160 8. Rolewicz

[22]
p- 195-197.

[28] — On isomorphic representation of spaces of holomorphic funetions by Yy ma-
iz spaces M(am,n), Repoxts of the Conference on Functional Analysis, Warszawa
1960. ,

[24] C. Poaenuy, OF usomopgbusme u annporeumamusHot paamepHocmu npocm-
pancme eosomopdinne pynnyuii, JTAH 133 (1960), p. 31-33.

S. Rolewicz, Remarks on linear metric Montel spaces, ibidem III. 7 (1959)

Regu par la Rédaction le 8.12. 1960

icm

STUDIA MATHEMATICA, T. XXI. (1962)

Bases, lacunary sequences
and complemented subspaces in the spaces I,

by

M. I. KADEC (Kharkov) and A. PELCZYNSKI (Warszawa)

In this paper we investigate the isomorphie struefure (invariants
of linear homeomorphisms) of subspaces of the space L, (1 < p < ~+o0).
We consider especially the properties of basic sequences (bases in sub-
spaces), as well as the properties of subspaces complemented in L.
These properties ave conneeted with classical problems concerning
lacunary series. We explain them in a more detailed way.

Let p >2 and let (¢,) be an orthonormal system. Then.
1 n y 1 n . i
r o o .
(] Yt [ at)” = ([] 3 ugatn) " at)" — ()
0 i=1 b = &

for any scalars fy, %y, ..., 0, (B =1,2,...).
An orthonormal system is said to be p-lacunary iff (*) the converse
inequality

(f ‘ﬁ:tlﬂpi(t) |p dt)llp <0 (2” Itilz)llz

holds for some ( depending only on (p,) and for any %y, ..., 1%
r=1,2,...).

In the language of the functional analysis this means that there is
an isomorphism (linear homeomorphism) of Hilbert space I, onto the
closed linear manifold in L, spanned on the functions g,. Under this
isomorphism the unit vectors in I, correspond the functions g, i. e.
the basic sequence (g,) is equivalent to the unit veetor basis in I, (see

1

$he definition in section 1). Moreover, the operator T: 2 — { [ #(t) e, (1) di)
[
is a projection of L, onto this manifold.

(1) We write “iff” instead of “if and only if”.
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We prove the converse implication. Namely, if 7 is a subspace
of L, isomorphic to I,, then B may be obtained as a closed linear mani-
fold spanned on some p-lacunary system (Theorem 3).

The classical problem. considered by Banach [2] whether any
orthonormal system containg g p-lacunary subsystem may be genera-
lized to the following one:

Given a sequence (@) in L, (p > 2), give a necessary and suffi-
cient condition in order that (@) contain a basic sequence (w,,) equi-
valent to the unit vector basis in ly.

This problem is golved in Corollary 5. Moreover, we shall show that
if p > 2, then every basic sequence confaing g subsequence equivalent
to one of two typical basic sequences. They are: the unit vector basis
in l,, e.g. any p-lacunary system, and the unit vector basis of I, (p is
fixed), e. g. the sequence of characteristic functiony of mutually disjoint
sets.

Using this fact we prove a few results concerning unconditiongl
bages in I, (1< P < +oo) generalizing earlier results of Gaposkin
7], (81

On the basis of our Theorem 2 we show that if X is an infinite-
-dimensional subspace complemented in L 1<p< +o0), then either
X is isomorphie to I,, or X contains a complemented subspace isomorphie
to 1,. This result completes a similar one obtained for other spaces in
the paper [17].

In the last part of this baper we give a characterization of a non-
-reflexive subspace of the space L.

Our paper is closely connected with the earlier one [14] of the
first of the authors, in which the classes M? are introduced. Our The-
orem 2 is only a slight modification of Theorem 1 in [14]. The equiva-
lence of conditions 3a, 3¢, 3d is also proved here.

For simplicity we restrict our attention to the case of the Space L,,.
However, all our resulty may be extended to the case of the spaces
Ly(8, 2, u) defined in [6], p. 241,

1. Terminology and notation. We shall employ the notation and
terminology adopted in [6]. We write “space” instead of “B-gpace”.
The term “subspace of a space X denotes a closed manifold in X. The
smallest subspace Spanned on the sequence (@,) is  denoted by [,].
The symbol [#,], is reserved for the smallest linear manifold spanned
on a sequence (x,) of real-valued and measurable functions on [0, 1],

1

closed in I, i.e. closed under the norm |z, = (f|z(t)[°@)"?. The
0

symbol X* denotes the conjugate space to the space X. The Cartesian
product of spaces X and Y is denoted by X x V.

The subspace B of a space X is said to he comp lemented in X iff
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there is a projection, i. e. a linear idempotent %nalapmg{ frox.n X onto E.
A space X is said to be isomorphic to a space ¥ 1ff there is a lm_ea}:r homeo-
morphism from X onto Y. The sequence (,) is said to be a baszs in a space
X iff any element x in X has the unique expansion z =n§ tyi,. The
basis (z,) is unconditional iff this series converge_s pncondlm.ona]ly, fgr
any ¢ in X (see [5], p. 67-77). If (,) is an (uneondlmonal‘) .bals1s of a sub-
space of a space X, then (z,) is said to be an (u'rwo.ndztwnal) b(f,swlset-;
guence in X. The basie sequences (z,,) and (y,) are said to be equivalen

oo
ies )'t;a;
iff, for any sequence of secalars (f;) the wconvergence of the seri ig . 0

i : . recall
implies the convergence of the series {221 t;y; and conversely. We rec

that if the basic sequences (x,) and (y,) are eqxtivajlent,*ﬂ%en thg i};‘;acsz
[#.] and [y,] are isomorphic. The sequence (z;) in X f ;ﬁl { fo be
biorthogonal sequence to the sequence (2,) iff af,,l(a.vn? —l,bb N S, "=
=1,2,...). The unit vector basis in I, is the unconditiona !
sisting of vectors e; = (8,) for ¢ = 1,2, ... ]

2. Definition 1 [14]. Suppose that » > 1 and ¢ > 0. We set

MY = {weLy: mess{i: |2(t)] = ell2l,} = e} ().

THEOREM 1. The classes MY have the following properties:
la. if & < &, then M D M7,

1b. UME = L,,
1e. ;}Ow # 0 does not belong to MY, then there is a set A such that
2 (t) P

at >1—s,

mess 4 < e and Af wi

1d. if p =2, e > O,l then |z, = llall, = )y, for every o in fhﬂ"’
le. if p >2, 0 <o <1 and |zll, > [z, = Cllz|,, for some =, then
= 9)22#(17—2)

@ belongs to MY, where & (0/_4' s R I
1f. if p =22, e > 0 and (z,) is a sequence mwﬂL such that th

3 i ; Bk < 48,

D #, is unconditionally convergent in L,, then ﬂ;’l ll2allp <

n=1

i ! bvious.
Proof. The properties 1a, 1b and le are 0 .
1d. The inequality [lz|l, = |lz|l; for » > 2 is well L.nown. i;foinplﬁ);e
that lzll, > &**|lw|l, write 8P (z) = {t: |z(f)| > &|lz|,,}. Since z r,
mess S%(2) > ¢ and

lialls = ( f le@ra)” =( [ le@ra)” > (& ol mess 82 (@) = & fal,.
° ()

() By mess A we denote the Lebesgue measure of a set 4.
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le. Suppose that z does not belong to M! (¢ < 1). Hence
mess S7(2) < e. Using the elementary inequality

([ |ac(t)\2dt)”2 < (mess B)® -2k (f ]m(t)\”dt)llp
i

E
we obtain
ol = ([w@eat]™ = ([ w@Pat [ le@pa)”
’ ) 10,1157 (2)
<( [ e@ra”+( [ jewpa)®

B 10,11-5%)
< (mess 87 (2)) 02 o, + & [lall, < 26@=D/2 |||,
=

Thus, if |zll, = C|l,, then ¢ < 2@/ j o ¢ > (c[2)Pi=2)

1f. Since the identical embedding w(z) = of L, into L, is
continuous for p > 2, every unconditionally convergent series in L, is
unconditionally convergent in L, again. Hence, according to a result of

Orliez [16], it follows that |z, < -+oo. Thus, =, belonging to M?
=1

oo o0
(v =1,2,..), we obtain J .|} <& 3 |oul < 400 by 1d.
N=1 =1 .

TEEOREM 2. Let (2,) be a sequence in Ly (p = 1) such that for every
& > 0 there is an index n, such that &y, does not belong to MP. Then there
exisls o sequence (x), where @, = By, By < Ty < ...), such that:

2a. the sequence (wy/|la)), 48 a basic sequence equivalent to the unit
vector basis in 1,,

2b. the space [w,], has a complement in L,.

Lemya 1. Let (4,) be a sequence of mutually disjoint sets of positive
measure and let (y,) be a sequence in Ly, such that |y, = 1 and the support
of the function ¥, is contained in A, (n=1,2,...). Then (Yn) 98 o basic
sequence satisfying the conditions 2a and 2b.

7

n n
Proof. Sinee || ¥ty 5 = 3 [t” [ 9:(s)[’ds = Y [t;|” for any sca-
=1 =1 i

i=1

13
lars i, 4y, ...yt (n =1,2,...), 2a is satisfied. To establish 2b we pub
o0
Pz = Z' fy,’t(s)’a;(s)dryn for any 2 in L,,

n=1l .
A
n

Where* ¥» is a function in I, (g'+p~' =1) such that |y,l,
%f’yn(s)yﬂ(s)ds =1(m=1,2,..). It is easily seen that P is the

Ay

required projection of L, onto [y»]p with the norm ||P|| = 1.

icm®
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Proof of Theorem 2. According to [4], Theorems 2 and 3, it
is sufficient to choose a sequence (z,|lz, {]51) “g little translated” with
respect to some sequence (y,) satisfying the assumptions of Lemma 1.

If 2 is in L,, then the set funection &(4) = J j@ (8)”- dt is absolutely

continuous. Hence, by the assumptions and by la, 1b and le we may
define by an induction process a subsequence () of the sequence (@,)
and a sequence of sets (4,) so that

(1) f"’:ﬁl; @ >1—470"  (n=1,2,..,
o llzallp |
n l I(t) ;17
. z
2 DLt 4y 1,2, 000,
®) . Z;‘siwin,,; (=12
n+l 1=
Let us write
(3) *’1;0 = An . U :11"
T=n+1
_x'",(t) for  ted;,
4) 2, (1) = { lallp
0 for  t¢A,,
5 = m=1,2,..)
(5) Yn el y 4y
Obviously, if # == m then A, ~ 4, = @. By (1)-(5), we have (for
each »)
, it [ @, () [P @, (1) 1P
(6) S, i < f x“,(|) d < f I[—Q at+
[zl I — llenll 01—, el |
~ ! i bk * ‘D
+ J {a]’n’(t) ip it < _L_(n+1]p+ ' f mn,(t)
A,ra;l ially | Pt i A il
< 4P 47 < g
L2l () P o (2) P RO
7 1>zp=f dt>f AR AL
(‘) = “ n“p ) ! “w;“p i “mn“’p4 v%ﬂ 2 ”mn“p

n

> 1___4-—(n+1)p_ 2 4—("1‘-1)13 > 1—4—"P,

v=n+1l
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It follows by (5)-(7) that

o _, | @ on N
{|\ ”W;:”p Yn ifﬂ < ! |’$;sz &y j7+“zn—3/n”p <A™yl (1— lullp) < 24—,
Thus
21 D) Wl | ot 3| < 1.
ne1 nllp »

Hence the sequence (a/|la,l,) fulfils the assumptions of Theorems 2 and
3 of [4].

TEEOREM 3. Let p >2 and lat B be an infinite dimensional subspace
of L,. Then the following conditions are equivalent:

3a. E is isomorphic to the space 1y,

3b. no subspace of B is isomorphic to [

3c. no subspace of H. complemented in L, is isomorphic to

3d. B C MY for some ¢ >0,

3e. the norms || |, and || ||, are equivalent on B, i.e. there is a con-
stant Og >0 such that |oll, > =), > Oglloly, for any = in B,

3t. there iz a p-lacunary orthonormal system (@n) such that B = [g,1,,

3g. there are ¢ >0 and an unconditional basis (en) in B such that
enelM; for m=1,2, ...
< Proof. The implications 3a = 3b => 3¢ are well known ([1], chap.
II). .

3¢ = 3d is an immediate eonsequence of Theorem 2.

3d > 3e is an immediate consequence of 1d.

3e > 3f. Using the Schmidt orthogonalization process we choose
an orthonormal system (g,) in Z such that [Puds = [@nls = B (it is

possible because ¥ is simultaneously closed in L, and L,, by 3e). By
3e, we have

lp}

n k3
= 1= i=1

for each of the scalars tytey ety (R=1,2,...).

Hence (@,) is p-lacunary and lgnl, = B.

3f => 3a. Let (p,) be an orthonormal p-lacunary system and let
B = [p,],. Hence, it follows that there is 2 constant Cp such that the

inequality |wll, > ||, = E?Z’line,ﬂz - (Z‘lti)”z 2 Ogllz|l, holds for every
N= N=

1

o inlE, where t, = ofa:.(,t)gvn(t)dhf (n=1,2,..). Thus the mapping
zo of #(t)gn(1)dt) is an isomorphism between B and Ty

icm
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The condition 3g follows immediately from 3a and 3d.

Now assume 3g. Without loss of generality we may assume that
lealp =1 (n =1,2,...). We shall show that the series Z’mtnen con-
verges iff g’tfb < +o0, i.e. that the basis (e,) is eqﬂvalentnzé the unit
veetor ba,:;sl in I,.

00
Suppose that the series Y #,e, converges. Since (e,) is an uncondi-
n=1

tional basis in ¥, the series ) t,6, converges unconditionally and, by

n=1

a result of [16], 3 [tueal} = 3 ltal* < -oo.
Nn=1 To==1

=)

Conversely, supposet hat > f, < +oco. Then, by a result of [12]
n=1
one may choose a sequence (g,), &, = +1 (n =1, 2,...), so that

N
L<B(Ya)" r=1,2,.),

n=1

N
®) [ > entnen!
n=1

where B, is a constant depending only on p (3).
Since F is reflexive, the basis (e,) is boundedly complete (see [10]
[=]
or [5], p. T1), by (8), it follows that the series ) e,i,6, converges.

=1
o

Hence, (6,) being an unconditional basis, the series D ta6y, is also con-
vergent. n=l

3. CoroLLARY 1. If E is a subspace of L, (p >2) isomorphic to
l,, then E is complemented in L.

Proof. By 3f there exists & p-lacunary orthonormal system (e,)
such that [e,], = F. Put

NE

) Py = (f en(yt)fa(t)dt) e, for any a:»i_n L.
0

I
-

n

(®) This is a consequence of the following result.
Let (rn) be a sequence in Lp (p > 2) such that

il

i=

k
)| rega @sign (3 ) 4 <0 for E=1,2,...
1

i=

, N—1.

-

N N
Then || 3 7i||p > Bo( 3 Irxl2)H? (¥ =1, 2,...), where By depends only on p (1121,
| K=1

proof of Theorem 1).
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In view of Theorem 3, formula (9) well defines a linear mapping
from L, into E. Since Pe, =€, (n=1,2,...) and [e,], = &, P is
the desired projection.

Remark 1. We do not know whether Corollary 1 can be extended
to the case where 1 < p < 2.

No subspace of L, isomorphic to I, has a complement in I, (see
e. g. [17], p. 216). The smallest closed manifold spanned in I, on Rade-
macher functions is an example of a non complemented subspace of L,
igomorphic to I,.

COROLLARY 2 ([14], Corollary 3). Let p > 2 and let B be an infinite-
dimensional subspace of L,. Then, either E is isomorphic to 1y, or X con-
tains @ subspace isomorphic to 1, and complemented in L,.

This immediately follows from Theorems 2 and 3.

Remark 2. Let 1 <p #¢q< 2. Then there is a subspace X,
of L, which is isomorphic to 7, [13]. In view of [1], chap. XII, no sub-
space of X, is isomorphic to I,. This example shows that Theorem 3
and Corollary 2 cannot be extended to the case where 1 < p < 2.

COROLLARY 3. Let 1 < p < oo and let X be an infinite-dimensional
subspace of L, complemented in L,. Then, either X is isomorphic to 1,,
or X contains a complemented subspace isomorphic to 1,.

Proof. The case p = 2 is trivial. In the case where p > 2 we apply
Corollary 2. The case where 1 << p << 2, can be reduced to the prece-
ding one according to a well-known result showing that if X is reflexive,
then ¥ is a complemented subspace of X iff ¥* is a complemented sub-
space of X™.

COROLLARY 4. Let p > 2 and let (2,) be an unconditional basic se-
quence in Ly with 0 < inf {l@,)l, < sup [wall, < +oo. Then (m,) is equi-

n n

valent to the unit vector basis in 1y iff there is an & >0 such that =, is
in M? for n=1,2,...

This immediately follows from the analysis of the proof of The-
orem 3.

Remark 3. In particular from Corollary 4 we obtain the result
of Bgri [3] and Gelfand [9], which states that all unconditional bases
(en) iIn L, with 0 <Cinflle,ll, < supfles], << +oo are equivalent.

n n

To prove that consider & subspace of L, isomorphic to L, and use
ggrolla-ry 4 and condition 3d.

COROLLARY B. Let p > 2 and let (,) be a sequence in L, satisfying the
following conditions:

(i) (2,) weakly converges to 0,

(i) limsup f@,ll, > 0.

n

icm
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Then there is & subsequence (y,) which is equivalent either («) to the
unit vector basis in Ip, or (B) to the unit vector basis in l,. Moreover, (B)
holds iff

(iii) there is & >0 such that x, is in M% for infinile many n.

Proof. If (iii) is satisfied, then without loss of generality we may
agsume that all z, are in M? for some ¢ >0 (¢ does not depend on n).
Sinece the space L, (p > 1) has an unconditional basis [15], by (i), (i)
and a result in [4], p. 56, Cl, we may choose an unconditional basic
sequence (#,,) with 0 < iﬁ.‘fﬂx,,kllp < sup ol < +oo. Now (B) fol-

lows from Corollary 4.
If (iii) does not hold, then we apply Theorem 2.
COROLLARY 6. Let p > 2 and let (x,) be a basic sequence in Ly with
0 < inf |lz,|l, < sup [@al, <+oo. Then there is a Dbasic sequence (my)
n n

which is equivalent either («) to the unit vector basis in Iy, or (B) to the unit
vector basis in l,. Moreover, (B) holds iff condition (iii) is satisfied.
™" Proof. Since every bounded basic sequence in any reflexive space
weakly converges to 0 (4), this Corollary follows immediately from
Corollary 5.

Remark 4. The example considered in Remark 2 shows that Corol-
laries 5 and 6 cannot be extended to the case where 1 <<p < 2.

However, in the space I, (1 < p < +o0) every basic sequence con-
tains a subsequence equivalent to the unit veetor basis in I, (It may
be deduced in the same way as in [4], p. 1587, C. 5).

COROLLARY 7 ([11], p. 246). Let p > 2 and let (x,) be an orthonormal
system such that

(iv) sup |, = € < +oo.

Then there emists & p-lacunary subsequence (#,)-

Proof. The p-lacunarity of a sequence (@,,) means that (z,,) is
an orthonormal system which is a basic sequence equivalent (under the
norm || ||,) to the unit vector basis in I,. Hence, in view of Corollary 5,
to complete the proof it is sufficient to show that (i), (ii) and (iii)

‘ 1

are satisfied. Since (z,) is an orthonormal system, lim f 2, (D) y(t)dt = 0
n 0

for every y in L,. Thus (i) holds because (z,) is a bounded sequence

(*) Indeed, let (vs) with sup|iza] < 4 oo be a basis in a reflexive space X and
n

let (z¥) be the biorthogonal sequence %o (z,). Since (%) is a total set of funectionals
and limg} (#,) = 0, by the reflexivity of X and the boundedness of (x,) it follows
n

that (zn) weakly converges to 0.
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in a reflexive space which tends to zero for a dense set of functio-
nals (the class of all square-integrable functions is dense in L, for
1 < q < 2). Condition (ii) follows from the inequality |iz,/l, = ||z,), = 1
(n=1,2,...). Sinee |zl = lwally =1 = 07" |l (n=1,2,...), we
obtain (iii) by Ie.

THEOREM 4. Let (#,) be an unconditional basis in L, (1 < p < 4oo)
such that 0 < inflz,|l, < suplla,ll, < +oo.

n kA

Then

da. every subsequence of (x,) contains a subsequence which is equi-
valent either to the unit vector basis in 1,, or to the unit vector basis in Loy

4b. there emists a subsequence (@) which is equivalent fo the unit
veetor basis in 1.

Proof. For p = 2 it follows from the result of Bari and Gelfand
mentioned in Remark 3.

Let p >2. Then 4a follows from Corollary 4. To prove 4b, sup-
pose a contrario that no subsequence of (z,) is equivalent to the unit
veetor basis in 1,. Hence, by Theorem 2, there is an ¢ > 0 such that
all #, are in M7. Thus, by Theorem 3, implication 3f=> 3a, we infer
that the space [#,], = L, is isomorphic to I,. But it leads to a contra-
diction with ([1], chap. XII).

The proof in the case where 1 <<p < 2 can be reduced to the pre-
ceding one since the space L, is conjugate to L, for ¢ = p/(p—1) > 2
and in view of the following lemma:

LevmA 2. Let (#,) and (e,) be unconditional bases in spaces X and
B and let (@7) and () be the corresponding biorthogonal sequences in the
conjugate spaces X* and B* respectively. Then, (ny) being an nereasing
sequence of imdices, the basic sequences (#n,) and (e) are equivalent iff
the basic sequences (av,’ik) and (ef) are equivalent.

Proof. Denote by &* the restriction of a functional z* on X to the
space X, = [,,] and set [l3*|x, — Sup l#*(@)|J#]|"*. If the basie

L6

sequences (zi,,k) and (e;) are equivalent, then the basic sequences (aZ,’fk)
and (ef) are also equivalent. Since (#,) is an uneonditional basis,

P =k§m:k(~)wnk is a well-defined projection operator from X onto
X,. Thus, for arbitrary scalars i,1%,,...,1 (k=1,2,...), we have

k o . k k
| 2t = sup) 3 waiuto)| = sup | 3 teat, | < 1 3wl

0

On the othel; hand, ”f”*” > 1]59*on for every #* in X*. Thus, the basic
sequences (2,) and (a:,i‘k) are equivalent, and the basic sequences (z )
and (e7) are also equivalent. "

icm®
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The proof of the converse implication is analogous.

Remark 5. The assumption of Lemma 2 that (x,) is an uncondi-
tional basis is essential. Let X = F = ¢. Consider the basis (z,) where
for $<an,

for i >=mn.

0
o= {&", &= ‘1

The biorthogonal sequence in ¢* =1 is

1 for i=
zy) = ({7 where 5{) = ’
(#n) ({"71 })7 7i 0 for i>1,
and .
—1 for i=n—1,
=1 1 for i=n, (n=2,3,..).

0  for other ¢,

Let n, =2k (k =1, 2,...). Then the basic sequence (z,) is equiva-
lent to the basis (#,), but the basic sequence (23;) is equivalent to the
unit vector basis in I, and thus it is not equivalent to the basis (z}).

COROLLARY 8. Let 1 < p # 2 < +oo. Then there is no unconditio-
nal basis in the space L, such that the basic sequence (xy) is equivalent
to the basis (z,) for every increasing sequence of indices (k).

Indeed, if it were not so, then according to Theorem 4 the space
L, would be isomorphic to 1,, contrary to [1], chap. XIL

COROLLARY 9. Let (2,) with |jz,), =1 (n =1,2,...) be an wuncon-
ditional basis in L,. Then lim inf|z,l, = 0, for p >2 (lim sup|jz.ly =

n n

= oo, for 1 < p < 2). In particular ([7], Theorem 2), if an orthonormal
system is an unconditional basis in Ly, then lim saplz,l, = oo for p > 2
(lim inf |jz,)l, = 0 for 1 < p < 2). "

n

Proof. In the case where p > 2 this follows from le and Corollary 4.
The case where 1 < p << 2 reduces to the preceding one by the conside-
ration concerning conjugate space.

Remark 6. The trigonometrical orthogonal system is a basis in
L, for 1 < p < +oo ([20], p. 182). This basis satisfies 4a, by Corollary 7,
but does not satisfy 4b for p £ 2. This example shows that in Theorem 4
and Corollary 9 the assumption that the basis is unconditional is essen-
tial.

If p > 2 we may prove Corollary 8 without the assumption thab
the basis is unconditional. Probably this assumption is superflous also
for 1<p<2.
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Remark 7. Let (y,) be the Haar orthonormal system (5). It is well
known that (y,llzaly") is an unconditional basis in Ly (1 <p < 4o0)
[15]. This basis has the following property: there is only a finite number
of funetions y, belonging to M for any & > 0. Hence no subsequence
of (x,) is equivalent to the unit vector basis in I, for p %= 2. On the
other hand, in L,, for 1 < p # 2 < 4oo, there is an unconditional
basis (PP with PP, = 1 containing a subsequence (¥ equivalent
to the unit vector basis I, ([17], Theorem 7). Obviously if 1 < p £ 2 <
< +oo, then no permutation of the basis (¥)) is equivalent to the
basis (1, HanEl)

4. Definition 2. An unconditional basis (#,) in a B-space X is saad
to be permutatively homogeneous iff it is equivalent to the basis (@pmy)
for any permutation p(-) of indices.

Rel}l&rk 8. The unit vector bases in the spaces I, {1 < p < +oo),
6, and in Orlicz sequence spaces ly are permutatively homogeneous.
If (@,) is a permutatively homogeneous basis in a B-space X, then
(@;) — the biorthogonal sequence to (m,), is permutatively homogene-
ous basis in [x;] C X*.

TEEOREM 5. Let (w,) be a- permutatively homogeneous basis in a
space X. Then

5a. 0 < inf o, < supliza|| < +oo,

5b. the baszs (2n) 48 equivalent to the basic sequence (zr,) for any
inereasing sequence of indices (k).

Proof. 5a. Suppose that hmmf”mn” = 0 and choose two increas-

mg sequences (k,) and (k) such that % k(4,4 =1,2,..)) and
Y‘ {]mkn” 2% It < 4-co. Consider a permutation p(-) such that p (k)
= Ln and set
fo— ez, for 4= Ik,
0 for other 4.

Then the bases (x,) and (@pmy) are not equivalent, because the series
Zt @, converges but the series S’t Tp(my diverges.

The proof that hmsup,lw,,[[ < ~+oo is analogous.

5b. Let (k,) be an mcreasmg sequence of indices and let (t,) be

N=1

2 sequence of scalars such tha,tZtnw,, converges. According to 5a,

1 ) F:: the definition and basic properties of the Haar orthogonal system see
. p. 44.
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lim¢, = 0. Hence we may choose an increasing sequence of indices

(r,) so that |t, | < 1/2™ (m=1,2,...). Let us consider a permuta-

tion p(-) such that p(n) = &, for n * r, . Since the basis (z,) is permu-
o

tatively homogeneous, the series D 1, unconditionally converges.
n=1
Thus the series > f,@pm = 2 fu&y,is unconditionally convergent.
iy nETy

Finally since

snpl‘mn!l < + o0

S’Ht,,, 2, || < 5‘

by ba, the series 2 1, %y, COnVerges.

n=1

The proof that if the series S‘t,,xk converges then the series
) =

7

Zt x, converges is analogous.
n=1

Remark 9. Singer [18] has introduced the notion of symmetric
basis. Recently [19] he has proved that every symmetric basis is per-
fectly homogeneous. He has also proved our Theorm 5 and showed that
if an unconditional basis satisfies 5b, then it is symmetric. However,
the non-unconditional basis considered in Remark 5 satisfies 5a and 5b.

COROLLARY 10. If a space X has a permutatively homogeneous basis-
(®,), then it is isomorphic to its Cartesian square.

This follows from /b and the fact that X = [2, 11X [@].

COROLLARY 11. If p # 2, then in L, there is no permutatively homo-
geneous - basis.

This follows from 5b and Corollary 8.

Remark 10. A particular case of Corollary 11 is a result of Gaposkin
({81, Theorem 1) showing thab if (y,) is the Haar orthonormal system,
then there is a permmutation p(-) such that the bases (x.llzllp") and
oy Ixpgllz?) are not equivalent for 1 <p # 2 < +oo.

CorOLLARY 12. If the space L, is isomorphic to an Orlicz sequence
space Ly, then p = 2

This follows from Corollary 11 and the fact that in each Orlicz
sequence space the sequence of the unit vectors is a permutatively

. homogeneous basis.

This Corollary may be generalized to the following

COROLLARY 13. Let X be a complemenied subspace of L, (1 <p <
< +oo) and let (z,) be o permutatively homogeneous basis in X. Then
X is isomorphic either to 1, or to 1. Moreover, the basis (x,) is equivalent
either to the unit vector basis in 1, or to the unit vector basis in I.
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Proof. We shall write ¥, ~ ¥, iff the spaces ¥, and Y, are iso-
morphie. '

Since X is complemented in IL,, there exists a space ¥ such that
X XY ~ L,. Hence, by Corollary 9, we have L, ~ X XY ~ (XxX)x
XY ~XIX(XXY)~XXL,.

Let (y,) with [yl =1 (n =1,2,...) be an unconditional bagis
in L,.

Let

L {#,0 form =2k—1 (k=1,2, ves)y

{0,y for n = 2k (k=1,2,...).

It is easily seen that (2,) is an unconditional bagis in X X L,. Since
If,, ~ XxXL,, by 4a there is a subsequence (z,) = (%an,_1) equivalent
either to the unit veetor basis in 7,, or to the unit vector basis in 7,. To
complete the proof we apply 5b. )

5. THEOREM 6. Let X be a non-reflexive subspace of the space I,.
Then X contains a subspace complemented in L, and isomorphic fo li.

Proof. Let K be a subset in L, and let 0 < u < 1. We put

(10) n@,p)= sup [lo(t)l@ for any o in I,,
messE=u 3
(11) 77(.-K: “) = Su}%”?(ﬂ?; /")y
(12) (K, +0) = limy(K, u).
u—0

'It is well known ([1], p. 136) that a set K is weakly compact in
Ly #f 9(K, +0) = 0. Hence, in view of the Eberlein-Smulian theorem
([61, p. 430), if K is the unit ball of a non-reflexive subspace X of I,
t]'len (&, +0) = 4* >0. Thus, by (10)-(12), we may choose posli-,
tive numbers u,, subsets B, of [0,1] and &, in L, so that

(13) N (ny fn) = "7*7 lim g, = 0,
7200

(14) mess By =ty [ lwa (1) dt = u*.
Eﬂ

Let us write

- bod n t
(15) i) = |0 Tor teB,, (n=1,2,..)
0 for i¢H,, PR
) (]133'“(13)—(15) the sequence (s,) satisfies the assumptions of Theorem
and &, = #* >0 (n = 1,2,...). Hence we may choose an increasing
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sequence of indices (n;) so that (.%ni) is a basic sequence equivalent to
the unit vector basis in I and the space [a“r,,i] is complemented in L,.
Let us write

(16) Ty = Bp—2, (n=1,2,...).
By (13)-(16) we have
an 0%y ) < 0@y pnt ) — 7Ty fa)
= 0(%ny tnt )= 7 {(@ns ln)
for 0<u<1and n=1,2,... Hence
(18)  limsupy(Z, 4) < 70, @)= alK, £0) (0 <p<1).

Thus #((Z,), +0) = 0, i.e. the set consisting of elements of the
sequence (%,) is weakly compact in L,. Hence we may assume that the
sequence (n;) is chosen so that the sequence (Ty,,—Zn,;,,) weakly
converges to 0.

By Mazur’s theorem ([6], p. 422) there exist linear convex ecom-
binations

Fyg1-1
(19) By = _2 ag)(mﬂg_i_m7bzi+1)7
i=F,
kyr1-1
>0, N afl=1; ki<k<.. (r=1,2,..)
ik,
such that
(20) lim{ls,— 2, = lim ||| = 0,
- Kyp1—-1 N N N
where z, = 3 af) (@, —,,,,) and 3 = 2,—2,

=T,

By the eljamenta.ry properties of the unit vector basis in I ([17],
Lemma 1) the space [2,]C [.ini] is isomorphic to I and has a comple-
ment in [4,]. Thus, since [#,] is complemented in I, the space [2,]
is also complemented in L, . Finally, by [4], Theorems 2 and 3, if we choose
() so that z, — #,—#%, tends to zero “gufficiently quickly”, then the
subspace [2,]C X, as a “translated subspace” with respect to [2,],
will have the desired properties.

Remark 11. We shall give an alternative proof of a slightly weaker

result as Theorem 6.
Lex X be a non-reflexive subspace of L;. Then the embedding
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operator T: X — L, is not weakly compact.. Hence, by a theorem of
Gantmacher ([6], p. 485), the conjugate operator T%: M — X* is also
not weakly compact. Thus, by [17], Theorem 5, X* contains a sub-
space isomorphic to ¢,. Finally, by [4], Theorem 4, we conclude that

If X is a non-reflexive subspace of L., then X coniains o subspace
isomorphic to 1 and complemenied in X.
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Mercerian theorems and inverse transformations
by

J. COPPING (Nottingham)

1. A sequence-to-sequence summability method defined by a matrix
A is called a U-method for bounded sequences if the A-transform of
every non-zero bounded sequence is non-zero ([6], p. 132). Let 4 be
the matrix of a conservative (i.e. convergence-preserving) sequence-to
-gequence method which is a U-method for bounded sequences. It will
be shown that 4 sums no bounded divergent sequence if and only if
there exists a conservative matrix B which is a left reciprocal of 4,
or equivalently, if and only if there exists a matrix ¢ = (6,;) which
is a left reciprocal of 4 and which satisfies

o
sup Z [Gn,kl < oco.
k=1

The hypothesis that the method is a U-method for bounded sequen-
ces may be omitted if the matrices B, ¢’ mentioned above satisfy BA =
= I+P, CA = I+P insgtead of BA = I, CA =1, where

I= (5n,k)s 61L,n = l: 5n,k =0 (k #* '”’)1
and P is a “trivial” conservative matrix (p,;) such thab
Do =0 (k=K n=1,2,..).

Parallel results are proved for certain classes of sequence-to-function
methods, where the matrix ¢ which occurs in the results stated abo.ve
is replaced by a sequence {g,} of functions of bounded variation, with

supvarg, < co.
n

These results depend upon a theorem on the existence of extensions
of certain linear operators on subspaces of separable Banach spaces.
Theorem 1 is the extension theorem, in a form more general than is
required for the applications made here, as it may be of independent
interest. A special case of the theorem was suggested by a remark of
Zeller [117.
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