and the nerve of 2(D, L, n) is a simplicial subdivision of the nerve
of D' (more precisely, only the star of the vertex corresponding to .Dj is
divided). Let us observe that if the loop L is maxitmal in D, i.e. L iy no
proper subloop of any loop of D, then each continuum contained in the
union of links of 2(D, L, ») and joining the adjacent links of L must
intersect every link of L and both adjacent links of the loop of 2(D, L, n),
related to L (see fig. 4, where D has 14 links and Q(D, L, n) is presented
ag a line). Moreover, the relationship of loops is a 1-1 correspondence
between loops of Q(D, L, n) and those of D. )

Denoting by Ly, ..., L, all the loops of D, we define a refinement
Q(D,n) of D by finite induction. Namely, let @, =Q(D, L,,n) and
suppose that £ is defined. Let L., be the loop of 2y related to Lgi:.
We put Qps1 = 2(2%, L1, n). Let 2(D, n) = 2. So 2(D,n) <D and
Q2(D,n) is a d-chain. Since each link of 2(D, n) is contained in a link
of £, whose closure lies in a link of D, the closure of the union of links
of Q(D,n) is contained in the union' of links of D. Further, every link
of 2(D, n) has diameter less than 1/n and every two adjacent links of
(D, n) are contained in the same link of D. Moreover, the relationship
of loops is here also a 1-1 correspondence between loops of 2(D, n) and
those of D. )

Except the operation 2, just defined on d-chains having loops,
another operation IT on d-chains is needed. D being a d-chain, we choose
a point py; in D; ~ D; for every pair of links D; and D; of D which have
a point-in common. The d-chain 77(D) < D is obtained from D by
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replacing every link D; of D which intersects-only D;_, and D, by
a d-chain D; joining the points p;;—; and pisy: so that D; has exactly
one loop Ly, every link of L; is contained in D;— (Ds—; U Diss) (mee fig. 5)
and any loop of the whole I7(D) either is related to a loop of D or is one
of the loops L;.

We now define the continuum X constituting Example 1. Let E,
be any d-chain with a loop. We define d-chains E, for n =1, 2, ...
inductively by putting

E, =II[Q(E._;, n)].

Hence every link of E, has diameter less than 1/n, E, < E,_, and
the closure £, of the union of links of E, is contained in E,; (n =1, 2, ...).
Obviously each F, is a continuum and so

X=(F.
n=3%

" is a non-degenerate plane continuum. Since E,;, i8 a refinement of E,

(n=1,2,..), X is weakly chainable. It is thus sufficient to show that
every non-degenerate subcontinuum ¢ of X cuts the plane.

Let us chogse a pogsitive integer n, such that 1/n, < 6(C). Then the
continnum O is contained in none of the links of E, for n > n,. Moreover,
if € is contained in a loop L of E,, where % > n,, then L is related to
a loop of E,,, because if it were not so, L would be contained in a link
of E, ; and hence in a link of E,,.

;

- -
us? (0
Y as
e S>7

)

e

(e

Diy

Fig. 5 Fig. 6

We consider two cases:

Case 1. There exists an integer n, > n, such that the continuum €
is contained in none of the loops of E,,. Then there is a link ¥, of E,,
such that E; belongs to no loop of E,, and C contains a point of E, which

belongs to no link of E,, different from F,. The link ¥, meets therefore
at most two other links of E,,, namely B, ; and E,y,. Since C is not
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contained in X, it has & point which belongs to one of the links H,.,
and Hyp1, t0 Heyr sy, and does not belong to Hs. Thus € meets Hy— sy
and Fap1—F,. But, according to the definition of 2, the operation 2
applied to the d-chain E,, transforms i into a d-chain differing from
a simple refinement of E,, only inside the loops of E,,. Hence the part of

E' =Q(Ey,n+1)

which lies in the link H, coincides with that of a simple refinement, ¥,
belonging to no loop of Ey,. It follows that the part of O lying in Be— By
is joined to the part of C lying in Fsi1— B, with some links of E’ that
form & chain. On the other hand, every two adjacent links of E’ are con-
tained -in some link of E,. Hence there is a link H; of E’ such that
B;C By ~ Boya, B intersects only the links Bi_, and i, of E', adjacent
to B, B belongs to no loop of E' and C meets both Bj; and B (see
fig. 6, where only four points of ¢ are presented). But we have En.
= II(E') and, according to the definition of I, there is a loop L, of Ey+
wholly contained in Bi— (Bi_y v Bi41) (see fig. 6). So the loop L, is maximal
in E,4: and the continuum € meets both adjacent links of L,.

Let Ly be the loop of E, . related to Ly (k =1, 2, ...). Bach loop L;
is thus maximal in Ep,+%. Suppose that ¢ meets both adjacent links of Ly;
then, since the continuum C C X is contained in

E" = Q(Entr; Lg, ny+k+1)

¢ must intersect every link of L; and both adjacent links of the loop
of E" related to L; (compare p. 278). Hence ¢ must also intersect both
adjacent links of the 100p Lyis 0f Eptrqq related to Ly, as L; is maximal
i]l En1+lc'

We have thus proved by induction that O intersects every link of Ly
for k¥ =1,2, ... Let p and ¢ be points between which L, cuts the plane.
It follows that every loop L cuts the plane between p and ¢ (k =1, 2, ...).
Take an arbitrary ¢ > 0 and a continuum V joining p and ¢ on the plane.
Then for & sufficiently large each link of Ly has diameter less than s. But
since V meets some link of every Ly, V must have a point whose distance
to a point of O is less than . Hence € and V intersect and it is shown
that C cuts the plane between p and g. .

Cage 2. For every integer m > n, the continuum C is contained
in a loop of E,. Let us denote by L, the minimal loop of E, containing ¢
(n =), ie. such that C is contained in L, but in no proper subloop
of L,. Further, let L, denote the loop of E,, to which L, is related (n > n,).
Since, obviously, each L; is a subloop of L;., and E,, has only a finite
number of loops, all loops Ly, coincide beginning at some integer n, > -
Therefore every loop L, is related to L,, for n > n,. Let us denote by M,
(> n,) the collection of the links of L, corresponding to the vertices
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of the irreducible cycle in the nerve of L, to which the end links of L,
belong. Then the union of links of My, cuts the plane between some points
p and ¢, and the union of links of M, does the same for every n > #,. -
Take an arbitrary e > 0 and a continuum V joining p and ¢ on the plane.
Then for # > n, sufficiently large each link of M, has diameter less than .
Suppose that O intevsects every link of M, for u > n,. Since V meets
some link of every M, (n>n,), V must have a point whose distance
to a point of C is less than e. Consequently, € and V intersect, and so C
cuts the plane between p and g.

We can, therefore, assume that there exists an integer m > n, and
a link B, of L,, belonging to Mp, such that C and B, are disjoint. Let
B, and B, (v+1 < w) be end links of the loop L. The continuum €
is thus contained in the union of links of the d-chain

E= (Eu+17 Eu+2’ ey Eun E‘H Ev+17 ey Eu—l) b}

but ¢ is contained in none of the loops of E, since Ly, is the minimal loop
of E,, containing C. In this way, Case 2 reduces to Case 1.

Fig. 7 Fig. 8

EXAMPLE 2. 4 plane continuum that is not weakly chainable.

As has been proved by Fort (see [1], p. 542), a plane continuum which
does not cut the plane cannot be mapped onto the continuum ¥ which
consists of two circurferences and of two spiral lines converging to them.
More precisely; ¥ is the set of points having polar coordinates (r, 6)
for which 7 =1, r = 2 or 7 = (2 ¢%)/(1+¢°). The pseudo-arc being a plane
continuum which does not cut the plane, it follows from the theorem
(see p. 274) that ¥ is not weakly chainable.

Similarly, the continuum A (see fig. 7), which consists of 2 circum-
ference and of a spiral line converging to it, is not weakly chainable.
One can easily verify, however, that the continuum B (see fig. 8), which
consists of a circumference and of another line converging to it, is weakly
chainable.
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Since A ean be embedded into a square which is weakly chainable
by Corollary 2, we see that, unlike chainable continua, & subcontinuum
_of a weakly chainable continuum needs not be weakly chainable.
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On a family of 2-dimensional AR-sets
by

K. Borsuk (Warszawa)

In the present note we construct a family consisting of 2% two-di-
mensional AR-sets (compact) such that none of them contains a 2-di-
mengional closed subset homeomorphic to a subset of any other set. We
also give some applications of this family to the problem of existence
of universal n-dimensional AR-sets and to the theory of r-neighbours.

1. Zone of a triangulation. Let 4 be a triangle lying in the
Fuclidean 3-space F* and let b, denote the barycentre of 4. For every
positive ¢, let us denote by L(4,¢) the segment perpendicular to the
plane of the triangle 4 with length 2 and centre bs: By the g-zone of
the triangle 4 we understand the minimal convex subset of E? containing
the sets 4 and L(4, &). It will be denoted by Z(4, ¢). Evidently Z(4,¢)
is the union of two 3-dimensional simplexes having A as their common
bage and the endpoints of the segment L(4,s)—as opposite vertices.
The polytope Z(4,¢) is a neighbourhood of every point lying in the
interior of the triangle 4. The segment L(4, ¢) is said to be the axis of
the zone Z(4, &). )

Now let T be a triangulation of a polytope P. The union of all m-di-
mensional simplexes of T is said to be the m-skeleton of T. Evidently
the polytope P is homogeneously n-dimensional if and only if it coincides
with the n-skeleton of 7. In this case we understand by the boundary
of P the union P of all (n—1)-dimensional simplexes of T incident
exactly to one n-dimensional simplex of T, and by the edge of P the
set P* of all points e P such that no neighbourhood of # in P i8 homeo-
morphic to a subset of the Buclidean #-space E". Bvidently P* and P*
are unions of some simplexes of the triangulation T', bub they do mot
depend on the choice of this triangulation.

Now let us consider a homogeneously 9. dimensional polytope P C E*
with a triangulation T and let & be a positive number. One eagily sees
that for ¢ sufficiently small the common part of the zomnes of different
triangles of the triangulation 7' coincides with the eommon part of the
boundaries of those triangles. A positive number ¢ satisfying this con-
dition is said to be suitable for the triangulation 7. .
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