icm

STUDIA MATHEMATICA, T. XXIIL (1962)

The minimum modulus of a linear operator
and its use in spectral theory

by

H. A. GINDLER and A. E. TAYLOR (Los Angeles)

1. Introduction. Let X be a normed linear space (with_either real or
complex secalars) and let 7' be a linear operator whose domain D(T)
and range RE(T) le in X. Here the adjective “linear” describes the purely
algebraic properties of additivity and homogeneity; a linear operator
need not be continuous.

We assume throughout that X and D(T) contain some non-zero vec-
tors. Let 8 be the surface of the unit ball in D(T):

8 = {g:llxf =1, 2eD(T)}.
Then we define

M(T) = sup|iTal,  w(T) = Inf |7z

We call u(T) the minimum modulus of T. It is a non-negative real
number. The value of N (7T) may be -+oo. It is finite if and only if 7' is
continuous. If T is continuous and D(T) = X, N(T) is more usually
denoted by ||T). .

If 2 is any scalar and I is the identity operator on X, AI—T is a linear
operator with the same domain as 7. The general intent of our paper is
to exhibit the usetulness of the minimum modulus u(AI—1T) as an ingtru-
ment for studying the spectrum of 7. Let o(7T) denote the spectrum of 7.
By definition, Aeo(T) if one or more of the following assertions ig true:

(a) AI—T has no inverse;

(b) AI—T has an inverse, but (\[—T)"* is a discontinuous operator;

(¢) the range of AI—T is not dense in X.

The set of all scalars-not in o(7T) is called the resolvent set of T, denoted
by o(T). In studying topological questions related to o(T) and o(T),
we use the topology of the real line or of the complex plane, depending
on whether X is a real or a complex space.

For studying the structure of ¢(T) it is convenient to make use of
the clasgification of operators into states, as described in Taylor [6],
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p. 235-236. See also Taylor and Halberg [7]. Let X and .Y be normed
linear spaces with the same scalar field, -and let A be a .hneajr opera.to‘r
(not necessarily continuous) with domain in X and range in Y. There are
nine possible states for 4, denoted by

1,, 5,1, IL,II,, II,, III,, IIT,, IIT,.

The symbols I, II, IIT refer to R(4):

I R4)=7,
CII. R(4) =7, but R(4) # ¥,
IIL. R(4) # Y.

The symbols 1, 2, 3 refer to the inverse of A:

1. A has a continuous inverse;
2. A has a discontinuous inverse;
3. A has no inverse.

Then 4 is in state ILI; if R(4) % Y and 4 has a continuous inverse.
Likewise for the meanings of the other states. )

If X', Y’ are the spaces conjugate to X and Y, 'respeetlv'ely, they
are Banach spaces. If A is a linear operator with domain den.se in X and
range in Y, there is a uniquely defined operator A’ (the conjugate of- A)
with domain in Y’ and range in X’. We can then speak about various
possible states for A'. A gtudy of the relationships between the states
of A and the states of A’ has been made. This was done by Taylor and
Halberg [7] for the case in which A is continuous and D(4) = X; tht?se
results were extended to the general case by Goldberg [2]. These studies
have a bearing on our present investigations of o(T).

Returning now to a consideration of I and its spectrum, we see
that Aep(T) if the.state of AI—T is I, or II,; otherwise Aeo(T). We can
then subdivide ¢(T) into seven parts, according to the states of AI—T.
These states are customarily grouped as follows:

AeCo(T) (continuous spectrum) if and only if the state of AL—T
is I, or IT,; .

AeRo(T) (residual spectrum) if and only if the state of AT —T is III,
or IIL,; .

AePo(T) (point spectrum) if and only if the state of AT—7 is I,
IT;, or III,.

As a matter of notation we shall denote by IL,o(T) the set of scalars
4 such that the state of AT —T is IX,. Likewise for the sets I o(T), ITL, o (T,
and so on. In a similar way we define I, o(T) and II, o(T); these two sets
have ¢(T) as their union. .

We shall now deseribe briefly the contents of the paper. Concerning

the minimum modulus, the basic lemmas are Lemmas 2.3 and 2.4, from
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which we are able to deduce (in section 3) that o(7T') and I11, o(T) are open,
and that p(AI—T) = 0 if 1 ig in the boundary of ¢(T). The result about
e(T) is not new, of course. The other results are new in the generality
here presented, with no hypothesis that X is complete or that T is closed.
If Jyeo(T), the resolvent radius of %y may be defined as the least upper
bound of real numbers r such that Zeg(T) if 12— 2} < . When X is com-
plete and T is closed, this resolvent radius is the reciproeal of the spectral
radius of (4, I—T)~Y, and it may be expressed as a limit with the aid of
the minimum modulus (Theorem 3.5). Likewise, if toelIL, o(T), we can
define the III,-radius of A,. If T is continuous, with D(T) = X,orif X
is complete and T is closed, the III,-radius of % 15 not less than
sup{u[(AI —T)"}*". These assertions follow from Theorems 3.8 and
n

3.9. Other related results are also given in section 3.

In section 4 we use the theory of conjugate operators to show that
I;0(T) is an open set when T is a closed and densely defined operator
in a complete space X. In faet, Iy0(T) = IIT, o0(1"). We can also use the
theory of conjugate operators to estimate the resolvent radius or ITL,-
radius of a point, with different hypotheses from those in section 3.

In section 5 we show how to get an equation of a locus containing
the boundary of the spectrum of a bounded linear operator in Hilbert
space (Theorem 5.1). We also show that, if 4 is an operator of a special
sort called positive seminormal, its vesidual spectrum is empty.

The concluding section is devoted to a detailed study of o(4) in
several special cases of a certain class of operators. In the most interesting
case we get a spectrum which is a civeular disk, ecomposed of an inner
open disk, which is ITI,0(4), and two concentric annular rings, which
are ITT,o(4) and II,o(4), respectively.

2. Some general lemmas. ANl of the operators considered in this
section are assumed to be linear and to have their domains and ranges
in X.

Leants 2.1, The operator T has a continuous inverse T if and only
if w(T) > 0. In that case

1
2.1 N -y T .
(2.1) V(I =

Proof. We kuow from the definition of u(T) that it is the largest
real number k such that [Tz > kizf for each » in D(T). When T has
a continuous inverse T-', N(T-!) is the smallest veal number U such
that [Ty < Clyll for each y in R(T). The lemma follows easily from
these facts; we omit further details.

Lesa 2.2. When T, and T, have the same domain, then

(2.2) (T — (Y < N(T,—T,).

Studia Mathematica XXII. 2
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Proof. We may assume N(T,—T,) < co, the result being trivial
otherwise. For any « in the common domain, with [z = 1, we have

1Tyl — |1 T52] < |Tyw—Tall < N (Ty—Th),

whence
#(T1)— Lol < N(Ty—Ts).
Then
p(T)—N{(T,—Ty) < || Ty,
and so

W)= N(Ty—To) < u(Ty),  or  p(Ta)—pu(Ty) < N(T,—Ty).

In this result we can exchange T'; and T,. We then get (2.2), because
N(TZ_TI) = I\T(T1_T2)-

LevMA 2.3. If T and Ty have the same domain, and if N (T —Ty) < u(Ty),
then u(T) >0 and E—(T) is mot o proper subset of R(T,).

Proof. We know that u(Ty)—u(T) < N(T'—1T,). Hence, by the
hypothesis,

0 < p(To)— N(T—To) < w(T).

Now suppose, contrary to the assertion, that R(T) is a proper subset

of R(T,). We can choose a real number O so that
N(T-Ty)
#(Ty)

By a lemma due to F. Riesz (Theorem 3.12-E in Taylor [6]) there

exists an element y, in R(T,) such that |ly,| = 1 and |ly—y,| = @ if y <R(T).
Choose y, = Ty, so that y, — %,. Then

<O <1.

o) llzll < N Toall < 102 —goll+ ol

and so
1
”mn” <m [“%1"3/0”'!‘1]
But also,
0 < lyo—Trnll < ”?lu_TomnH"l‘“Tomn_Twnuy
O <Wo—Yull +N (T —T0) |,
so that .
L N(T—T1y) ‘
0 < N"Jo_yn”'i'_;W[“yn"?lon‘}‘ll-
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Letting »# — oo, we obtain

< FET) g
u(Ty)
& contradiction. This completes the proof.

LeMMs 2.4, If T and T, have the same domain, and if N(I'-T,) <
< 3u(T,), then ITTO) is not a proper subset of R(T) and R(T) is not a proper
subset of R(T,).

Proof. The hypothesis implies u(T,) >0 and N(T—T,) < p(Ty)-
Hence Lemma 2.3 can be applied, and we get part of the desired conclusion.
We also have

aTo)— p(T) < N(T—To).

Combining this with the hypothesis that 2% (T—Ty) < u(T,), we see
that N(I'—T,) < u(T). We can now apply Lemma 2.3 with the roles of
T, and T exchanged. The conclusion is that m is not a proper subset
of R(T).

Under the conditions of Lemma 2.4, we see that either both R(T)
and R(T,) are dense in X or neither is dense in X.

5. Applications to spectral theory. Let T be a fixed linear operator
with domain and range in X. For each scalar 2 we define

(3.1) B(2) = u(Al—T).

The function & is thus a funetion with non-negative real values. It
is continnous. In facs, .

(8.2) 1P (A)— D (4e)] < [A— Aal.
This inequality follows directly from Lemma 2.2, for
(MI—T)— (3T — Tz = (4 — o),
and so
(3.3) NI 1)~ (I —T)] = |ly— 1.
Since @ is continuous, the set of A's for which @(4) >0 is an open

set. This set is the same as the set of 2’s for which A7 —7 has a continnous
inverse. We may divide it into the two parts

o(T) =TL,0(T)  IT,0(T), and IIIL,q(T).

Each of these parts is open, as we shall see.

TaEOREM 3.1. The resolvent set o(T) is open. If Ageo(T), then Acp(T)
Jor each % such that |A— i) < D(2).
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Proof. It suffices to prove the second assertion. By hypothesis
@ (%) >0 and R(4,I—T) is dense in X. By (3.3) and Lemma 2.3 we see
that |A—A < D(4,) implies that @P(1) >0 and that R(AI-T) = X,
which means that Aeo(T).

Next we prove a preliminary result: If i,eIIl, o(T) and if [A— 4| <
< 3®(4), then AellL,o(T), and hence III,o(7) is open. For, by (3.3)
we have

NIL—T)— (HI—1)] < 3u(AI-T),

and we can apply Lemma 2.4 to conclude that R(4,I—T) is not a proper
gubset of R(AI —IT). Since, by hypothesis, R(1,I—T) # X, we must
-also have R(AI—T) + X. We can also conclude that @ (1) > 0, and hence
that AeIIL, o (T). In fact, we can see from (3.2) that @ (1) = @ (4) — [A— 4| >
>$P(%) > 0. :

Presently we shall get a better result about the size of an open cireular
neighbourhood of 4, lying in III, o (7). But first we observe the following
theorem about points on the boundary of ¢(T). We denote this boundary
by dc(T).

THEOREM 3.2. If Aedo(T), then @(1) =0, i. e. u(AI—-T) = 0.

Proof. The set {A:P(A) >0} is open, because P is continuous. It

is the union of the disjoint open sets o(T) and IIT,¢(7). Now, a point A ’

of d¢(T) must be in o(T), because o(T) is closed. But such a A cannot
be an interior point of ¢(7T'), so it cannot be in III, o (7). Hence, necessarily,
D(A) =0 if Aedo(T).

Next we have a result comparable to Theorem 3.1:

TaworeM 3.3, If 4elll o(T) and if |1— | < D(4), then AeIIL, o(T).

Proof. From (3.2) we have

D(7) 2 P(h) —|A—2| >0

it [A—2y| < @(4). Let B be the set {1:]1— 4| < D(4)}. We gee that ¥ is
the union of the sets B ~ o(7') and B ~ III,¢(T). Since F is connected,
and the sets o(T), III, o(T) are open, one of the two constituent sets
of E must be empty. In this case B ~ III,0(7) is not empty. Therefore
ECTIIL,o(T).

The argument used in the foregoing proof can be used to establish
the following proposition:

THEOREM 3.4. Any connected open subset of the set {A:® (1) > O} lies
entirely in o(T) or entirely in IIL o(T).

It may be demonstrated by examples that each of the sets

Lo(T), Wyo(T), T,o(T), T,o(T), Wyo(T), MWye(T)
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can fail to be open. Thus, of the seven sebs comprising o(7') in this system
of classification, the only one of which it may be asserted that it is open,
no matter how X and T are chosen, is ITI, ¢ (7). This situation is altered
somewhat if we place restrictions on T and X. Tf X is complete and if 7'
is closed, then I,o(T) is empty, and therefore open, as a result of a well-
known theorem (Theorem 4.2-I in Taylor [67]). Also, a8 we shall see in
Theorem 4.2, Iyo(T) is open if X is complete and 7 is a closed operator
with domain dense in X.

For an example in which I,6(T) is not open, let X be the subspace
of 1 consisting of those points # = (&, &,,...) in I for which &, =01if
n is sufficiently large (i.e. & = 0 if n > N, where ¥ depends on z). Let
T bhave domain X, with

T(Sl} fayoes) = (517 %527 %‘55; cad).

Then I,0(T) consists of the single point 1 = 0. The reader may easily
prove the validity of this assertion.

Counsider now a point 4, for which @ () > 0. We define the G-radius
of J, to be +oco if @(2) > 0 for every A. Otherwise we define the @-radius
of 7, to be the distance from 7, to the set {i: ®(1) = 0}. We know by
Theorems 3.1 and 3.3 that the @-radius of 4, is not less than &(J,). Also,
we know by Theorem 3.4 that if 7, is the @-radius of 4,, the open circular
disk {4:]A— 4] < 7} les entirely in o(T) or entirely in III,c(T).

If %, is in o(T), we shall speak of the @-radius of A, as the resolveni
radius of Z,. If 2, is in IIL, o(T), we shall call the ®-radius the ITI,-radius
of .

We shall investigate ways of estimating the ®-radius of a point where
the value of @ is positive. In doing this we shall need to deal with powers
of the operator T. If % is a positive integer greater than 1, we define T™
induetively in the obvious way, with D(I™) consisting of those z in D(T)
such that T, ..., T"~* zare also in D(T). Likewise, if P(1) is any polynomial
in 1 of degree 7, we define P(T) in the obvious way, with D(T™) as the
domain of P(T).

‘We observe the following fact: If 4 and B are linear operators in X,
and if 4B is the operator defined by (4B)z = A(Bz), with D(AB) con-
sisting of those # in D(B) such that BreD(A4), then

(3.4) u(AB) > u(4)p(B).
Fer, if 2 = 1 and xeD(A4B), then
A Bz > uid)|Bal = p(4)u(B).
From this it is clear that u(4") > [u(4)]", whence
(3.5) C AT = p(4).
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There are examples to show that the sequence u(4), [u(4®)T7
[u(A%T", ... can be strictly increasing. (Take a, = n/(n+1) in case II
in section 6). .

We now give a theorem on the determination of the resolvent radius
of a point in o(T).

THEOREM 3.5. Suppose Ayeo(T), where X is complete and T' is closed.
Then the resolvent radius of A, 18 7y, where

(3.6) o = nﬁ_{rl{u (AT —T)" "

Proof. The assumptions on X and 7' are used to guarantee that we
can use the spectral mapping theorem (Theorem 5.71-A in Taylor [6]).
Let B = (4,I—T)", and let r,(B) be the spectral radius of B. If we define
F(2) by

] 1
0 ==

it is easy to see that the operational caleulus yields f(7) = B. By the
spectral mapping theorem o(B) = f[o,(T)]. From this we see that r,(B)
is the supremum of |f(1)| as A varies over o.(T). This is the reciprocal of
the infimum of |A— 4| as A varies over o,(T). If o,(T) consists of oo alone,
7,(B) = 0. Otherwige, we see that ¢(T') is not empty, and r,(B) is the
reciprocal of the distance from 1, to o(T). This distance must in fact be
the distance from 4, to do(T), and also the distance from 4, to the set on
whieh & (1) == 0. Hence we see that the resolvent radius of 4,is 7, = [, (B)]™"
To obtain formula (3.6) we observe that B* = [(4,I—T)"]"!, so that,
by (2.1),

1B = {u[(AI—T)"T".

We then get (3.6) from the standard formula for a spectral radius,

namely 7,(B) = lim|B"*".
Nn—00

Next we prove two lemmas which will be useful in subsequent ar-
guments.

Lumma 3.6. Let A be a continuous linear operator in X, with D(4) = X.
(We do not assume that X is complete). Suppose that u(i*I—A") >0 for
some n, where n >1. Then also p(AI—A) >0.

Proof. We can write

(3.7) PI—4A" = B, (AI—A4),
where
- (3.8) B, =TI AL A

icm®
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Then, if jjz| = 1, we have
0 < u(A"T—A4") < I(FT—A")2) < B, |(AI—A)a],
from which it follows that B, = 0 and that

n "
p(I—4) > L;ﬁl 0.

Lmmuma 3.7. Suppose that 4 s a linear operator with domain and range
in X, and suppose ¢(A4) contains a point § such that R(fI—A4) = X. (We
do not assume A continuous, or that X is complete.) Suppose that, for some 1
and some 1 >1, we have u(A"I—A") >0. Then u(AI—A4) > 0.

Proof. It may be remarked that the hypothesis implies that A is
closed. (See Theorems 4.2-B and 4.2-C in Taylot [6]). Also, if T is closed
and X is complete, we shall have R(AI —T) = X for every A in o(T). Bub
we do not assume that X is complete. Let 8§ = (4 —pI)"". Observe
that 8 is continuous and that D(8) = X. We first prove an suxiliary
proposition. Suppose « and {r;} are such that xpeD(A4), flmll =1, and
(al—A)x, - 0 a8 k — oco. Then, for each non-negative integer m,

(3.9) liminf |§" 2 > 0.
Feroo

This is true if m = 0. Clearly aeo{4), 80 a« = 3. Iff m > 0, Sz e D(A),
and we can write

(B—a)8"ay, = (BI—A) 8" mp— (o —4) 8"y, = —8" iy — 8™ (ol — A )y
18— al 8™ m]] = 18" ayl|— 18™ (ol — 4) a3

Since 8™ is continuous, it is clear that 8™ (al—4)z, — 0 as k — oo,
and therefore

|f— a|liminf [|§7 2| > Hminf 8™ .
koo ko0

From this we see inductively that (3.9) is true.

‘We now proceed with the proof of Llemma 3.7. As in the proof of
Lemma 3.6 we write the formula (3.7), with B, defined by (3.8). Now,
a polynomial in # can be written as a polynomial (of the same degree)
in t—p. In this way we see that B, can be expressed in the form

B, = eI+ (Ad—pI)... 46, (A—BIy L.

Now suppose that u(il—A) = 0. From this we shall deduce that
u(A"I—A") = 0, thus proving the lemma. By the hypothesis there exists
a sequence {x} such that zeD(A), [z =1, and (AT —A4)z; 0. Let 4. =
= §"'z,. Then

(A" I—A"yy = By(I—A4)8" "z, = B, 8" (AT —A)z,.
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But

B8 = 8" 40,8 . 0y I,

so that B,S" ' is a continuous operator. It follows that

Hm (T — A"y, = 0.

k-0

(3.10)

But, by the auxiliary proposition, lhglinfllyklt > 0. It then follows
from (3.10) that

Hm ("7 — 4™) (y—") —o0,
Tesoo llyzl
and hence that u(1"I—A") = 0. This contradiction finishes the proof.
The next two theorems deal with estimates of the @-radius of a point
% for which @(2) > 0. The results are less precise than the result§ in
Theorem 3.5, but we do not assume that X is complete, and we use diffe-
rent methods.
THEOREM 3.8. Suppose D(T) = X and let T be continuous. Suppose
D(}) > 0. Then the D-radius of 1y is not less than vy, where

(3.11) Ty o= {Slfpﬂ[(ﬂoI —Iy' .

Let E be the set {A:|A— Ay <r.}. Then E lies either all in o(T) or all
in IIL, o(T). _

Proof. Observe that 7, >0, by (3.5). If 1 eEF we have {1— 4| <
< p[(HI-T)"T"" for some m. Then |[A— 2" < u[(HI—T)"]. Let
A =24I-T, a=2—12. If |g]| =1 we have

(a"I— A" @l > A"l "] > p(4™)—d"| >0,

and so u(a"I—4™)z >0. By Lemma 3.6 we conclude that u(al —4) >0,
which is the same as u(AL—T) >0, because al—4 = T—1I. The
conclusion now follows from Theorem. 3.4.

THEOREM 3.9. Suppose o (T') contains a point B such that B(BI—T) = X.
(This time we do not assume T continuous or D(T) = X). Suppose D (Jy) > 0.
Then the -radius of A is not less than 7., where 7, 4s given by (3.11), and
the conclusion about the set E 4s just the same as in Theorem 3.8.

Proof. Define A = 4,7—T. Observe that 81 —T = —[(A,— ) I—A],
so that 2,—feo(4) and R[(4,—p)I—A4] = X. We can then proceed
just as in the proof of Theorem 3.8, except that we appeal to Lemma 3.7
instead of to Lemma 3.6.

When we try to extend Theorem 3.5 by weakening the assumptions
on T and X, we run into difficulties with the method. However, by using
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a different method we can prove the following theorem, in which we do
not assume X complete or T’ closed. We denote the eompletion of X by X.

TEEOREM 3.10. Suppose Aoeo(T). Let B be the unique continuous linear
extension of (A I—T)" to oll of X. Let E be the set {Atli— 24, (B) < 1.
Then B C o(T). Thus the resolvent radius of 1, is not less than the reciprocal
of r,(B).

Proof. If 1¢E and 4 = 4, we see thab —(A—7%) "ep(RB). Let C be
defined on X by

1 I 7
BlBL ;
=7 [ ‘z—;ﬁ]

We shall show that O(AT—T)r = 2 when 2eD(T). From this will
follow the inequality 1 < [iC|u(AI—T), whence B C ¢(T) by Theorem 3.4.

If y=(AI-T)x, we can write Y= (A—=2) (% I—-T) " (I -T)z+
—(HI-T)a, or

¢ =

I
¥y={1—1%) [(%I—T)’IT’H] (I —T)a.
Then, since B is an extension of (i, —T)"', we can write
1 '
Cy = BB+ - A~} Jo I —T)x.
=74 [ ' ;.—;..,] ( "’)[BJr z—zo](“l e

On simplification, this becomes
Cy = B(lpI—-T)z = =,

which is what we wished to show.

If we attempt to use the foregoing method to estimate the @-radius
of a point A, in ITT, o(T), we meet the difficulty that the operator (i I—T)~*
may not have a continnouns extension to all of &. The usual way to extend
a continuous linear operator whose domain of definition is a linear mani-
fold M not dense in X is to nse a Projection having as its range the closure
of M in X. But there may be no continuous projection of this sort. For
this reason the next theorem contains g specific assumption which rules
out the aforementioned difficalty.

TaEOREM 3.11. Suppose 4 eIIl, o(T), and suppose that Bis a continuous
linear operator mapping X into X, such that B is an estension of (A I—T)".
Then the IIL,-radius of 2, is not less than the reciprocal of r,(B).

The proof is just like the proof of Theorem 3.10.

It X is a Hilbert space, continuous extensions of (A —T)" will
always be available. In this case we should attempt to choose B in Theorem
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3.11 so that r,(B) is as small as possible, so as to get better estimates of

the III,-radius of Z;. .
We conclude this group of theorems with the following result:

THEOREM 3.12. Let X be a normed linear space. Suppose A is & conti-
nuous linear operator in X with D(4) = X. »S’upg_)ose Bis a commmfus
linear extension of A, with D(B) = X. (This smvolves the asswmption
that 4 has a continuous inverse, but says nothing about R(A)). Finally,

suppose that
limsup [[4"B"|"" < 1.

(3.12) mst
Then
(3.13) 7,(B) = lim [u(4™)]7""

N->00

Proof. The fact that B is an extension of A™' is expressed by
BA = I. Tt follows that B"A"™ = I. Then |z|| < |B"|l4"#| for each =,
whenee 1 < |[B"|u(4"), and [u(4™)]7"™ < [|B"". Thus

(3.14) timsup [{4™]™" < Hmsup [|B"[V" = r.(B).
Ne->00 N—>00
(The familiar relation between the sequence {||B"|*"} and 7,(B) is
true, even when the space X is incomplete, ag is shown in the dissertation
of Gindler [11, Corollary 3.3). Now let P, = A"B". Then [[P,a|| > u(4")

||1B"#|| for each w, and so
B[ < [ (A™) T Pl
- From this and (3.12) follows the relation

Him [[B*|/* < liming [x(4")]71".

-Because of (3.14) we then have (3.13).

4. The conjugate of a densely defined operator. Let 4 be a linear
operator with domain in X and range in ¥, and let it be densely defined
(i e. let D(4) be dense in X). Then the conjugate operator A’ is uniquely
defined. It is a closed linear operator with domain in ¥’ and range in X'.
The domain of A’ consists of all ¥’ in ¥’ such that y'(4x) is continuous
a8 @ function of # on D(4); then A'y’ = o' is defined by ' (2) = y' (4d=).
‘We are going to meed the following theorem:

THEOREM 4.1. (2) If Y is complete and if the state of A is Ly, the state
of A’ is IIL,. (b) If X is complete, if A is closed, and if the state of A’ is
IIT,, then the state of A is I;.

The truth of (a) may be read from the first state diagram in a paper
by Goldberg (page 72 in Goldberg [2])- The truth of (b) may be read from
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the second state diagram, on page 78 in the same paper by Goldberg.
For the convenience of readers we outline the main steps in reaching
conclusions (a) and (b). The details, or references to them, can be found
in Goldberg’s paper. If Y is complete, R(4) = ¥ implies that 4’ has
a continuous inverse. This, with the fact that 4’ is closed, implies that
R(4') is closed. Then, from the fact that A has no inverse, it can be proved
that R(4’) # X, and hence R(4’) is not dense in X’. This disposes of (a).
For (b) the most difficult part of the proof is in showing that, when X
is complete, it 4 is closed, and if A’ has a continuous inverse, then
R(4) = X¥. It also follows that, if -4 has an inverse, 4! is continuous.
Then, with the assumption that R(4’) is not dense in X’, one can prove
that 4 has no inverse. .

From Theorem 4.1 we can conclude the following

THEOREM 4.2. Suppose X is a complete space and that T is a closed
and densely defined linear operator in X. Then 1 is in I,c{T) if and only
if A 4s in IIX,0(T1"). Therefore Ty0(T) is an open sei.

Proof. We apply Theorem 4.1, with X = ¥ and 4 = AI—T. We
know from section 3 that III,¢(7") is an open set.

The foregoing theorem is not true if we omit the assumption that X
is complete. Consider the following example. Let X be the subspace of
12 consisting of elements ¢ = (&, &,,...) such that & = 0 for all except
a finite set of values of n. Let D(T) = X and define T(£,, &,,...) =
= (2£,, 343, 4&;,...). Then T is closed and R(T) = X, but it may be
verified that the only eigenvalue of T' is 1 = 0. Hence X,o(T) consists
of the single point 2 = 0. In this case we can identify X’ with 12, and T’
is defined by T’(&,, 52,...) = (0, 2&,, 38,,...), with D(T') consisting

of elements for which Z’ (n+1)2|&|2 < oo. It is readily seen that

pu(I'y =2. Also, it 2 —+L 0 we can solve the infinite system of linear
equations represented by (A1I—I")x = y, and in this way we can see that
(AI—T7")"" is never a bounded operator defined on all of 7% Therefore
o(1") is empty in this case. In fact AT—7" is in the state III, for every
2, so that III;¢(Z”) is the same as o(T"), which is the entire complex
plane. The assertion that AI—7" is in the state III, for every i can be
proved direetly by showing that u(iI—7') >0 for every 2; once this
is done, we can conclude that the state of A7—7" is IIL,, for we have
seen that o(7) is empty.

A different argument could be given, as follows: Taking X = I?,
let T, be the operator in X with D(T,) consisting of all # = (&, £, ...)
sach that Zn2[{,|* < oo, and T,(&, &, ...) = (2&,, 3&, 4&,,...). Here
again we can identify X' with 12, and it turns out that 7; is the same as
the 7" we have already considered. Now it turns out that AT —T, is in state
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1, for every A Since X is complete and T is closed, as well as dengely
defined, we can use Theorem 4.2 to conelude that the state of AI -1

is IIIL, for every A.

The direct demonstration that p(AI—7") > 0 in this example is not
entirely simple when 4 # 0. For the following argument we are indebted
to Professor E. G. Straus, of the University of California, Los Angeles.
We present it as an interesting illustration of technique in estimating
a minimum modulus. Suppose B, is the projection operator defined by

By(éyy £y .00) = (E1y £ay ovey £y 0,0, )

Then |jz)2 = [|[Boa|*+||(I— B.)z]® Let # be chosen as the first in-
teger such that n+42 > |4V2. Now ||T'#)* = |\I' Byo||*+I1T" (I —By) |2,
and it is easy to see that |T"(I—E,)xl| = (n+2)|(I—H)al. If zeD(T")
and |z = 1, we must have either |[(I—%,)a|? >1/2 or || B, 2?2 = 1/2.
TIn the first of these two cases we have [|[I'z|| > (n+2) /1/2, and therefore

72
%)

Mo —I"all 2 T aj— 2] = — 14 >0.

In the second case, where ||H,4|> > 1/2, let the maximum of |&], |&,,...
be |&). Then we certainly have |&|* > 1/2n, because
[E12 &l = 3.
From the expression for |[Ax—T"x||* we now select those terms which
involve &. If k =1 they are

A 2
Bl (A 26, > (13150 > 22

~ on
If & >1, these terms are
(A& — ki1 )+ [Adpqa — (B+1) &%
This sum can be written in the form
16012 14— a2+ | 612 28— (B +1) 2,

‘where

and Br = %l.
k

Ep1
ap =

Since (o] <1 and |8 <1, we see that
|A—Rag) 2+ |4 — (B4+-1)12 > 1.
For, i |A—kay| <1/2, then 2] < k+1/2, and
Pfe— (1) = b-+1— |28 > 3.

The minimum modulus 29

Thus, when ||B, | > 1/2, we see that Jiz— T"a|? is not less than
the smaller of the numbers [A|2/2n,1/8n.
Combining all the results, we see that u(iI—T') is not less than the
smallest of the numbers
n+2 i |21 1

2von

where n is chosen so that the first number is positive.

Presently we shall need the following result:

Levua 4.3. If B is a linear operator with D(B) and R(B) in X, and
if D(B) is dense in X, then R(B') = X' if and only if B has a continuous
nverse.

For this proposition see Hille-Phillips [4], Theorem 2.11.15. The
space X need not be complete. See also Theorem 4.7-4 in Taylor [6];
it is not necessary to have B continuous or D(B) = X.

By the use of conjugate operators we can give the following gene-
ralization of Theorem 3.8:

THEOREM 4.4. Suppose that D(T"} is dense in X for n=1,2,....
Suppose that ®(A) > 0. If A = 3 I—T, suppose that (4™) = (4")* for
n=1,2,... Then the $-radius of }, is not less than sup[u(A™)T".

"

Proof. We remark at the outset that D(4A") = D(T™); therefore,
since D(T™) is dense in X, the conjugate of A" is well-defined. Under
thege conditions (A™) is an extension of (A")", and it can happen that
the domain of (4’)" is a proper subset of the domain of (4")'. (See the
example given later in the paper).. But we have explicitly assumed that
this does not oecur.

Now suppose that |[i— 4 < [u(4™)]"" for some value of n. We
wish to show that @ (1) = u(AI—T) > 0. We write a = A—2,. Then, as
in the proof of Theorem 3.8, we conclude that u(o"I—A4") > 0. From
Lemma 4.3 we then conclude that the range of (¢"I—A4") is all of X".
Next, we note that

(4.1) P T—A" = " I—(A") = o"I—(4') = (aI—4")S,

where
S = a’L—II“'i_aﬂng"%‘..,—:—(_A_,)ﬂ*l.
Note that we use I for the identity operator in X’ as well as for the

identity operator in X. From (4.1) it is clear that the range of («"I—A4")’,

which is X', is contained in the range of ol —A’. Therefore this latter
range is X’ algo. Applying Lemma 4.3 again, we conclude that of —4
has a continuous inverse, i. e. that u(al —A4) = p(AI-T) > 0.

Here is an example of an operator 7' such that (T2)’ is a proper ex-
tension of (1)2 Let X be 2, and let D(T) consist of all elements z = {&,}
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such that £, = 0 when » exceeds some N which depends on z. Let
Tk, &, &y nn) = (£1,0,28,0, 3&,0,...). We can identify X' with

72, Tf 'we calculate (77)% and (T'2)’, it turns out that D{(T?)} is identifiable
with the set of all {a,} in I? such that

l\ﬂa

n2(2n—1 V2 laans|? < 00,

n

i
I

whereas D{(7")% is identifiable with the subset of D{(T?)'} for which

N2y |* < 00

ﬂ\ﬂ 2

0

The Iatter condition places the further restriction

Ma

la.hz 1] < o0

on the elements of D{(T?)'}, and so (7'?) is a proper extension of (I")%

5. Operators in Hilbert space. In this section we suppose that X
is a complex Hilbert space. If 4 is a bounded linear operator on X, the
adjoint A* is another operator of the same kind, while the conjugate A
is a bounded linear operator on the conjugate space X'. There is a norm-
preserving linear isomorphism between X and X', however, and by means
of this it may be shown that the operators A* and A’ have the same state.
We also know that o(4*) is the set of complex conjugates of the points
of ¢(A4); therefore, 2 is & boundary point of o(4) if and only if 7 is a boun-
dary point of o(A4*).

Now suppose that H is a bounded selfadjoint operator on X, and
let us define m(H) and M (H) as follows:

(5.1) m(H) = inf (Hz,z), M(H)= sup (Hz,z).

la=1 fil=1
We observe the properties
(3.2)  m(—H) = ~MH), m(cH) =cm(H) i
1+HS),

m(eI+H) = e m(H) if ¢ is real.

¢ >0,
(5.3) m(H,)+m(H,) < m(H
(5.4)

The minimum modulus is related to the function m; the following
relations are evident:
(5.5) u(4)

=Vm(4*4), p(4*) =Vm(44").
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Now, by Theorem 3.2, if Aledo(4), we see from (5.5) that m(B) =0,
where B = (AI—A)"(AI—A). Furthermore, we shall have Zeaa(A*)
so that u[A7—4)*] = 0, whence m(C) = 0, where ¢ = (A]— —AY(AL—A)%. :
Let us compute m (B) and m () in more convenient forms. We write 1 *rem
where 7 >0 and O is real. Then we define

= $(e7PA +04%).
It then fturns out that

B =1 —%Jg+A*4, = r2]—2Js--A4*.
Therefore, by (5.4), ; -
(5.7) M(B) = rft+m[—2uJg+A* 4],
(8.8) m(0) = r2+m[—2rJ o+ AA¥].

We can now state the following theorem:
TeEEOREM 5.1. If Acdo(A), where A\ = rd'®, then

(5.9) 72 = M[2rJo—A%A]
and
(5.10) 72 = M[2Je—AA*].

The proof follows from (5.7), (5.8), and (5.2), because of the fact that
m(B) = m(0) = 0.

If the locus of points 6™ satistying (5.9) could be determined, this
knowledge would be useful in the following way. Let the locus be S, and
let D be a maximal connected subset of the complement of S. Then D
must be either all in o(4) or all in g(4). For otherwise, since D is connec-
ted and ¢(4) is open, there would be an accumulation point of D ~ g(4)
in D~ ¢(4), and this point would be a point of do(4) not in S.

From Theorem 5.1 we may deduce the following result:

THEOREM 5.2. If either A*A =1 or AA* =1, then do(4) lies on
the circumference {A: |A] = 1}. Under these conditions, if A is not unitary,
o(4) s the full disk {A:]4] <1}.

Proof. If either A*A =7 or 44* = I, we see from (5.2) and (5.4)
that 72 = 2rM (Jo)—1, or

(5.11) 1472 = 20 M (Jo)-

But.4* 4 =TI is equivalent to |ldz| = |lz]| for all z, because (4* 4z, 2) =
= (4, Az). Hence A*A =T implies ||4}] = 1, whence [|4*| =1 also,
because || 4] = ||4*|. Likewise, 4A* = I implies || 4*|| = ||4]] = 1. Thus,
since M (H) < ||H|| for any selfadjoint H, we see that either 4*4 =1
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or AA* =T implies M(Jo) < |Joll < 3(IA[+[4%) =1. From (3.11)
it follows that 1+ <2r, or (1—)2 <0, whence 7 = 1. This proves
the first assertion. If 4 is not unitary 0 must be in o(4) and ¢(4*). Since
4]l = 1, we know that points outside the unif circle are in o(.4). There-
fore every ray through 0 must intersect the unit circumference in a point
of do(4), and the interior of the unit cirele must all be in o(4).

Actually, we ean prove a theorem somewhkat like Theorem 5.2, but
in & Banach space setting. Instead of using Theorem 5.1, we use Theorems
3.1 and 3.3.

TaroREM 5.3. Let X be a Banach space. Let A be an isomeiric ope-
rator: |Ao| = || for each m. Then, if R(4) ==X, o(4d)={A:]A <1}.
If R(4) =X, o(4)C {A:|4] = 1}. ' _

Proof. From the hypothesis we see that [4] = 1. Then leo(4)
if [A] >1. Also, u(4) = 1, and hence 4 has a continuous inverse. It is
easy to see that R(A4) is closed. Therefore the point 4 = 0 is in IIT;0(4)
it R(A) = X, and in g(A4) if R(4) = X. In the first case, 1<IIl,0(4)
if |A] < 1, by Theorem 3.3. In the second ease, 2¢p(4), by Theorem 3.1.
The conclusions of the theorem now follow.

In a 1957 paper [5] C. R. Putnam asserted the inequality

(5.12) fr=M(Jo)}* < {M(Jo}*— {u(4")}*

under the assumptions that 1 = 7¢° is a point of Jdo(A) and that
A is what he called a positive seminormal operator. This means that
m[AA*—A4*A] > 0. He then deduced that o(4) = {A:]4] <1} if 4 is
isometric but not unitary. Our Theorems 5.1 and 5.2. have been proved
as a Tesult of our examination of Putnam’s paper. But we emphagize
that no use of the concept of seminormality is needed in our proofs. More-
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over, in Theorem 5.1 we have equalities in (5.9) and (5.10), whereas Putnam *

asserted only the less precise result of the inequality in (5.12). Actually,
(5.12) can be deduced from (5.10), and a coriesponding inequality, with
u(4) in place of u(4*), is deduced in the same way from (5.9). In fact,
from (5.9) and (5.2) we have

24 m[4*4—2rdg] =0,
and so, by (5.3),
0 =2t m(A* A+ m(—2rJg).
By (b.5) this can be written
0 = r2—2r M (Jo) + {u(A)}.
On completing the square we then have

(5-11?) - {r—2(Je)}* <{M(Jo)}2—{p(4)}®.
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From (5.13) we deduce that

(3.14) M (Jo) VA (Te)—{u(D}* <r.

If 0eIll,0(4), then x(4) >0, and we see from (5.14) that r > 0.
This shows us in another way that 0 is then an interior point of 11T, o(4).
One might suppose that (5.14) would be useful for obtaining an estimate
of the IIT,-radius of 0. Actually, however, we can get nothing better this
way than what we already know from Theorem 3.3, namely that the
ITI,-radius of 0 in o(A) is not less than u#(4). For, 0 < u(4d) < M(Jg)
and from this it is easy to see that ’ on

M (J o) —V{M(JTe)}— {u(A)}2 < p(4).

It is of some interest to see a non-trivial example in which we can
calculate M[2rJg—A* A)]. Let 4 be the operator in # defined as follows:

Auy, = th+aug g,
where ¢ >1 and u;, is the ™ basis vector,
4 = (0,...,0,1,0,...) (1 in %" position).

We readily find that 4*4 and J, are represented by the following
infinite matrices:

1+ a® a 0
A*A a 1+aq? a 0
0 a 1+a® a 0
!
|
a .
cos @ —e'®
5 0
a . a .
J . _6—16 gl
° 3 cos@ 26 0
| & e @ e
0. 2@ cos @ Ee

. For our purposes we need the following facts. If B is the operator
defined by Bu; = u,, Bu, = Up_1+ Uy i k> 2, then o(B) =[—2, 2].
Studia Mathematica XXII. 3
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If le] = 1, and if ¢ is the operator defined by Cup = & uy, then C'BC
= 4
is defined by

C'BCuy, = By, 07" BOuy = 01+t

i & 2, and o(C~'BC) = ¢(B). The facts about B are classical, and well
== Hy
known. See [3], for insbance.
Tt is now easy to see that

(5.15)  2Jg—A*4 = [2re0s@—(1-+a)1I+ajre'*—1|C7'BO,

where
7€ —1
¢ = m
This is the situation if #6® =% 1. We are not conecerned with the con-
trary case, for we can easily see that the point A = 1 belongs o IIIla(A_):
and hence it cannot be in do(4). From (5.15) a,nd.the fact that o(B) =
=[—2,2] we now see that o(2rJo—A"4) consists of all real valués

of A such that ‘

li—[2reosO—(1+aM)] _
alre®®—1]

In particular M [2rde—A*A] is the largest such value of 2, so that
M2 Jo—A* A] = 2rcos@— (1+a?)+2aV1 12— 2reos 6 .
Equation (5.9) now takes the form
72 = 2rcos@— (1+ az)—(—QaJ/m,

which can be rewritten as

(1/1—1—1‘3—21"cos—§—a)2 =0, or 147*—2rcos® = a?.

This is the equation in polar form, of the circle consisting of all 2
such that [A—1] = a. The set do(4) lies on this circumference,'by Theorem
5.1. Since the center of the circle is in o(4), the entire circumference
is do(A).

Actually, it is easier to determine o(4) in another way. We can
write A = I+aT, where T is defined by Tuy= t,;. Since AI—A4 =
= a{(A—1)je—T}, and since it is known (and easily proved) that o(T)
is the set {A:]1] <1}, we see that o(A) is the set {1:|A—1| <a}. (For the
facts about 7' see p. 266-267 in Taylor [6]). Since A* A = (1+a®)I+aB,
it is readily apparent that o(4*4) = [(a—1), (a+41)%]. Tt then follows
from (5.5) that u(4) = a—1. Since I—4 = —aT, we readily compute
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#(I—A) = ap(T) = a, whence the III,-radius of 1in o(4) is at least a.
Tt cannot exceed a, of course; in this case all interior points of a(d)
are in ITT,o(4). )

‘We shall conclnde this section with some theorems about seminormal
operators.

THEOREM 5.4. Let A be a positive seminormal operator. (That fis,
if H=Ad4*—4* 4, then m(H) = 0). Then the seis I, 6(4) and T,0(4)
are empty (i. e., in another terminology, the residual spectrum of A is empty).

Proof. Observe that

(AT —A)(AL—A) — (AL —A)* (AI—4) =H.

_ Hence, 11— 4 is a positive seminormal operator if 4 is. It therefore
suffices to prove that, if R(A4) = X, then 4 has no inverse. Now, if
R(4) # X, there is some z == 0 such that 4*z = 0. Then, by hypothesis,

0 < (Hz,z) =(44*0—4* da, z) = — (4% Az, 2) = — A=z <0.

Thus 4z = 0, and the proof is complete.

THEOREM 3.5. If 4 4% a negative seminormal operator, the sets Iy0(A4)
and Iyo(4) are empty.

Proof. The hypothesis is that ((44*—A*4)s,a) <0 for all
This implies that A* is a positive seminormal operator. Now (by the
state diagram)

Lo(d) = {1:2eTILo(4%)}  and Ilo(4) = {1 Ty o(4%)}.
The conclusion now follows from Theorem 5.4,

6. Examples. The examples we consider are all obtained as parti-
cular eases of the following general example. Let X be the space I. Let {a.}
be a sequence of complex numbers such that

(6.1) ¢ =infla,| >0, C =supla, < +oco.
Let 4 be the bounded linear operator defined by
(6.2) A&y, Eaye) = (0, ay &1, 4, &,, ...).
If we think of 4 as defined by an infinite matrix, the matrix is

f0o 0 o
§a100
0 a, O
0 0 a
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The elements in the first subdiagonal are a;, @, ... and all other
elements are 0. For A? the corresponding matrix has elements Ay ls, 0303,
@.a. ... in the second subdiagonal, and all other elements anre 0. Likewise,
1:131; ’elements in the n'* subdiagonal of the matrix for A" are

Uylyen lny  Opllge..Opyyy  Galge..Gnypos

and all other elements are 0. From these calculations we can see that

AT = SUD |Gy Gpoyee e Bprn_il
(6.3) 14" p}ll)l p Bp 41 p

and
u(4™) = inf|a, o 1. Gppn_il-
D1

To determine o(4) we observe in the first place that 0eXII;o(4),
11 see that o(4) is a disk
ge u(d) = ¢ >0 and R(4) # X. We sha 2 ‘
E‘? ia;.‘;iusﬂ'rg (,)A.) with center at 0, where the spectral radius r,(4) is to be
calenlated with the aid of (6.3). If 2 # 0 ?.nd Ay = (ﬂ.I—A)m,- we can
solve for z explicitly. The inverse (Al —A)™" exists; the matrix which
determines it is found to be

1/2 0 0 0
ay A2 1/4 0o 0
a4l 1A 0

o ay [ was|A ay (A 1[4 0

Thus, 4 will be in ¢(4) if and only if this matrix determines a bounded
operator defined on all of X. If we write

1 - |G @1 v+ O]
() = =+ —ﬁﬁ-iz_r

(6.5) it

the condition that A be in o(4) is that the series for r,(4), 7,(2), ... all
be convergent and that

* (66) WA —4)7) = sup ()]

be finite. Observe that if the series for r,(4) is conver;; ', the series for
7,(A) converges for every value of k. Since »,(1) depend. vnly. on [4], and
decreases as |A| increases, it is clear that p(4) is the exterior of some
disk centered at 0.
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We shall attempt to classify the points of o (4). To do this it is helpful
to study the conjugate operator 4’, which acts in I. It is represented by
the transpose of the matrix which represents A. It is not difficult to see
that 2 is an eigenvalue of A’ if and only if

i 7 2
13—: 2 3 e
& a4y Gaa

is a vector in I°, i. e. if and only if

n

(6.7) sup

n

< oco.

[P
For this || < imint|a,...a,["" is necessary and |4| < liminfla,...a, "™
Nn->00 N—>o0
is sufficient.
From now on we impose various special conditions on the a,’s.
Case I. Let us suppose that lan i1} < ay] for each n. Then la,| — ¢
a8 n — oco. In this case we see from (6.3) that

1AM = |ay... 4, > e,

Also, u(A™) = ¢*. Thus we see that 7.{4) = ¢, and from this and
Theorem 3.8 we see that the III,-radius of 0 in o(4) is ¢. To classify the
points A for which |] = ¢, we observe that

691
1:

3

N

Ia'l s ani

by (6.7), therefore 1 is an eigenvalue of A’ if [4] = e. From the state diag-

ram (Taylor [6], p.237) and the fact that (AT—4)~! exists but is not

continuous (see Theorem 3.2), we conclude that Aelllyo(A) when {4 = ¢.

Case IL. Suppose now that ja,| < {@n 11| for each n. Then |a,| — C.

In this case [|A™} = O™ and p(A™) = |a,...a,). We see that r.(4) = C.

Now [p(A™]" > €, so that sup[u(4™]/" > (. On the other hand,
7w

1A < sup[p(4™)T"™ implies AeIIL,o(4). Consequently, since |i| > C
implies 2eo(4), we conclude that sup[u(A™)T'" = €. To classify the
points for which Ji] = ¢, we observe that they are either in IT,c(4) or
in TT,0(4), because (AI—A)™! exists but is not continuous. We can di-
stinguish between these two cases by looking to see if 2 an eigenvalue
of 4.

We shall arrange a special case within Case IT, with 4 depending
on a real parameter f. Suppose that 1/2 <t < 1, and define

k2t

Tz PO

Ay =
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Then t = @y <y < .ony @y 1 = 0. T2 =15h, We can write

h h 1
Q.. @y = (1+h)(1+5)--~(1+;{) il

and so \
1 = h
log—— =log(n+1)— Z log {1+ )
ag...0p - :
1  h
log —— = log(n—+1)— 2—— > (1—h)log(n+1).
[P = k
If 1/2 <t <1, we have 0 <h < 1, and we see from the foregoing
that
ay. .. 0

Referring back to (6.7), we see that this means that points A for which

[A} =0 =1 ave in IL,0(A), because they are not eigenvalues of A’. On

the other hand, if { = 1 we bave a@;...a, = 1, and in this case the points

for which [A| =1 are in III,o(4), beeause they are eigenvalues of 4.

If we denote A by A4(f) to show its dependence oh t it is interesting to
" observe that

i4.(1)

—A@#) =sup|1—

Thus we see that an arbitrarily small perturba.tionl of phe operator
A(1) can shift the classification of the points for which |1 =1 from
IIT,0(4) to IT,0(A4).

Case IIT. This case is more complicated. Let a, b be fixed real numbers
such that 0 < @ < b, and let the sequence {a,} be constructed so that
each @, is either a or b, be rule being that

o, =a it k—-b<n <k, kk=1,2,..

and a, = b for other values of n. The succesion of terms in the sequence
{a,} is then one a, one b, two a's, two b's, three a’s, three b’s, and so on.
It is clear after a little inspection that ||A"|| = b" and u(4") = . Thus,
a(A) consists of all A such that |4 << b. We shall show that
Lelllo(4) it |A < a,

lelllyo(d) if  a <A < Vab,
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and
Aell(4) it lab
Let ¢, = &;...a,

< <
. The first twelve terms of the sequence {c,} are
a,ab, a’b, a°b, *B, &*B°, &' B, &°B°, 0¥, of B, a’ b, atbs.

Note that ¢, = a”b?, where p and ¢ depend on » and P+g = n.
The rule is that

E(k+1
- —(—;L—) it R <n <Rk,
k(e+1)
g=——7— it k(k+1)<n< (kLl).

Since [u(4")]'" = 4, we know that the III,-radius of 0 in o(d)
is not less than a. Let us use (6.7) to test for eigenvalues of 4. We see
that

)‘.ﬂ ;.n

.. .0 a’bt’

If |4 < a, the absolute value of this ratio is not larger than (a /byt
which is less than 1. Hence such i's are eigenvalues of 4’. We consider
the situation when « < i2l. Let us write [il/a =a, A/b = p. Then
0 <f <1< a The sequence i"/a,...a, is now

a,af, '8, &’ 8, & F, L P

That is, it is just like the sequence {a;...a,}, except that « and b have
been replaced by « and . Since f§ <1 and «>1, we see that, in
looking for

" |
sup | —— |,
n. i Gp...qy

we can confine attention to the values n = k%, k =1,2,3, ...
we let

This means

Yo = LD ﬁk(k—njz

and look to see if the y;5 are bounded. Now
Yrer [ = (0B)
Sinee a > 1, we see that y, - +oo if ¢f > 1 and 3 Yo —0if of < 1.
The meaning of af < 1 is |A]| < Vab. Thus, A is an eigenvalue of A’ if and

only if |2 < Vab. This information enables us to assert that ieIl,o(4)
if Vab < |4] < b. The only other possibilities (since 7 is not an eigenvalue
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of 4) are III,0(4) and III,0(A4); but these are ruled out because, by the
state diagram, they would invelve the impossible classifications I;o(4’)
and II,0(A4’) or Ill;o(4").

We are now left to decide between III,¢(4) and III,o(4) for 1
when a < |4 < Vab. We shall show that the classification must be IIT,a(4)
because R{LI —A') 5 I* for these values of 1, so that 1 cannot be classified
Le(4'). '

Writing # = {&} and y = {n. for vecbors in I°, we see that
(M —A4")o = y means

Ny = Afk— @ Spps E=1,2,..
If we solve for &,, &, ... we find
n
E anl An--k .
+1 = - E k-
s Gpeeilly, e ..ty

Since (6.7) holds when o < |A| < V?E, we see that the condition for
R(M—A') = I” is that the vector (0, &,, &;...) defined by

” an—k

r1 = Nk s
vt .. Oy

k=1

n=1,2,...

shall always be in I° if the vector (%, 1q, ...) is in {®. The necessary and

sufficient condition that this be so is that

! ]Mn—-k
6.8 su —— < +oco.
( ) n.;?g ]ak.‘.a,n[
If we write
11]7&
On lar...0,]

the sum in (6.8) takes the form

0, [1+1 bt ]
o R

‘We shall show that

1 1
(6.9) s%p(}n[—a— +...+C—-]= o0,

n—1

,

thus demonstrating that R(1I—A4’) == 1° under the stated restrictions
on A. If we set |1|/a = a and |A|/b = B as before, we can express C, in the
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form o”f?, where p+ ¢ = n. We shall be interested in the case n = k2,
and we ghall want to know the value of C,/C; for j such that k*—% < j
< k*—1. We know that

— )2 pkE—1) 2 . RI-KE-1)2 phe—1)72
Ckz a s Of a y

Thus, since ¢ > 1, we have

F—k<j<k-—1.

K1 0 k-1
2 .
—} = R >k—1.
D (g)=2¢=r
j=R2—k41 j=1
This shows that
1
Cpl— +..-+ k—1
"[01 * Gn_,]>

if » = k*, and hence (6.9) is proved.
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