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On modified Landau polynomials
by

J. RADECKI {Poznai)

This paper contains some theorems on the approximation of conti-
nuous functions f(¢) in an infinite interval by means of polynomials

[ 7ty [1— (z_ ;;)] ar
Polfit); 2] =
2f (l___t?.)ndt
0

where %, >0 and lim}, = co. This kind of polynomials were first in-

N—=00
troduced by Hsu [1, 2], who also showed their convergence in the case
of h, = n® and f(f) of certain classes of continuous functions. The results
given in the present paper are more general.

TagoreM 1. If & > 0, then UmP,(1; ) = 1 if and only if

00

h,
lim—gs().

oo Vi

Proof. First we prove the sufficiency. Easy transformations give

Vn 7 ¥n 2\ % )
f (1—1:;—) du+ J (1— Y ) du

— (]
(- /fp) Vi K

VR S\
w=
2 f (1"7?) dat

0

Since (1—w'/n)" < e for u| < Vn, we have

W ey e

0< J (1——»——) du < [ e du,
n

zVnhy xVnjhy,
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Vi 2\n Vi 5
0< f 1— ———) du < f e "du
I

(1-z/hy) V7 (1—2]hy) Ve

for sufficiently large n. Hence P,(1;2)—1 — 0 for

Vn S u2\" <
1 . w” 2 /-
lim—-=oco and hmzf (1———?;) du::}f e du = Van.

n—ca My N—s00 b

Now we prove the necessity. By (1), assuming P,(1;2) -1, we
Vi
bave in particular [ (1—u®/n)"du — 0. Let us suppose the sequence
Z Vnjhy,
= Vn/hn to have a finite point of accumulation ¢ > 0. Then Oy, —>
—>g for an increasing sequence of positive integers . Obvmusly
Vg, z(g+1)
J (31— [m)"*du — 0. Hence [ (1—1"/ny)""dt — 0. Since the sequence
Tl Tpy
(1—2#/n)" is convergent to e uniformly in every finite interval, the
inequality (1—1#"/m)" > 3¢ is satistied for every ts[O m(g+ 1)]
w(0+1)
and sufficiently large k. Hence | ¢ 'dt—0, for 0 < % f ot <
xa,

Ty

z(g+1) N e+ g+ 1)’
[ (1—#/nyg)™at. On the other hand, [ ¢ “dt— [ et as
wdy, @y, g

k —co. But this is impossible. Thus the sequence a, possesses no fi-
nite points of accumulation, i. e. a, — co.

Remark. It is easily seen that if hnll/;&—>0, then the sequence
P,(1; ) tends to 1 almost uniformly in (0, co), i. e. uniformly in every
subinterval of (0, co).

THEOREM 2. If

(o) 7b,,,/1/g -0 as n— oo,

(B) the sequence b, satisfies the conditions 6, > 0,6, —0, 6,,1/5/71,,, — o0,

'y) the function f(t) is measurable and bounded on each interval [0, b],
3) f(¥) is continuous at a fized point x >0, then P W (f5 @) = fa) if

and only if
hﬂ
ff(t)[l—(t;m

4y "

(2) Lf; o) =

2n
)] dt—~0 a8 n—oo.

T

Proof. The identity

Pu(f; @)= f(@) = Pu(f; 2) (@) Pa(1; ©)+F(2) [Pa(l; 5)—1]
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implies that P,(f;2) —f(z) as n—0 if and only if P,(fiz)—

—f(#)Pp(1; ®) = 0. Since
hy, e
[ to-sen|i- (5 “"’)] a
(3) Po(f; @) —fl@)Po(L;2) = ° ] \

=L(f; &) ————— + (),
2V [ (1—8) di
where
@) @)=
@0y T—bp % 2y _ p\2jn
(I;£ f )ff('u [1_(uhu )]du—«f(mden[ ~—(uhTa7”du

2h, [ (1—2)dt
1 _
it is sufficient to show that a,(x) — 0, for 2¥n [ (1 —£)"dt — V=. However,
0

lea (@) < sup  |f(u)—Ff(@)]+

[u—ai<ty,
z=0p w—az\2T" e u—z\**
2 sup |f(u)] f [ ( 3 )] du+ |f ()] f [1——( 5 )] du
ogu<s n ris, n
2k, f — Byt
¥Ynfhy, 2 (hn—-")‘"l"n e
2 sup [f(w)l [ e Cdi+f() [ et
o<u<z Sp¥afhy S VAl
< sup |f(w)—fle)l+ e
1u—2|<5p 2V [ (A—F)\'dt
0

for sufficiently large n. Since the function f(t) is continuous at the point
2 >0 and the integral | e Pat is convergent, we obtain a,(z)—- 0.
]

THEOREM 3. If

(@) hyfVE—0 as n — oo, B

(B) the sequence 6, satisfies the conditions 8, > 0, 6, — 0, 0, Va [hyy — oo,

(v) the function f(t) is continuous in the interwl [0, oo), then P,(f; x)
is convergent to f ) almost uniformly in (0, c0) if and onlu if sequence
(2) is convergent to zmo almost uniformly in (0, oo).

v
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Proof. Applying identity (3), it is sufficient to prove that sequence
(4) is convergent to zero almost uniformly in (0, oo). Let se[a, b], where
a > 0. We have

lan(@)] < sup |f(w)—fla)l+
ju—x| <8y
xe[a,b]
) b 1/7_11”‘73 2 (hp— @) Vi jhy, 2
2 sup |f(w)] [ e "di+ Sup f@y) et
| Osusd 67,,1/1_l./h,,, <z<b Sy Vajhy,
+

2vn f (L—P)dt

for sufficiently large n. By the uniform continuity of f(¢), the sequence
ay{#) is convergent to zero uniformly in [a, b]. The interval [a, b] being
arbitrary, a,(z)— 0 almost uniformly in (0, co).

CororLARY 1. If

(o) hn/l/'n -+ 0 as n — oo,

(B) f(t) is measurable in [0, co),

() f(¥) 1s continuous at a fived point & > 0,

(3) there ewist constamts m and M such that If) < M for every

> 0, then P,(f; x) = f(x) as n — oo.

COROLLARY 2. If

() hn/l/fn, —0 a8 n — oo,

(B) f(t) is continuous in the interval [0, co),

(y) there emist constants m and M such that |f(t)] < Me™ for every

= 0, then the sequence P,(f; x) is convergent to f(z) almost wuniformly

in (0, co). .

Proof of corollary 2 (corollary 1 ean be proved analogously).
By theorem 3 it is sufficient to prove that sequence (2) is convergent
to zero almost uniformly in (0, oc). Let we[a, b], where ¢ > 0. We have
2mb(h,,/1/n) < 1 and m(h, /l/a;)2 < $ for sufficiently large n. Hence

(-~ /hy) ¥n by ‘ (x.—z/h.,,);’n _
L(f; o) = l (m—l— — )(1-———-) | < VAN g~ gy
115 }/n[h V/’I’I/ J"Vﬁ/hn ‘
(1-a/hy,)Vn
< M = qu.
SV Ry

The integral | =3 gy being convergent, the sequence I, (f;®) is
0

convergent to zero uniformly in [a, b], whence almost uniformly in (0, o).

icm
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The following question arises: are the polynomials P,(f;z) conver-

gent for functions increasing more rapidly than ¢~£? The answer depends
on the choice of the sequence h,. We consider the following example:

If the sequence h, satisfies the conditions h,/Va — 0, im sup kg fn >
N0

> 0, where s > 2, then limsupP, (¢’ ;2) = co for arbitrary 2,z > 0.

n—o0

By identity (3) it is sufficient to show ]Jmsuplﬂ(

ore ;&) = oo,

Sinee 6,/h, < % (1—2x/h,) for sufficiently large n, we have

-z /hg) Ve 2\ n e
I, = (1—— —-) exp (.H— — t) dt
J n Vn
SV jhy,
-y Vn £2\n By \EtC
> f 1——] expla+ —]7: t dat
n !
30—z v n

(1—z/hp) Vi

mzn 1 2 8+ &
> f [1”(1“7»:”“”“’{“5"”(1—5)] .

$0-ahy) Va0

: 1gm~1ghn+1g(2—hi)

1 B8 (@) o
B O e L e B
>3-

for infinitely many =, and this proves the statement.
TeEOREM 4. If
() Tpfn — 0, where 8 = 2,
(B) f(t) is measuradble in [0, o),
(v) f(3) is continuous at a fized point & >0,
(5) there exist constamis m and M such that |f()] < M
= 0, then P,(f;2) - f(x) as n — oo.
THEOREM 5. If
(«) hyfn — 0, where § = 2,
(B) f(2), is continuous in the interval [0, co),
() there emist constants m_and M such that |f()] < < Mé™ for every
=0, then the sequence Pn(f, x) 18 convergent to f(x) almost umformly
n (0 oo).

for every
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Proof of theorem 5 (theorem 4 can be proved similarly). By
theorem 3 it is sufficient to show almost uniform econvergence of
sequence (2). Let we[a, b], where ¢ > 0. We have

(—z/hy) V0

h 8
exp [m (a;-i— — t) — tz] at
Vn

IL(f;2)| < M

6V ufly,
(e { . [ b : Ty, a \1-2/5\¢
<M f exp {t° | m (——~_.—‘~ + =3 (l— ~—) ) — 1“ dat
2 I8
suViniiy, (8, Vm Ry W Iy,

(-a/hy)Vn 1
<M exp (— ~t“) dt

Sy Vnfly,

for sufficiently large n, since the expression in brackets is less than — 3.
The interval [a, b] being arbitrary, the sequence I, tend% to zero almost
uniformly in (0, o).

THEOREM 6. If

(oc = 0, where s > 2

(B) f(2) 4s measumble m [0 o),

(y) the 2k-th (k = 1) derivative f® (z) exists at o fimed point & > 0,

(3) there ewist constamts m and M such that |f(f)| < M for every
t =0, then

hm(il”—) e J—Zf ) b o 1} Lt d) 12

r(3)  @e!

I

N—>00
Proof. By the assumption (vy),

I'(=@) 19 (@)

(5 f(t)=f($)—l——1?(t~m)+----|— )1

(t— )"+ (t— ) (1—2),

where lim#(#) = 0. Next, by the assumption (3), there iz a constant
U0

L(x) such that |(u)] <
(5) we obtain

L(z)exp[m(z-u)°] for every «
Vo \2k )
® (5 {ptiw; - N by,

= )

{2k) . 1//_’ 2%k —
=]i(2,f;‘? (—hi} Pn[(t—w)”‘;w]Jr(l/]:i) P, [(t— o)y (t—w); a]-

> —ux. Applying

icm®
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Easy transformations yield

/o \2k
Va
( A ) P'n. [(t_ &

x Blb+ %5 0-4+1)

2k
7 Yl =mn — Ty (@
) n ’ B(i;n+1) w(@),
where
Vi o ¥n
[ Fra—emyra+ [ fFa—#myra
7 (@) = ZLnltn — (-zjhn) Ve
2¥n [ (1—8)at.
[
However, we have for sufficiently large »
va 2 Vn
ok w\" 2k —u?
0 < wWL— —] du < f wem " du
n
TVaihy, ' zVnfhy,
and
Vv Vn
“k G ok ,—u?
0 < f 1————— du < f we " du.
n J
(1—z/hp)Vn (—z/hp)Vn

This proves that r,(z) — 0, for the integral f e du 18 convergent.
0

Applying the well-known relation between the functions B and I and
the functional equation of the function I' we obfain

nkB(k—}— $3n+1) o (L+% I‘(n—,- y I'n+1+4%)
B(3;n+1) TFin+14+%k+4) I'(HI'(n+1)
g DG
+HEF D). (e 340)
_ plnft %(%—kl)...({;—{—n)_}]‘(k—{- 1
T+ D+ D). (B3 n) nlntl T'(})
nln®
for I's) = i oy o)
By (7) we get
_[VuE ) I'(k+3)
(8) iﬁg(—ﬂ) Po[(t—x)*; «] = Tra

Let 6, satisty the conditions &, >0, &, —0, 8V/nfh,—oco. We
have

Studia Mathematica, XXI pt:]


GUEST


290 J. Radecki

2k
(—"’) P [(t—af*n(i—o); @]

Ty

40y — Ty,

A L v

(V> )QI T—8y & Q»é“, L
h, !
n b, [ (1—8)

0

SV Ty,

sup |n(u)] w¥e ™" du.
[j<dy vﬁ,ﬂ njhn
< e
2Vn f £)dt
2y fhy, (1—x[hWn y .

Vil we Pdu+ [ wFexplm(e-Fh,u/Vn) — utldu
;L(T/‘) SuVnhy, Sy, o ~
: * 1

2Vn [ (1—2yat
[}
+oo [ aynly,
)
< sapinu)) f e qu -+ L(z) ™ f we= " du -+
1<t - SpVnfh
n n
(- hVn s
il : ak 2 & h’"l & -
-+ wexp jut | m —‘/_——?/: -+ 7 1-— W — 1| du
) s o h
B (S8 V e [hy) n

for sufficiently large ». Since lim # (%) = 0 and the expression in brackets
U0

is less than —{ for sufficiently large n, we have
]/E 2k
(9 lim (h— P, l(t—az)yEy(t—a); 2] = 0.

Applying (8) and (9) we obtain the theorem from (6).
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Entire functions in B,-algebras
by

B. MITIAGIN (Moscow), S. ROLEWICZ and W. ZELAZEKOQ (Warszawa)

A Bgjalgebra is a completely metrizable locally convex topological
algebra over the real or complex scalars. We shall also assume that the
algebras in question possess unit elements.

The topology in a Bj-algebra R may be introduced by means of
a denumerable sequenee of pseudonorms satisfying

(1) Hmllz < ”m”i-s-n i = 13 29 eney
and
(2) leylle < Bl i g

(see [13], theorem 24). A sequence &, tends to x, if and only if lim |jz, — a,);

N-->00
=0,%=1,2,... The basis of neighbourhoods of zero in R is of the form
K, (1/n)} (i,% =1,2,...), where K;(r)= {#eR: lzl; <7r}. Any sub-
sequence of the sequence {||zl} also satisfies (1) and (2) and gives in R
the same topology.
A Bj-algebra R is called m-convex if there exists an equivalent system
of pseudonorms satisfying

(3) leylls < Teells iyl

The concept of an m-convex B,-algebra, first introduced by Arens
[2], was then considered in detail by Michael in [7]. A B,-algebra is m-
-convex if and only if there exists a fundamental system {U} of meigh-
bourhoods of 0 which are idempodent (i.e. such that UU C U, where
XY = {2cR: 2 =y, ©eX, ye¥}, X, Y — arbitrary subsets of E), or
it there exists an equivalent system of pseudonorms such that multipli-
cation is continuous with respect to each one [7]. In [7] ib is also shown
that if U is an idempotent subset of R, then so are its convex hull conv U
and its closure U.

t=1,2,...

If R is an m-convex Bgalgebra and ¢{z) = 2 a,2" is an entire fune-
n=0

@

S ana®

@

tion of complex variable #, then for every s <R the series g(z) =
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