

[22] S. Rolewicz, Remarks on linear metric Montel spaces, ibidem III. 7 (1959), p. 195-197.

[23] — On isomorphic representation of spaces of holomorphic functions by marix spaces $M(a_{m,n})$, Reports of the Conference on Functional Analysis, Warszawa 1960.

[24] С. Ролевич, Об изоморфизме и аппроксимативной размерности пространств голоморфных функций, ДАН 133 (1960), р. 31-33.

Reçu par la Rédaction le 8, 12, 1960

Bases, lacunary sequences and complemented subspaces in the spaces L_p

b

M. I. KADEC (Kharkov) and A. PEŁCZYŃSKI (Warszawa)

In this paper we investigate the isomorphic structure (invariants of linear homeomorphisms) of subspaces of the space L_p $(1 \le p < +\infty)$. We consider especially the properties of basic sequences (bases in subspaces), as well as the properties of subspaces complemented in L_p . These properties are connected with classical problems concerning lacunary series. We explain them in a more detailed way.

Let p>2 and let (q_n) be an orthonormal system. Then

$$\left(\int\limits_{0}^{1} \Big| \sum_{i=1}^{n} t_{i} \varphi_{i}(t) \Big|^{p} dt \right)^{1/p} \geqslant \left(\int\limits_{0}^{1} \Big| \sum_{i=1}^{n} t_{i} \varphi_{i}(t) \Big|^{2} dt \right)^{1/2} = \left(\sum_{i=1}^{n} |t_{i}|^{2} \right)^{1/2}$$

for any scalars $t_1, t_2, ..., t_n$ (n = 1, 2, ...).

An orthonormal system is said to be p-lacunary iff (1) the converse inequality

$$\left(\int_{0}^{1} \left| \sum_{i=1}^{n} t_{i} \varphi_{i}(t) \right|^{p} dt \right)^{1/p} \leqslant C \left(\sum_{i=1}^{n} |t_{i}|^{2} \right)^{1/2}$$

holds for some C depending only on (φ_n) and for any t_1, t_2, \ldots, t_n $(n = 1, 2, \ldots)$.

In the language of the functional analysis this means that there is an isomorphism (linear homeomorphism) of Hilbert space l_2 onto the closed linear manifold in L_p spanned on the functions φ_n . Under this isomorphism the unit vectors in l_2 correspond the functions φ_n , i. e. the basic sequence (φ_n) is equivalent to the unit vector basis in l_2 (see the definition in section 1). Moreover, the operator $T\colon x\to (\int\limits_0^1 x(t)\,\varphi_n(t)\,dt)$ is a projection of L_p onto this manifold.

⁽¹⁾ We write "iff" instead of "if and only if". Studia Mathematica XXI

We prove the converse implication. Namely, if E is a subspace of L_p isomorphic to l_2 , then E may be obtained as a closed linear manifold spanned on some p-lacunary system (Theorem 3).

The classical problem considered by Banach [2] whether any orthonormal system contains a p-lacunary subsystem may be generalized to the following one:

Given a sequence (x_n) in L_p (p>2), give a necessary and sufficient condition in order that (x_n) contain a basic sequence (x_{n_k}) equivalent to the unit vector basis in l_2 .

This problem is solved in Corollary 5. Moreover, we shall show that if p>2, then every basic sequence contains a subsequence equivalent to one of two typical basic sequences. They are: the unit vector basis in l_2 , e.g. any p-lacunary system, and the unit vector basis of l_p (p is fixed), e.g. the sequence of characteristic functions of mutually disjoint sets.

Using this fact we prove a few results concerning unconditional bases in L_p (1 generalizing earlier results of Gapoškin [7], [8].

On the basis of our Theorem 2 we show that if X is an infinite-dimensional subspace complemented in L_p (1 , then either <math>X is isomorphic to l_2 , or X contains a complemented subspace isomorphic to l_p . This result completes a similar one obtained for other spaces in the paper [17].

In the last part of this paper we give a characterization of a non-reflexive subspace of the space ${\cal L}_1.$

Our paper is closely connected with the earlier one [14] of the first of the authors, in which the classes M_s^p are introduced. Our Theorem 2 is only a slight modification of Theorem 1 in [14]. The equivalence of conditions 3a, 3c, 3d is also proved here.

For simplicity we restrict our attention to the case of the space L_p . However, all our results may be extended to the case of the spaces $L_p(S, \mathcal{L}, \mu)$ defined in [6], p. 241.

1. Terminology and notation. We shall employ the notation and terminology adopted in [6]. We write "space" instead of "B-space". The term "subspace of a space X" denotes a closed manifold in X. The smallest subspace spanned on the sequence (x_n) is denoted by $[x_n]$. The symbol $[x_n]_p$ is reserved for the smallest linear manifold spanned on a sequence (x_n) of real-valued and measurable functions on [0,1], closed in L_p , i. e. closed under the norm $||x||_p = (\int_0^1 |x(t)|^p dt)^{1/p}$. The symbol X^* denotes the conjugate space to the space X. The Cartesian product of spaces X and Y is denoted by $X \times Y$.

The subspace E of a space X is said to be complemented in X iff

there is a projection, i. e. a linear idempotent mapping, from X onto E. A space X is said to be isomorphic to a space Y iff there is a linear homeomorphism from X onto Y. The sequence (x_n) is said to be a basis in a space X iff any element x in X has the unique expansion $x = \sum_{n=1}^{\infty} t_n x_n$. The basis (x_n) is unconditional iff this series converges unconditionally, for any x in X (see [5], p. 67-77). If (x_n) is an (unconditional) basis of a subspace of a space X, then (x_n) is said to be an (unconditional) basic sequence in X. The basic sequences (x_n) and (y_n) are said to be equivalent iff, for any sequence of scalars (t_i) the convergence of the series $\sum_{i=1}^{\infty} t_i x_i$ implies the convergence of the series $\sum_{i=1}^{\infty} t_i y_i$ and conversely. We recall that if the basic sequences (x_n) and (y_n) are equivalent, then the spaces $[x_n]$ and $[y_n]$ are isomorphic. The sequence (x_n^*) in X^* is said to be biorthogonal sequence to the sequence (x_n) iff $x_m^*(x_n) = \delta_n^m$ $(n, m = 1, 2, \ldots)$. The unit vector basis in t_p is the unconditional basis consisting of vectors $e_i = (\delta_n^i)$ for $i = 1, 2, \ldots$

2. Definition 1 [14]. Suppose that $p\geqslant 1$ and $\varepsilon>0$. We set

$$M_{\varepsilon}^{p} \, = \, \left\{ x \, \epsilon L_{p} \colon \operatorname{mess}\{t \colon |x(t)| \, \geqslant \varepsilon \, \|x\|_{p} \} \, \geqslant \varepsilon \right\} \, (^{2}) \, .$$

Theorem 1. The classes M^p_{ε} have the following properties:

1a. if
$$\varepsilon_1 < \varepsilon_2$$
, then $M^p_{\varepsilon_1} \supset M^p_{\varepsilon_2}$,

1b.
$$\bigcup_{\varepsilon>0} M_{\varepsilon}^p = L_p$$
,

1c. if $x \neq 0$ does not belong to M_{ε}^{p} , then there is a set A such that $\operatorname{mess} A < \varepsilon$ and $\int \left| \frac{x(t)}{||x||} \right|^{p} dt > 1 - \varepsilon$,

1d. if $p\geqslant 2$, $\varepsilon>0$, then $\|x\|_p\geqslant \|x\|_2\geqslant \varepsilon^{3/2}\|x\|_p$, for every x in M_p^p ,

1e. if p > 2, $0 < c \le 1$ and $||x||_p \ge ||x||_2 \ge C ||x||_p$, for some x, then x belongs to $M^p_{\epsilon_0}$, where $\epsilon_0 = (c/2)^{2p/(p-2)}$,

If. if $p\geqslant 2$, $\varepsilon>0$ and (x_n) is a sequence in M^p_ε such that the series $\sum\limits_{n=1}^\infty x_n$ is unconditionally convergent in L_p , then $\sum\limits_{n=1}^\infty \|x_n\|_p^2<+\infty$.

Proof. The properties 1a, 1b and 1c are obvious.

1d. The inequality $\|x\|_p \geqslant \|x\|_2$ for p>2 is well known. To prove that $\|x\|_2 \geqslant \varepsilon^{3/2} \|x\|_p$ write $\mathcal{S}^p_\varepsilon(x) = \{t\colon |x(t)|\geqslant \varepsilon \|x\|_p\}$. Since x is in M^p_ε , mess $\mathcal{S}^p_\varepsilon(x)\geqslant \varepsilon$ and

$$\|x\|_2 = \left(\int\limits_0^1 |x(t)|^2 dt\right)^{1/2} \geqslant \left(\int\limits_{S_\varepsilon^p(x)} |x(t)|^2 dt\right)^{1/2} \geqslant \left(\varepsilon^2 \|x\|_p^2 \operatorname{mess} S_\varepsilon^p(x)\right)^{1/2} \geqslant \varepsilon^{3/2} \|x\|_p.$$

⁽²⁾ By mess A we denote the Lebesgue measure of a set A.

Spaces L_n

1e. Suppose that x does not belong to M^p_{ε} ($\varepsilon < 1$). Hence mess $S^p_{\varepsilon}(x) < \varepsilon$. Using the elementary inequality

$$\left(\int\limits_E |x(t)|^2\,dt
ight)^{1/2}\leqslant (\operatorname{mess} E)^{(p-2)/2p}\left(\int\limits_E |x(t)|^p\,dt
ight)^{1/p}$$

we obtain

$$\begin{split} \|x\|_2 &= \Big(\int\limits_0^1 |x(t)|^2 dt\Big)^{1/2} = \Big(\int\limits_{S_\varepsilon^p(x)} |x(t)|^2 dt + \int\limits_{[0,1]-S_\varepsilon^p(x)} |x(t)|^2 dt\Big)^{1/2} \\ &\leq \Big(\int\limits_{S_\varepsilon^p(x)} |x(t)|^2 dt\Big)^{1/2} + \Big(\int\limits_{[0,1]-S_\varepsilon^p(x)} |x(t)|^2 dt\Big)^{1/2} \end{split}$$

$$\leq \left(\operatorname{mess} S_{\varepsilon}^{p}(x)\right)^{(p-2)/2p} \|x\|_{p} + \varepsilon \|x\|_{p} < 2\varepsilon^{(p-2)/2p} \|x\|_{p}$$

Thus, if $||x||_2 \ge C||x||_p$, then $C < 2\varepsilon^{(p-2)/2p}$, i. e. $\varepsilon > (c/2)^{2p/(p-2)}$.

1f. Since the identical embedding u(x)=x of L_p into L_2 is continuous for p>2, every unconditionally convergent series in L_p is unconditionally convergent in L_2 again. Hence, according to a result of Orlicz [16], it follows that $\sum\limits_{n=1}^{\infty}\|x_n\|_2^2<+\infty$. Thus, x_n belonging to M_s^p $(n=1,2,\ldots)$, we obtain $\sum\limits_{n=1}^{\infty}\|x_n\|_p^2\leqslant \varepsilon^{3/2}\sum\limits_{n=1}^{\infty}\|x_n\|_2^2<+\infty$ by 1d.

THEOREM 2. Let (x_n) be a sequence in L_p $(p \geqslant 1)$ such that for every $\varepsilon > 0$ there is an index n_ε such that x_{n_ε} does not belong to M_ε^p . Then there exists a sequence (x_n') , where $x_n' = x_{k_n}$ $(k_1 < k_2 < \ldots)$, such that:

2a. the sequence $(x'_n/||x'_n||)_p$ is a basic sequence equivalent to the unit vector basis in l_n ,

2b. the space $[x'_n]_p$ has a complement in L_p .

LEMMA 1. Let (A'_n) be a sequence of mutually disjoint sets of positive measure and let (y_n) be a sequence in L_p such that $||y_n||_p = 1$ and the support of the function y_n is contained in A'_n (n = 1, 2, ...). Then (y_n) is a basic sequence satisfying the conditions 2a and 2b.

Proof. Since $\|\sum_{i=1}^{n} t_i y_i\|_p^p = \sum_{i=1}^{n} |t_i|^p \int_{A_i'} |y_i(s)|^p ds = \sum_{i=1}^{n} |t_i|^p$ for any sca-

lars t_1, t_2, \ldots, t_k $(n = 1, 2, \ldots)$, 2a is satisfied. To establish 2b we put

$$Px = \sum_{n=1}^{\infty} \int_{A'_n} y_n^*(s) \cdot x(s) ds \cdot y_n$$
 for any x in L_p ,

where y_n^* is a function in L_q $(q^{-1}+p^{-1}=1)$ such that $\|y_n\|_q = \int y_n^*(s)y_n(s)ds = 1$ $(n=1,2,\ldots)$. It is easily seen that P is the required projection of L_p onto $[y_n]_p$ with the norm $\|P\|=1$.

Proof of Theorem 2. According to [4], Theorems 2 and 3, it is sufficient to choose a sequence $(x'_n||x'_n||_p^{-1})$ "a little translated" with respect to some sequence (y_n) satisfying the assumptions of Lemma 1.

If x is in L_p , then the set function $\Phi(A) = \int_A |x(t)|^p \cdot dt$ is absolutely continuous. Hence, by the assumptions and by 1a, 1b, and 1c we may define by an induction process a subsequence (x'_n) of the sequence (x_n) and a sequence of sets (A_n) so that

(1)
$$\int_{A_n} \left| \frac{x'_n(t)}{\|x'_n\|_p} \right|^p |dt| > 1 - 4^{-(n+1)p} (n = 1, 2, ...),$$

(2)
$$\int\limits_{A_{n+1}} \sum_{i=1}^{n} \left| \frac{x_i'(t)}{\|x_i'\|_p} \right|^p dt < 4^{-(n+1)p} (n = 1, 2, \ldots).$$

Let us write

$$A'_n = A_n - \bigcup_{i=n+1}^{\infty} A_i,$$

$$z_n(t) = \begin{cases} \frac{x_n'(t)}{\|x_n'\|_p} & \text{for } t \in A_n', \\ 0 & \text{for } t \notin A_n', \end{cases}$$

(5)
$$y_n = \frac{z_n}{\|z_n\|_p} \quad (n = 1, 2, \ldots).$$

Obviously, if $n \neq m$ then $A'_n \cap A'_m = \emptyset$. By (1)-(5), we have (for each n)

$$(6) \qquad \left\| \frac{x'_n}{\|x'_n\|_p} - z_n \right\|_p^p \leqslant \int\limits_{[0,1]-A'_n} \left| \frac{x'_n(t)}{\|x'_n\|_p} \right|^p dt \leqslant \int\limits_{[0,1]-A_n} \left| \frac{|x'_n(t)|}{\|x'_n\|_p} \right|^p dt +$$

$$+ \int\limits_{A_n - A'_n} \left| \frac{x'_n(t)}{\|x'_n\|_p} \right|^p dt < 4^{-(n+1)p} + \sum_{i=n+1}^{\infty} \int\limits_{A_i} \left| \frac{x'_n(t)}{\|x'_n\|_p} \right|^p dt$$

$$< 4^{-(n+1)p} + \sum_{i=n+1}^{\infty} 4^{-ip} < 4^{-np},$$

$$(7) 1 \geqslant ||z_{n}||_{p}^{p} = \int_{A'_{n}} \left| \frac{x'_{n}(t)}{||x'_{n}||_{p}} \right|^{p} dt \geqslant \int_{A_{n}} \left| \frac{x'_{n}(t)}{||x'_{n}||_{p}} \right|^{p} dt - \sum_{\nu=n+1}^{\infty} \int_{A_{\nu}} \left| \frac{x'_{n}(t)}{||x'_{n}||^{p}} \right|^{p} dt$$
$$\geqslant 1 - 4^{-(n+1)p} - \sum_{n=1}^{\infty} 4^{-(\nu+1)p} \geqslant 1 - 4^{-np}.$$

Spaces L_n

If follows by (5)-(7) that

$$\left\| \frac{x'_n}{\|x'_n\|_p} - y_n \right\|_p \leqslant \left\| \frac{x'_n}{\|x'_n\|_p} - z_n \right\|_p + \|z_n - y_n\|_p \leqslant 4^{-n} + \|y_n\|_p (1 - \|z_n\|_p) < 2 \cdot 4^{-n}.$$

Thus

$$\|P\|\sum_{n=1}^{\infty}\|y_n^*\|_q\left\|rac{x_n'}{\|x_n'\|_p}-y_n
ight\|_p<1.$$

Hence the sequence $(a'_n/||x'_n||_p)$ fulfils the assumptions of Theorems 2 and 3 of [4].

Theorem 3. Let p>2 and let E be an infinite dimensional subspace of L_p . Then the following conditions are equivalent:

3a. E is isomorphic to the space l2,

3b. no subspace of E is isomorphic to l_p ,

3c. no subspace of E complemented in L_p is isomorphic to l_p ,

3d. $E \subset M_{\varepsilon}^p$ for some $\varepsilon > 0$,

3e. the norms $\| \ \|_p$ and $\| \ \|_2$ are equivalent on E, i.e. there is a constant $C_E > 0$ such that $\| x \|_p \geqslant \| x \|_2 \geqslant C_E \| x \|_p$, for any x in E,

3f. there is a p-lacunary orthonormal system (φ_n) such that $E = [\varphi_n]_p$,

3g. there are $\varepsilon > 0$ and an unconditional basis (e_n) in E such that $e_n \in M_{\varepsilon}^p$ for n = 1, 2, ...

Proof. The implications $3a \Rightarrow 3b \Rightarrow 3c$ are well known ([1], chap. XII).

 $3c \Rightarrow 3d$ is an immediate consequence of Theorem 2.

3d \Rightarrow 3e is an immediate consequence of 1d.

 $3e \Rightarrow 3f$. Using the Schmidt orthogonalization process we choose an orthonormal system (φ_n) in E such that $[\varphi_n]_p = [\varphi_n]_2 = E$ (it is possible because E is simultaneously closed in L_p and L_2 , by 3e). By 3e, we have

$$\Big\| \sum_{i=1}^n t_i \varphi_i \Big\|_p \leqslant C_E^{-1} \Big\| \sum_{i=1}^n t_i \varphi_i \Big\|_2 = C_E^{-1} \Big(\sum_{i=1}^n t_i^2 \Big)^{1/2}$$

for each of the scalars t_1, t_2, \ldots, t_n $(n = 1, 2, \ldots)$.

Hence (φ_n) is p-lacunary and $[\varphi_n]_p = E$.

 $(\varphi_n)_p \equiv E$. $3f \Rightarrow 3a$. Let (φ_n) be an orthonormal p-lacunary system and let $E = [\varphi_n]_p$. Hence, it follows that there is a constant C_E such that the inequality $||x||_p \ge ||x||_2 = ||\sum_{n=1}^{\infty} t_n e_n||_2 = (\sum_{n=1}^{\infty} t_n^2)^{1/2} \ge C_E ||x||_p$ holds for every x in E, where $t_n = \int_0^1 x(t)\varphi_n(t)\,dt$ $(n=1,2,\ldots)$. Thus the mapping $x \leftrightarrow (\int_0^1 x(t)\varphi_n(t)\,dt)$ is an isomorphism between E and l_2 .

The condition 3g follows immediately from 3a and 3d.

Now assume 3g. Without loss of generality we may assume that $\|e_n\|_p = 1$ (n = 1, 2, ...). We shall show that the series $\sum_{n=1}^{\infty} t_n e_n$ converges iff $\sum_{n=1}^{\infty} t_n^2 < +\infty$, i. e. that the basis (e_n) is equivalent to the unit vector basis in l_2 .

Suppose that the series $\sum_{n=1}^{\infty} t_n e_n$ converges. Since (e_n) is an unconditional basis in E, the series $\sum_{n=1}^{\infty} t_n e_n$ converges unconditionally and, by a result of [16], $\sum_{n=1}^{\infty} ||t_n e_n||_p^2 = \sum_{n=1}^{\infty} |t_n|^2 < +\infty$.

Conversely, supposet hat $\sum_{n=1}^{\infty} t_n^2 < +\infty$. Then, by a result of [12] one may choose a sequence (ε_n) , $\varepsilon_n = \pm 1$ (n = 1, 2, ...), so that

(8)
$$\left\| \sum_{n=1}^{N} \varepsilon_n t_n e_n \right\|_p \leqslant B_p \left(\sum_{n=1}^{N} t_n^2 \right)^{1/2} \quad (N = 1, 2, ...),$$

where B_n is a constant depending only on p (3).

Since E is reflexive, the basis (e_n) is boundedly complete (see [10] or [5], p. 71), by (8), it follows that the series $\sum_{n=1}^{\infty} \varepsilon_n t_n e_n$ converges.

Hence, $(\bar{e_n})$ being an unconditional basis, the series $\sum_{n=1}^{\infty} t_n e_n$ is also convergent.

3. Corollary 1. If E is a subspace of L_p (p>2) isomorphic to l_2 , then E is complemented in L_p .

Proof. By 3f there exists a *p*-lacunary orthonormal system (e_n) such that $[e_n]_p = E$. Put

(9)
$$Px = \sum_{n=1}^{\infty} \left(\int_{0}^{1} e_n(t) x(t) dt \right) e_n \quad \text{for any } x \text{ in } L_p.$$

(3) This is a consequence of the following result. Let (r_n) be a sequence in L_p $(p \ge 2)$ such that

$$\int_{0}^{1}\left|\sum_{i=1}^{k}r_{i}(t)\right|\cdot r_{k+1}(t)\operatorname{sign}\left(\sum_{i=1}^{k}r_{i}(t)\right)dt < 0 \quad \text{ for } \quad k=1,2,\ldots,N-1.$$

Then $\|\sum_{k=1}^{N} r_k\|_p > B_p (\sum_{k=1}^{N} \|r_k\|_p^2)^{1/2}$ (N=1,2,...), where B_p depends only on p ([12], proof of Theorem 1).

In view of Theorem 3, formula (9) well defines a linear mapping from L_p into E. Since $Pe_n=e_n$ (n=1,2,...) and $[e_n]_p=E$, P is the desired projection.

Remark 1. We do not know whether Corollary 1 can be extended to the case where 1 .

No subspace of L_1 isomorphic to l_2 has a complement in L_1 (see e. g. [17], p. 216). The smallest closed manifold spanned in L_1 on Rademacher functions is an example of a non complemented subspace of L_1 isomorphic to l_2 .

COROLLARY 2 ([14], Corollary 3). Let p > 2 and let E be an infinite-dimensional subspace of L_p . Then, either E is isomorphic to l_2 , or E contains a subspace isomorphic to l_p and complemented in L_p .

This immediately follows from Theorems 2 and 3.

Remark 2. Let $1 \leqslant p \neq q < 2$. Then there is a subspace X_q of L_p which is isomorphic to l_q [13]. In view of [1], chap. XII, no subspace of X_q is isomorphic to l_p . This example shows that Theorem 3 and Corollary 2 cannot be extended to the case where $1 \leqslant p < 2$.

COROLLARY 3. Let $1 and let X be an infinite-dimensional subspace of <math>L_p$ complemented in L_p . Then, either X is isomorphic to l_2 , or X contains a complemented subspace isomorphic to l_p .

Proof. The case p=2 is trivial. In the case where p>2 we apply Corollary 2. The case where 1< p<2, can be reduced to the preceding one according to a well-known result showing that if X is reflexive, then Y is a complemented subspace of X iff Y^* is a complemented subspace of X^* .

COROLLARY 4. Let p>2 and let (x_n) be an unconditional basic sequence in L_p with $0<\inf_n\|x_n\|_p\leqslant \sup_n\|x_n\|_p<+\infty$. Then (x_n) is equivalent to the unit vector basis in l_2 iff there is an $\varepsilon>0$ such that x_n is in M_ε^p for $n=1,2,\ldots$

This immediately follows from the analysis of the proof of Theorem 3.

Remark 3. In particular from Corollary 4 we obtain the result of Bari [3] and Gelfand [9], which states that all unconditional bases (e_n) in L_2 with $0 < \inf \|e_n\|_2 < \sup \|e_n\|_2 < +\infty$ are equivalent.

To prove that consider a subspace of L_p isomorphic to L_2 and use Corollary 4 and condition 3d.

COROLLARY 5. Let p>2 and let (x_n) be a sequence in L_p satisfying the following conditions:

- (i) (x_n) weakly converges to 0,
- (ii) $\limsup ||x_n||_p > 0$.

Then there is a subsequence (x_{n_k}) which is equivalent either (α) to the unit vector basis in l_p , or (β) to the unit vector basis in l_2 . Moreover, (β) holds iff

(iii) there is $\varepsilon > 0$ such that x_n is in M_{ε}^p for infinite many n.

Proof. If (iii) is satisfied, then without loss of generality we may assume that all x_n are in M_e^p for some $\varepsilon > 0$ (ε does not depend on n). Since the space L_p (p > 1) has an unconditional basis [15], by (i), (ii) and a result in [4], p. 56, C1, we may choose an unconditional basic sequence (x_{n_k}) with $0 < \inf_k ||x_{n_k}||_p \le \sup_k ||x_{n_k}||_p < +\infty$. Now (β) follows from Corollary 4.

If (iii) does not hold, then we apply Theorem 2.

COROLLARY 6. Let p>2 and let (x_n) be a basic sequence in L_p with $0<\inf_n\|x_n\|_p\leqslant \sup_n\|x_n\|_p<+\infty$. Then there is a basic sequence (x_{n_k}) which is equivalent either (α) to the unit vector basis in l_p , or (β) to the unit vector basis in l_2 . Moreover, (β) holds iff condition (iii) is satisfied.

Proof. Since every bounded basic sequence in any reflexive space weakly converges to 0 (4), this Corollary follows immediately from Corollary 5.

Remark 4. The example considered in Remark 2 shows that Corollaries 5 and 6 cannot be extended to the case where $1 \le p < 2$.

However, in the space l_p $(1 every basic sequence contains a subsequence equivalent to the unit vector basis in <math>l_p$ (It may be deduced in the same way as in [4], p. 157, C. 5).

COROLLARY 7 ([11], p. 246). Let p > 2 and let (x_n) be an orthonormal system such that

(iv)
$$\sup_n \|x_n\|_p = C < +\infty.$$

Then there exists a p-lacunary subsequence (x_{n_k}) .

Proof. The p-lacunarity of a sequence (x_{n_k}) means that (x_{n_k}) is an orthonormal system which is a basic sequence equivalent (under the norm $\|\cdot\|_p$) to the unit vector basis in l_2 . Hence, in view of Corollary 5, to complete the proof it is sufficient to show that (i), (ii) and (iii) are satisfied. Since (x_n) is an orthonormal system, $\lim_{n \to \infty} \int_0^1 x_n(t) y(t) dt = 0$ for every y in L_2 . Thus (i) holds because (x_n) is a bounded sequence

⁽⁴⁾ Indeed, let (x_n) with $\sup_n ||x_n|| < +\infty$ be a basis in a reflexive space X and let (x_n^*) be the biorthogonal sequence to (x_n) . Since (x_n^*) is a total set of functionals and $\lim_n x_m^*(x_n) = 0$, by the reflexivity of X and the boundedness of (x_n) it follows that (x_n) weakly converges to 0.

Spaces Lp

171

in a reflexive space which tends to zero for a dense set of functionals (the class of all square-integrable functions is dense in L_q for $1\leqslant q\leqslant 2$). Condition (ii) follows from the inequality $\|x_n\|_p\geqslant \|x_n\|_2=1$ $(n=1,2,\ldots)$. Since $\|x_n\|_p\geqslant \|x_n\|_2=1\geqslant C^{-1}\|x_n\|_p$ $(n=1,2,\ldots)$, we obtain (iii) by 1e.

THEOREM 4. Let (x_n) be an unconditional basis in L_p $(1 such that <math>0 < \inf_n \|x_n\|_p \leqslant \sup_n \|x_n\|_p < +\infty$.

Then

4a. every subsequence of (x_n) contains a subsequence which is equivalent either to the unit vector basis in l_p , or to the unit vector basis in l_2 ,

4b. there exists a subsequence (x_{n_k}) which is equivalent to the unit vector basis in l_p .

Proof. For p=2 it follows from the result of Bari and Gelfand mentioned in Remark 3.

Let p>2. Then 4a follows from Corollary 4. To prove 4b, suppose a contrario that no subsequence of (x_n) is equivalent to the unit vector basis in l_p . Hence, by Theorem 2, there is an $\varepsilon>0$ such that all x_n are in M_ε^p . Thus, by Theorem 3, implication $3f \Rightarrow 3a$, we infer that the space $[x_n]_p = L_p$ is isomorphic to l_2 . But it leads to a contradiction with ([1], chap. XII).

The proof in the case where $1 can be reduced to the preceding one since the space <math>L_q$ is conjugate to L_p for q = p/(p-1) > 2 and in view of the following lemma:

LEMMA 2. Let (x_n) and (e_n) be unconditional bases in spaces X and E and let (x_n^*) and (e_n^*) be the corresponding biorthogonal sequences in the conjugate spaces X^* and E^* respectively. Then, (n_k) being an increasing sequence of indices, the basic sequences (x_{n_k}) and (e_k) are equivalent iff the basic sequences $(x_{n_k}^*)$ and (e_k^*) are equivalent.

Proof. Denote by \hat{x}^* the restriction of a functional x^* on X to the space $X_0 = [x_{n_k}]$ and set $\|\hat{x}^*\|_{X_0} = \sup_{0 \neq x \in X_0} |x^*(x)| \|x\|^{-1}$. If the basic sequences (\hat{x}_{n_k}) and (e_k) are equivalent, then the basic sequences $(\hat{x}_{n_k}^*)$ and (e_k^*) are also equivalent. Since (x_n) is an unconditional basis, $P = \sum_{k=1}^\infty x_{n_k}^*(\cdot) x_{n_k}$ is a well-defined projection operator from X onto X_0 . Thus, for arbitrary scalars t_1, t_2, \ldots, t_k $(k = 1, 2, \ldots)$, we have $\|\sum_{k=1}^k t_i x_{n_k}^*\| = \sup_{\|x\| \leqslant 1} |\sum_{k=1}^\infty t_i x_{n_k}^*(x)| = \sup_{\|x\| \leqslant 1} |\sum_{k=1}^k t_i x_{n_k}^*(x)| \le \|P\| \|\sum_{k=1}^k t_i \hat{x}_{n_k}^*\|_{X_0}$.

On the other hand, $\|x^*\| \ge \|\hat{x}^*\|_{X_0}$ for every x^* in X^* . Thus, the basic sequences $(x_{n_k}^*)$ and $(\hat{x}_{n_k}^*)$ are equivalent, and the basic sequences $(x_{n_k}^*)$ and (e_k^*) are also equivalent.

The proof of the converse implication is analogous.

Remark 5. The assumption of Lemma 2 that (x_n) is an unconditional basis is essential. Let X=E=c. Consider the basis (x_n) where

$$x_n = \{\xi_i^{(n)}\}, \quad \ \xi_i^{(n)} = egin{cases} 0 & ext{ for } & i < n, \ 1 & ext{ for } & i \geqslant n. \end{cases}$$

The biorthogonal sequence in $c^* = l$ is

$$(x_n^*) = ig(\{\eta_i^{(n)}\}ig), \quad ext{where} \quad \eta_i^{(1)} = egin{cases} 1 & ext{for} & i=1, \ 0 & ext{for} & i>1, \end{cases}$$

and

$$\eta_i^{(n)} = \left\{ egin{array}{ll} -1 & ext{for} & i=n-1\,, \ & 1 & ext{for} & i=n\,, \ & 0 & ext{for other} & i, \end{array}
ight. \, (n=2\,,3\,,\ldots).$$

Let $n_k = 2k$ (k = 1, 2, ...). Then the basic sequence (x_{2k}) is equivalent to the basis (x_n) , but the basic sequence (x_{2k}^*) is equivalent to the unit vector basis in l, and thus it is not equivalent to the basis (x_n^*) .

COROLLARY 8. Let $1 . Then there is no unconditional basis in the space <math>L_p$ such that the basic sequence (x_{k_n}) is equivalent to the basis (x_n) for every increasing sequence of indices (k_n) .

Indeed, if it were not so, then according to Theorem 4 the space L_p would be isomorphic to l_p , contrary to [1], chap. XII.

COROLLARY 9. Let (x_n) with $\|x_n\|_p = 1$ (n = 1, 2, ...) be an unconditional basis in L_p . Then $\lim_n \inf \|x_n\|_2 = 0$, for p > 2 ($\lim_n \sup \|x_n\|_2 = +\infty$, for $1). In particular ([7], Theorem 2), if an orthonormal system is an unconditional basis in <math>L_p$, then $\lim_n \sup \|x_n\|_p = \infty$ for p > 2 ($\lim_n \inf \|x_n\|_p = 0$ for 1).

Proof. In the case where p>2 this follows from 1e and Corollary 4. The case where 1< p<2 reduces to the preceding one by the consideration concerning conjugate space.

Remark 6. The trigonometrical orthogonal system is a basis in L_p for $1 ([20], p. 182). This basis satisfies 4a, by Corollary 7, but does not satisfy 4b for <math>p \neq 2$. This example shows that in Theorem 4 and Corollary 9 the assumption that the basis is unconditional is essential.

If $p\geqslant 2$ we may prove Corollary 8 without the assumption that the basis is unconditional. Probably this assumption is superflows also for 1< p< 2.

Remark 7. Let (χ_n) be the Haar orthonormal system (5). It is well known that $(\chi_n ||\chi_n||_p^{-1})$ is an unconditional basis in L_p $(1 [15]. This basis has the following property: there is only a finite number of functions <math>\chi_n$ belonging to M_s^p for any $\varepsilon > 0$. Hence no subsequence of (χ_n) is equivalent to the unit vector basis in l_2 for $p \neq 2$. On the other hand, in L_p , for $1 , there is an unconditional basis <math>(\Psi_n^{(p)})$ with $\|\Psi_n^{(p)}\|_p = 1$ containing a subsequence $(\Psi_{nk}^{(p)})$ equivalent to the unit vector basis l_2 ([17], Theorem 7). Obviously if $1 , then no permutation of the basis <math>(\Psi_n^{(p)})$ is equivalent to the basis $(\chi_n ||\chi_n||_p^{-1})$.

4. Definition 2. An unconditional basis (x_n) in a *B*-space *X* is said to be *permutatively homogeneous* iff it is equivalent to the basis $(x_{p(n)})$ for any permutation $p(\cdot)$ of indices.

Remark 8. The unit vector bases in the spaces $l_p (1 \leqslant p < +\infty)$, c_0 and in Orlicz sequence spaces l_N are permutatively homogeneous. If (x_n) is a permutatively homogeneous basis in a B-space X, then (x_n^*) — the biorthogonal sequence to (x_n) , is permutatively homogeneous basis in $[x_n^*] \subset X^*$.

Theorem 5. Let (x_n) be a permutatively homogeneous basis in a space X. Then

5a. $0 < \inf_{n} ||x_n|| \le \sup_{n} ||x_n|| < +\infty$,

5b. the basis (x_n) is equivalent to the basic sequence (x_{k_n}) for any increasing sequence of indices (k_n) .

Proof. 5a. Suppose that $\liminf_n \|x_n\| = 0$ and choose two increasing sequences (k'_n) and (k''_n) such that $k'_i \neq k''_j$ $(i,j=1,2,\ldots)$ and $\sum_{n=1}^{\infty} \|x_{k'_n}\| \|x_{k''_n}\|^{-1} < +\infty$. Consider a permutation $p(\cdot)$ such that $p(k'_n) = k''_n$ and set

$$t_i = egin{cases} \|x_{k_{2n}^{\prime\prime}}\| & ext{for} \quad i = k_{2n}^{\prime}, \ 0 & ext{for other} \ i. \end{cases}$$

Then the bases (x_n) and $(x_{p(n)})$ are not equivalent, because the series $\sum\limits_{n=1}^{\infty}t_nx_n$ converges but the series $\sum\limits_{n=1}^{\infty}t_nx_{p(n)}$ diverges.

The proof that $\limsup ||x_n|| < +\infty$ is analogous.

5b. Let (k_n) be an increasing sequence of indices and let (t_n) be a sequence of scalars such that $\sum_{n=1}^{\infty} t_n x_n$ converges. According to 5a,

 $\lim t_n=0$. Hence we may choose an increasing sequence of indices (r_n) so that $|t_{r_m}|<1/2^m$ $(m=1,2,\ldots)$. Let us consider a permutation $p(\cdot)$ such that $p(n)=k_n$ for $n\neq r_m$. Since the basis (x_n) is permutatively homogeneous, the series $\sum\limits_{n=1}^\infty t_n x_{p(n)}$ unconditionally converges. Thus the series $\sum\limits_{n\neq r_m} t_n x_{p(n)} = \sum\limits_{n\neq r_m} t_n x_{k_n}$ is unconditionally convergent. Finally since

$$\sum_{n=1}^{\infty} \|t_{r_n} x_{k_{r_n}}\| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} \sup_n \|x_n\| < + \infty$$

by 5a, the series $\sum_{n=1}^{\infty} t_n x_{k_n}$ converges.

The proof that if the series $\sum\limits_{n=1}^{\infty}t_nx_{k_n}$ converges then the series $\sum\limits_{n=1}^{\infty}t_nx_n$ converges is analogous.

Remark 9. Singer [18] has introduced the notion of symmetric basis. Recently [19] he has proved that every symmetric basis is perfectly homogeneous. He has also proved our Theorm 5 and showed that if an unconditional basis satisfies 5b, then it is symmetric. However, the non-unconditional basis considered in Remark 5 satisfies 5a and 5b.

COROLLARY 10. If a space X has a permutatively homogeneous basis- (x_n) , then it is isomorphic to its Cartesian square.

This follows from 5b and the fact that $X = [x_{2n-1}] \times [x_{2n}]$.

Corollary 11. If $p \neq 2$, then in L_p there is no permutatively homogeneous basis.

This follows from 5b and Corollary 8.

Remark 10. A particular case of Corollary 11 is a result of Gapoškin ([8], Theorem 1) showing that if (χ_n) is the Haar orthonormal system, then there is a permutation $p(\cdot)$ such that the bases $(\chi_n \|\chi_n\|_p^{-1})$ and $(\chi_{p(n)} \|\chi_{p(n)}\|_p^{-1})$ are not equivalent for 1 .

COROLLARY 12. If the space L_p is isomorphic to an Orlicz sequence space l_N , then p=2.

This follows from Corollary 11 and the fact that in each Orlicz sequence space the sequence of the unit vectors is a permutatively homogeneous basis.

This Corollary may be generalized to the following

COROLLARY 13. Let X be a complemented subspace of L_p (1 < p < < $+\infty$) and let (x_p) be a permutatively homogeneous basis in X. Then X is isomorphic either to l_p or to l_2 . Moreover, the basis (x_n) is equivalent either to the unit vector basis in l_p or to the unit vector basis in l_2 .

^(*) For the definition and basic properties of the Haar orthogonal system see [11], p. 44.

Proof. We shall write $Y_1 \sim Y_2$ iff the spaces Y_1 and Y_2 are isomorphic.

Since X is complemented in L_p , there exists a space Y such that $X \times Y \sim L_p$. Hence, by Corollary 9, we have $L_p \sim X \times Y \sim (X \times X) \times Y \sim X \times (X \times Y) \sim X \times L_p$.

Let (y_n) with $\|y_n\|_p=1$ $(n=1,\,2,\,\ldots)$ be an unconditional basis in $L_p.$

Let

$$z_n = \begin{cases} \{x_k, 0\} & \text{for } n = 2k-1 \quad (k = 1, 2, \ldots), \\ \{0, y_k\} & \text{for } n = 2k \quad (k = 1, 2, \ldots). \end{cases}$$

It is easily seen that (z_n) is an unconditional basis in $X \times L_p$. Since $L_p \sim X \times L_p$, by 4a there is a subsequence $(x_{n_i}) = (z_{2n_i-1})$ equivalent either to the unit vector basis in l_p , or to the unit vector basis in l_2 . To complete the proof we apply 5b.

5. Theorem 6. Let X be a non-reflexive subspace of the space L_1 . Then X contains a subspace complemented in L_1 and isomorphic to l_1 .

Proof. Let K be a subset in L_1 and let $0 < \mu \le 1$. We put

(10)
$$\eta(x,\mu) = \sup_{\text{mess } E = \mu} \int\limits_{E} |x(t)| \, dt \quad \text{ for any } x \text{ in } L_1,$$

(11)
$$\eta(K,\mu) = \sup_{x \in K} \eta(x,\mu),$$

(12)
$$(K, +0) = \lim_{\mu \to 0} \eta(K, \mu).$$

It is well known ([1], p. 136) that a set K is weakly compact in L_1 iff $\eta(K, +0) = 0$. Hence, in view of the Eberlein-Smulian theorem ([6], p. 430), if K is the unit ball of a non-reflexive subspace X of L_1 , then $\eta(K, +0) = \eta^* > 0$. Thus, by (10)-(12), we may choose positive numbers μ_n , subsets E_n of [0, 1] and x_n in L_1 so that

(13)
$$\eta(x_n, \mu_n) = \eta^*, \quad \lim_{n \to \infty} \mu_n = 0,$$

(14)
$$\operatorname{mess} E_n = \mu_n, \quad \int\limits_{E_n} |x_n(t)| \, dt = \mu^*.$$

Let us write

(15)
$$\hat{x}_n(t) = \begin{cases} x_n(t) & \text{for } t \in E_n, \\ 0 & \text{for } t \notin E_n, \end{cases} (n = 1, 2, \ldots).$$

By (13)-(15) the sequence (x_n) satisfies the assumptions of Theorem 2 and $\|\hat{x}_n\| = \eta^* > 0$ (n = 1, 2, ...). Hence we may choose an increasing

sequence of indices (n_i) so that (\hat{x}_{n_i}) is a basic sequence equivalent to the unit vector basis in l and the space $[\hat{x}_{n_i}]$ is complemented in L_1 .

Let us write

(16)
$$\overline{x}_n = x_n - \hat{x}_n \quad (n = 1, 2, ...).$$

By (13)-(16) we have

(17)
$$\eta(\bar{x}_n, \mu) \leqslant \eta(x_n, \mu_n + \mu) - \eta(\hat{x}_n, \mu_n)$$
$$= \eta(x_n, \mu_n + \mu) - \eta(x_n, \mu_n)$$

for $0 < \mu \le 1$ and $n = 1, 2, \dots$ Hence

(18)
$$\limsup \eta(\overline{x}_n, \mu) \leqslant \eta(K, \mu) - \eta(K, +0) \quad (0 < \mu \leqslant 1).$$

Thus $\eta((\overline{x}_n), +0) = 0$, i.e. the set consisting of elements of the sequence (\overline{x}_n) is weakly compact in L_1 . Hence we may assume that the sequence (n_i) is chosen so that the sequence $(\overline{x}_{n_{2i}} - \overline{x}_{n_{2i+1}})$ weakly converges to 0.

By Mazur's theorem ([6], p. 422) there exist linear convex combinations

(19)
$$z_{\nu} = \sum_{i=k_{\nu}}^{k_{\nu}+1-1} a_{i}^{(\nu)}(x_{n_{2}i} - x_{n_{2}i+1}),$$

$$a_{i}^{(\nu)} \geqslant 0; \qquad \sum_{i=k_{\nu}}^{k_{\nu}+1-1} a_{i}^{(\nu)} = 1; \quad k_{1} < k_{2} < \dots \quad (\nu = 1, 2, \dots)$$

such that

(20)
$$\lim_{y} ||z_{y} - \hat{z}_{y}|| = \lim_{y} ||\bar{z}_{y}|| = 0,$$

where
$$\hat{z}_{\nu} = \sum_{i=k}^{k_{\nu+1}-1} a_i^{(r)} (\hat{x}_{n_{2i}} - \hat{x}_{n_{2i+1}})$$
 and $\bar{z}_{\nu} = z_{\nu} - \hat{z}_{\nu}$.

By the elementary properties of the unit vector basis in l ([17], Lemma 1) the space $[\hat{z}_r] \subset [\hat{x}_{n_l}]$ is isomorphic to l and has a complement in $[\hat{x}_{n_l}]$. Thus, since $[\hat{x}_{n_l}]$ is complemented in L_1 , the space $[\hat{z}_r]$ is also complemented in L_1 . Finally, by [4], Theorems 2 and 3, if we choose (z_r) so that $\bar{z}_r = z_r - \hat{z}_r$ tends to zero "sufficiently quickly", then the subspace $[z_r] \subset X$, as a "translated subspace" with respect to $[\hat{z}_v]$, will have the desired properties.

Remark 11. We shall give an alternative proof of a slightly weaker result as Theorem 6.

Lex X be a non-reflexive subspace of L_1 . Then the embedding

operator $T: X \to L_1$ is not weakly compact. Hence, by a theorem of Gantmacher ([6], p. 485), the conjugate operator $T^*: M \to X^*$ is also not weakly compact. Thus, by [17], Theorem 5, X^* contains a subspace isomorphic to c_0 . Finally, by [4], Theorem 4, we conclude that

If X is a non-reflexive subspace of L_1 , then X contains a subspace isomorphic to l and complemented in X.

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] Sur les séries lacunaires, Bull. Acad. Polonaise (1933), p. 149-154.
- [3] N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov, Gos. Univ. Uč. Zap. 148, Matematika 4 (1951), p. 69-107 (Russian).
- [4] C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), p. 151-164.
 - [5] M. M. Day, Normed linear spaces, Berlin 1958.
 - [6] N. Dunford and J. T. Schwartz, Linear Operators I, London 1958.
- [7] W. F. Gapoškin, On unconditional bases in the spaces L_p (p>1), Uspehi Mat. Nauk. (N. S.) 13 (1958), p. 179-184 (Russian).
- [8] On certain property of unconditional bases in the spaces L_p (p>1), ibidem 14 (1959), p. 143-148 (Russian).
- [9] I. M. Gelfand, Remark on the work of N. K. Bari "Biorthogonal system and bases in Hilbert spaces", Moskov. Gos. Univ. Uč. Zap. 148, Matematika 4 (1951), p. 224-225 (Russian).
- [10] R. C. James, Bases and reflexivity in Banach spaces, Annals of Math. 52 (1950), p. 518-527.
- [11] S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Warszawa 1935.
- [12] M. I. Kadec, On conditionally convergent series in the space L_p , Uspehi Mat. Nauk (N. S.) 11 (1954), p. 107-109 (Russian).
- [13] On linear dimension of the spaces L_p , Uspehi (N.S.) 13 (1958), p. 95-98 (Russian).
- [14] On linear dimension of the space L_p (p>2), Nauč. Dokl. Vyš. Školy 2 (1958), p. 104-107 (Russian).
- [15] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 7 (1938), p. 51-56.
- [16] W. Orlicz, Über unbedingte Konvergenz in Funktionenräumen I, Studia Math. 4 (1933), p. 33-37.
- [17] A. Pełczyński, Projections in certain Banach spaces, ibidem 19 (1960), p. 209-228.
- [18] I. Singer, On Banach spaces with symmetric basis, Revue de Mathématiques Pures et Appliquées 7 (1961), p. 159-166 (in Russian).
- [19] Some characterizations of symmetric bases, Bull. Acad. Pol Sci., Série math., astr. et phys., 10 (1962), in print.
 - [20] A. Zygmund, Trigonometrical Series, I, Cambridge 1959.

Reçu par la Rédaction le 16, 2, 1961

Mercerian theorems and inverse transformations

J. COPPING (Nottingham)

1. A sequence-to-sequence summability method defined by a matrix A is called a U-method for bounded sequences if the A-transform of every non-zero bounded sequence is non-zero ([6], p. 132). Let A be the matrix of a conservative (i. e. convergence-preserving) sequence-to -sequence method which is a U-method for bounded sequences. It will be shown that A sums no bounded divergent sequence if and only if there exists a conservative matrix B which is a left reciprocal of A, or equivalently, if and only if there exists a matrix $C = (c_{nk})$ which is a left reciprocal of A and which satisfies

$$\sup_{n}\sum_{k=1}^{\infty}|c_{n,k}|<\infty.$$

The hypothesis that the method is a U-method for bounded sequences may be omitted if the matrices B, C mentioned above satisfy BA ==I+P, CA=I+P instead of BA=I, CA=I, where

$$I = (\delta_{n,k}), \quad \delta_{n,n} = 1, \quad \delta_{n,k} = 0 \quad (k \neq n),$$

and P is a "trivial" conservative matrix $(p_{n,k})$ such that

$$p_{n,k} = 0$$
 $(k \geqslant k_0, n = 1, 2, ...).$

Parallel results are proved for certain classes of sequence-to-function methods, where the matrix C which occurs in the results stated above is replaced by a sequence $\{g_n\}$ of functions of bounded variation, with

$$\sup_n \operatorname{var} g_n < \infty.$$

These results depend upon a theorem on the existence of extensions of certain linear operators on subspaces of separable Banach spaces. Theorem 1 is the extension theorem, in a form more general than is required for the applications made here, as it may be of independent interest. A special case of the theorem was suggested by a remark of Zeller [11].