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derivatives of functions belonging to #3; may also be obtained by
applying [3], II. Indeed, by [3], 2.21 and 2.28, every Te 2}, may be
represented in the form 7' = ZT;, where T; is ]mea,r with respect to
D7l Hense T(p) = [f(0) D”p(a)da = f(D%p)
with fje%3; thus T = 2

the pseudonorm

= (—1)”" D}, () [””D’”f
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On the radicals of p-normed algebras

by

W. ZELAZEKO (Warszawa)

A p-normed algebra is a complete metrie algebra in which the me-
tric is introduced by means of a p-homogeneouns submultiplicative norm,
i. e. such a norm ||| that

< el iyl
a1},

1 leyll
(@) ozl =

where #, y are elements of the algebra in question, « is a real or complex
sealar and p is a fixed real number satisfying 0 < p < 1. For every lo-
cally bounded complete metric algebra there exists an equivalent metric
introduced by a norm satisfying (1) and (2). The theory of commuta-
tive complete locally bounded algebras is developed in paper [2]. The
present paper is a continuation of [2]. We give here a solution of the
following problem 1 of [2]: “Is the radical of a commutative p-normed

- algebra R characterized by the relation

rad R = {zeR: |o], = 0},

Here
3) . fiells
denotes the spectral norm in R (see [2], definition 1 and theorem. 4).
We shall show that the answer is in the affirmative. It is based upon the
following

TEEOREM 1. Let R be a commutative complex p-normed algebra. Then
the unit sphere of the spectral norm

= {zeR: ol <1}

= 1im V"]

i8 a convex subset of R.

Proof. By theorem 4 of [2], property 87, K is a closed subset of B;
consequently it is sufficient to prove that |l <1 and |lylls <1 imply
@ +v)/2]s <1. Tt may easily be seen that it is sufficient to prove
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that flafl, <1 and lly, < 1 imply [(@+9)/2], < 1; otherwise ]

Ys s < erwise if
lylls < 1 and |(@+y)/2l; >1, and taking a suital;le scalar o wlqlawishogullé
?btam ozl <1, lagll <1 and |(ew+ay)/2), >1. Assume then that
llzlle < 1 and |y, < 1. By formulae (1) and (2) we have [I(z+ 92l =

1?15 ¥ n 3 Y S ?
3 hm]/n(w+y> n<(é>f“hm]/k=o(’,j) le*y"*|. Now by the same

arguments as in [2] (proof of the subadditivity of |a]|,

in
Wwe may prove that for sufficiently large n, theoren 4

say n >N, we have

%, n—k .
" <1 “for k=1,2,.., n.

Hence
54y . ) on T‘; m
2 <armmy/ D) = arm 1) (2
m /76 \\P
=(l>p(nm]/(2”) —1
Thus 2 n)

oty

|
<1, goed

COROLLARY 1. The

. . Dp-homogeneous spectral nor
med algebra is equivalent o g homo, - "
spectral morm is given by

n ol of @ pnor-
geneous norm |xlls. The homogeneous

lells = (o).

COROLLARY 2. Hyer

I Y p-normed complex field is the field of complex

In‘ fact, a p-normed field e
norm 1§ a normed field. This ig

THEOREM 2. Let R be g co
be the set of all multiplicative 1

(4)

quipped with the homogeneous spectral
another proof of theorem 6 of [2].

mmutative p-normed algebra and lot M
near functionals defined on R; then

o, = sup|f(a)P,
] ) fesm
or, which is equivalent,

(4

llzelfs = sup If ().

Proof.
defineq o gyisﬂi:)cggm 9 of [?] every multiplicative linear functional
I = {oeRe Jufl = ovs nuous w1_th Tespect to the norm |z],. The set
or 1o o Gl‘Oseds E } Is either R itself, in which cage the proof is obvious
ideal in E. Bvery functional FeIM i5 constant on cosetﬁ:
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of R/I. Hence for XeR/I we may define
(G)] F(&X) = fla),

where 2¢X and feM. It is easy to see that f is a multiplicative linear

functional defined on R/I. Moreover, f is continuous with respect to the

norm || X|| = inf|lz]j;, and every multiplicative linear functional defined
26X

on R/I is of form (5). It is also evident that
(6) S‘}Plf(X)i = sup|f(z)|
7 1

for every X< R/I and every 2¢X. But R/I is a normed algebra with the
norm || X|. Hence, by [1], Satz 8 (see also theorem 2’ below) we have

R
(7) sup |f(X)| = Lim /| X7

fet n
and the desired conclusion follows from (6), (7), and from the fact that
1X%| = [lz"]: = (ll=|)" for every X eR/I and every zeX, q.e. d.

COROLLARY 3. For every commutative p-normed algebra R we have
rad B = {z<R: |zl = 0}.

Remark 1. For p-normed algebras we cannot prove all the theo-
rems proved in [1] for the Banach algebras. The constructions in Gel-
fand’s paper [1] are based upon the Riemann integral. The Riemann
integral cannot be applied to spaces which are not locally convex. Con-
sequently there arise some difficulties in introdueing analytic functions
in locally bounded, algebras. So we pose the following

Problem. Let R be a commutative p-normed algebra. Let a<R;
we define the spectrum of a as o(a) = {f(a): fe M} where N is the set
of all multiplicative linear functionals defined on R. Let aeR and F
be a holomorphic function defined on an open set U containing o(a).
Does there exist an element zeR such that F(f(a) =f(2) for every
feMa()

Remark 2. Our proof of theorem 2 reduces to the case where R
is a normed algebra. Gelfand’s original proof in this case makes use of
the notion of analytic functions with valuas from Banach algebras.
Now we shall give an alternative proof of Gelfand’s theorem without using
these motions.

THEOREM 2. Let R be a commutative Banach algebra with the unit e.

Then n—
max |f(z)]| = lim}/|lz"]],
feT

where M is the set of all muliiplicative linear functionals dgfined on E.

() The answer is positive. The proof will appear in [3] (added in proof).
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Proof. We have
L [f(=z)] < ”:l[ for every z¢R, feM, whence If(=) = ’;L/lf(x“)I < T]L/m and
max |f(@)] < lim Vjlz?).

2. Let F be a linear functional defined on R; then
Fhea i then gr (2) = F((e—s0)1) §
a holomorphic function defined for 2| < 1/a, where & — max If ), aJIEEi x i:)a f)ixl:d
felt

0
element of B. It may easily be seen that gr(e) = 3 F(z™" = ZO‘OF (x™2"). Consequently
n=0 n=0
the sequence 2" 2" is bounded, bei 9
o %/ n 4 75/ ’11[5— ounded, being weak I‘y :onvergent to 0. We have ™2 < M,,
and Jx I < VMe/i2l. Consequently Lim y/|iz"| < L/lal for every |¢| < 1/a, and
lim }/ﬁz“j] < a.

By 1 and 2 we have a = lim W]L/Hm”H, q.e. d.
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On Banach *-semialgebras
by
S. BOURNE (Berkeley)

1. Preliminaries

We shall use the term halfring in the sense given by the author in
a previous paper [3]. We repeat that a halfring is a semiring which is
embeddable in a ring. Since addition in our semiring § is commutative,
a necessary and sufficient condition for § to be a halfring is that the
additive semigroup of § be cancellative. Following [3], we construct
the ring in which H is embedded. The product set H X H again forms
a halfring according to the laws of addition and multiplication: (s,, 8,)-+
+ (81y Ts) = (S1+11y 83+ 12), (815 82) (81, 8a) = (S1f1+8ats, 8182+ 8a%). The
diagonal 4 = {(z, #)|<H} is an ideal in H X H. We say that (s, s,) =
= (%, %;)(4) if and only if there exist elements (z, #) and (y,y) in 4
such that (s, ;) (2, #) = (31, )+ (¥, ¥). The quotient ring N = H x
X H|[A is called the ring generated by H. Let » denote the natural homo-
morphism of H xXH onto R, then the halfring H is embedded in the
ring R, for the mapping & « »(h+a,a), for any «, is an isomorphism
of H into R. We designate by »(H) this isomorphic map of H in R and
by »(sy, ;) the equivalence class of (sy, $;). A diviston semiring is a semi-
ring, in which the elements % 0, form a multiplicative group. A semi-
field is a commutative division semiring. A halffield is a semifield which
iy embeddable in a field.

In a recent paper [4], we introduced the concept of a normed semial-
gebra. For the sake of completeness we repeat:

Definition 1. A gsemiring § is said to be a semialgebra over a commu-
tative semiring X with wndt, if a law of composition (o, s) =os of the
product X xS is defined such that

(i) (8, +) is a unital left Z-semimodule relative to the composition
(0,8) = os,

(i) for all oceX and s,teS, o(s,t) = (o8)t = s(ot).

Definition 2. A semivector space is a semialgebra over a semifield.

Definition 3. A metric for a semilinear space S is said to be in-
variant if and only if d(s+z,t+2) = d(s,t) for all s,t, ze8.
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