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STUDIA MATHEMATICA, T. XXIL (1962)

On the differentiability of weak solutions
of certain non-elliptic equations

by

H. MARCINKOWSXKXA (Warszawa)

Lax [7] has given the method for studing the differentiability of
weak solutions of elliptic equations of order 2m with the aid of Hilbert
spaces H, (p being an arbitrary integer). The purpose of this paper is to
adapt the theory of Lax to some classes of non-elliptic equations. This
can be made with the aid of Hilbert spaces Hy , (p, g are arbitrary integers)
which will be defined in Chapter 1. In chapter 2 we consider the regula-
rity properties of these spaces, when the indices are sufficiently large.
In chapter 3 the differentiability theorem for certain non-elliptic equations
is given. As a special case we obtain some results concerning the regularity
of weak solutions of elliptic equations depending on a parameter.

t. The norms || ||y, and related Hilbert spaces

1.1. Our definition (and the definition of the spaces H_,, given by
Lax) is based on the following theorem concerning Banach spaces:

THEOREM A. Let X, and X, be two reflexive Banach spaces such,
that

1° X, is o dense subset of the space X,

2° |zl = |l for all # in X, (|| |, and || ||, denotes the norms in the
spaces X and X, respectively).

Let Xy be a space conjugate to X, (that is the space of all continuous
linear functionals on X,). For yeX; put

at
wil—= _sup |y(a)|
weX w4 <1
and let X_ be the completion of X in the norm || ||_. Then the space X_ is
isometrically isomorphic with the spece X% and so is the space X with
regard to the space X* , the latler isomorphism being given by the correspon-
dence
Xiil — xeX +9
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when 1(y) = y (@) for all yeX_. When we set b(x, y) X y () for yeX_ and
weX,, then the generalized Sehwarz incquality

(e, 9 < ol Iyll-
~ holds.

This theorem can be proved by using the arguments contained in
the paper of Lax [7].

1.2. The two-indices norms shall be first defined for infinitely diffe-
rentiable funetions in some domain £ of the Kuclidean space BV; then
we obtain the related Hilbert spaces with the aid of completion. We suppose

1

tqhe domain 2 to be the product of two domains: 2 of the space B, and

2 of the space B (R-+8 = ¥), and we denote by @ = (2y, ..., @) the
point of the space ER, and by ¥ = (¥1, ..., ¥s) the point of the space
E°. The class of all complex-valued funetions which are infinitely differen-
tiable in £ and whose all derivatives are square summable in 2, will be
denoted by 03°(Q). By B we denote a linear subset of the class 05°()
containing the class C5°(£2) (*), which has the following properties:

1 2

1° for each function @eCF(R) or ye0F(2) and for each weB the
functions gu and ypu are also in B,

2° for each weB all the derivatives of u ave also in B.

Let B, _ be the su]loset of the ela.sg B consisting of all functions u(x, y)

Whi(lﬂl vanish for veQ—K and yeQ, when K is a compact contained

in & (depending on w). B_, has the same meaning when the roles of &
and y are interchanged.
In the sequel the letters m, % will denote non-negative integers and

lal

P, ¢ — arbitrary integers. The derivative ————- =
’ ‘ v € A 07 ... OalR (o] = ayt...+
=+ ag) will be denoted briefly by DEw, and, analogously, Diw will denote

1Bly;

L

the derivative G oy (18] = Br4-. .+ Bs).

1.3. We first define the spaces H, (2, B). Let
lulfe = 3 10

<18l
for all weB. and let Hy; (L2, B) be the completion of the class. B in the
norm | |x. To each element » of the space H,,(2,B) and to each
B (0 < |B] < %) corresponds the strong derivative Dju defined as the limit

“”},3(0)

(*) O (4) (when A4 is a domain of the Euclidean space) denotes the class of all
functions infinitely differentiable in 4 and having a compact support contained in 4.

iom°®
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in I*(Q) of the sequence {D5u,} when u, belongs to B and [ju,— ullz — 0.
The same arguments as used by Friedrichs [3]show, that the correspondence

Hy1(2,B)> 1 — DY e L2(Q)

is a one-to-one linear and continuous mapping, which leaves invariant
the elements of B. Therefore the space H,,({2, B) may be treated as
a subset of L*(Q), when each element is identified with ity strong
derivative of order zero. It is a Hilbert space with the secalar product
(u, V)ok £ Z (D5%, Dﬁv)z.z(g,,
o<IBick
the derivatives being taken in the strong sense.
LevuA 1. The class B, _ is dense in Hop(£2, B).
Proof (*). It is sufficient to show, that an arbitrary function «
belonging to B can be approximated with functions of the class B,—,
: 1

with respeet to the norm || |l Let ¢eCf°(2) be a function satisfying the
conditions

o< <1, 1

2 g(z) =1 for x lying in some compact A contained in 2, and
write

i@, y) = p(@ulz,y), (2,9)eQ.
Then w;¢B,_ and
l—wlie = > [1—o@F 1 Djula, y) dudy

o<k &

<

I\

[ |Dju(x, y)Pdwdy
o<iBick 1 2
@-4)xa

From the square-summability of Diw follows, that the last sum may
be arbitrarily small for suitable 4, q.e.d.

We now define for » ¢ L2( Q) the norm |[ulf, _ as the norm || [|_ described
in theorem A, when H,,(R,B) is taken as the space X, and L*(Q)
as the space X, and X§. The corresponding space X_ is denoted by
H, _1(2, B). From theorem A it follows that on the product H,.(2, B)
X H, _o(2, B) the bilinear form b,4(u, v) can be defined, having the pro-
perty

bo,q (u,v) = (u, 7))L'l(!z)

for u,veL?(Q). Because of the density of the class €7°(RQ) in L2(Q) it
is also dense in H, (2, B).

(?) This proof has been suggested to the author by Prof. 8. Lojasiewicz. The
proof given previously by the author was more complicated.


GUEST


94 H. Marcinkowska

1.4. Now we seb
g = > 1Dsull

. 0\(_‘\(1.|:§7Hy
for ueB and we define H,,,(£2, B) as the completion of the class B in the
norm | fbyq- An analogous reasonning as in the proof of lemma 1 shows,
that B_, is dense in B with respect to the norm || [, and therefore also
with respect to the norm || |, _r. For each « belonging to H,,;(2, B) and
for each a,f (0 <la] <m, 0 <[ <k) the strong derivative D;Dfu
may be defined as the limit in L*(Q) of D:Diwu, when {u,} is a sequence
of funections of the class B approximating « in the norm | |,;. When
we identify each u ¢ H,, , with its strong derivative of order zero, the space
H,,; (2, B) can be considered as a subset of L2(L) (namely the set of

all functions square-summable in £, which have strong derivatives to the

order m with respect to « and to the order k with respect to ¥).

Lemma 2. The space H,,,(2, B) may be mapped in an one-to-one
linear and continuous manner into the space Hy,(2, B); this mapping
leaves invariant the functions of the class B.

Proof. A system {u°} of elements of the space H, (2, B) (¢ = {ay, ...,
ag} 0 < le| < m) having the following properties corresponds to each
element u of H, (2, B):

1° when {u,} C B is a sequence approximating » in the norm || lling s
then | Dz, — u'lyq — 0.

2 fulbng = 3 Il

05 fajm

The mapping is given by the correspondance u — u!*+% and it will
be proved that from 4™ 9 = 0 it follows that u* = 0 for 0 < |a| < m.
For an arbitrary function peB,_ we have after integration by parts

(Dt W)LQ(_Q) = (thn,, (—l)lal-D?(P)Lz(ﬂ,
and in the limit
(@) = (W, (—1)F Dyp)

the last brackets being taken in the sense of the duality between the
spaces H,, (2, B) and H,_,(2,B). From the last equality and from
lemma 1 it follows, that 4" = 0 (0 < |a| < m) when %9 = 0, ¢. e. d.

According to lemma 2 the space H,,,(£2, B) may be treated as a sub-
seti of H,,(L2, B) when u is identified with u™ 9, Hspecially in the ecase
q = —k the element u* is called strong derivative in the norm Il lly,—x with
respect to « of order « and can be denoted by D% when there is no danger

of misunderstanding. The spaces H,,(2, B) are Hilbert spaces with the
sealar product

daf
(u, "’)m,q = 2 (D;l:'uw D-?:”)D,ai
0<jal<m
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in particular for ¢ =%

B
(W Ve = — ) (DeDju, DiDiw)a
0<jalm
o<ipli<l

(the derivatives are taken in the strong sense).

1.5. The space H_,q(2,B) is defined as the space X_, which is
given by theorem A when one puts Hy_,(2, B) as X,, Hy,(2, B) as X
and H,, (2, B) as X, . Tt is isometrically isomorphic to the adjoined
space of the Hilbert space H,,_,(2, B) and therefore is a Hilbert space.
A consequence of theorem A is the following

THEOREM 1. On the product H,, (2, BYX H_, ,(Q, B) the bilinear
form by, . having the following proparties can be defined:

1° by gty v) = (4, ”)zﬂ(m for all p, g when u and v are in the space L¥( L),

2° the gemeralized Schwarz inequality

1D, (15 0)| < [llpgloll—p,-q
holds for all weH,,(R2,B) and veH_, ,(2, B).

3° fulpg = sup  |bpe(v, w)l.
Vel _p, gl
vl —p, —g<t
The correspondence
H} (2, B = ueH_,_4(2, B)

when
1(v) = byg(vyu)  (veH,,(2, B))

gives the isomorphic mapping of H, (2, B) on H_, 4,(2,B).

1.6. Definition 1. Let | [l and | [ be two norms of Banach
type defined on a linear set X and satisfying the inequality flully < luflg
for all w e« X. We say they are compatible on X (*), if each sequence {u,} C X
which is fundamental in the both norms and tends to zero in the norm
| lly, tends also to zero in the norm | [iy. It is well known (see [5]),
that in such a case the completion of X in the norm || || can be mapped
in an one-to-one linear and continuous manner in the completion of X
in the norm || ||, and this mapping leaves invariant the elements of the
set X. Therefore the | [|-completion can be treated as a dense subset
of the | ||,-completion.

Let X, and X, be two Banach spaces such, that X, is a dense subset
of X, and |jully > llully for all ueX,. Because of the density each linear
funetional on X, is uniquely determined by its restriction to the set
X, and this restriction is evidently continuous in the mnorm | [ly, so

(%) In Russian coriacosannme (see [5]).
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is a linear functional on X,. Denote by || ||Z‘1) and || H(”;) the norms in
corresponding adjoined spaces
|7 ()| " [Z(%)]
1 = sup ———- Illisy = sup .
@iy ue}g “ua)“l; [12tfezy bie'3 “u”@)

Then the inequa]ityA Uigy < |UiE holds for all 7eX3 and it may be
proved in a gimple way, that the norms | || and | H;‘;) are compatible
on Xj.

LevMA 3. For p, = py and g, > ¢, the inequality

(1) ”“”m,ql = ”’““m,qz

holds for all weBj; the norms || o0, @G | |lpy 0, are compatible on B.

Proof. The inequality (1) follows immediately from the definition
of the norms || |l ,. We shall prove the compatibility of the norms.
In the case when p; and ¢; (j =1, 2, ) are non-negative it is evident be-
cause we identify each element of the space H,, (2, B) with his strong
derivative of order zero. Therefore Hpy, (2, B) is a dense subset of
H,,, (2, B) (my =my, k; >k,;) and from the preceding remarks if
follows, that the norms || I-my,—x, 804 || ||_m,—r, are compatible on the
clags B (considered as the set of linear funetionals on Hiny 1,(2, B)).
As the both spaces H_p, 1, (2, B) (j = 1, 2) are the completions of Bin
the corresponding norms, we have the dense embedding H_, _4,(£2, B)
CH_p, 1, (2, B). *

A similar reasonning proves that the norms || llny,—x A0 || [y, (70
> m,) are compatible; thus H,,,,_1 (£, B)is a dense subset of Hy,, (£, B)
and from this follows the compatibility of the norms || lomy e a0d. | [|_yay
on the class B. Therefore H_p, (2, B) is also a dense subset of
H—ml,k(‘gy B)-

Let u, be a sequence of functions of the class B fundamental in both
NOXMS || [l,_x, and | lln,—r, (Foy > kp) and let flttlln, -, = 0 for n — oo,
Then for 0 < |a| < m the sequence {DZu,} is fundamental in the both
0ot | floxy and | [z, and [IDfupllo,_x, —0. So [Dgunlo,s, — 0,
because the norms || llo,—x, and || llo,—%, are compatible, and therefore
[1%nll, g, = 0. So the norms || ll,—x, and. || llm, %, are compatible on B.
From this follows the dense inclugion Hm’_kz(Q,B)CHm,_kl(Q,B),
and as a consequence, the compatibility of the norms I -, 30 | ||,
on the class B. Thus the space H. -m#, (£2, B) may be considered as a dense
subset of H_,., (2, B).

So the lemma is proved and we have also verified

TEROREM 2. For P1 =Py and g, = g, the space Hy (2, B) may be
treated as a dense subset of the space Hy,0,(Q, B). The inequality (1) holds
for all weH, ., (2,B).

1.4

icm

Non-elliptic equations - 97

Let p, > p and ¢; > ¢. According to what has been stated above
we have the embeddings

Hyo (2, B)C Hpo(Q,B), H_, o(2,B)CH, _,(2,B).

Lot weH, o (2, B), veH_,_,(2,B) and let {un} and {v,} be the
corresponding approximating sequences of smooth functions

l[t— %y 0, — 0
llon—2l|_p,q — 0.

From theorem 1 and lemma 3 it follows that by oy v) = lim (u,, v,) %@

N—m300
= byq, (%, 0); s0 for fixed veH_,_,(2,B) the form bpra (—5 ) is a
restriction to the space Hy, ., (2, B) of the form bpqa(—, v) (evidently
the roles of % and v may be interchanged). Therefore we can omit the
index and in the sequel we shall write simply (u, v) instead of b,,(w, v).
From the definition of the norms | llpq can be obtained in a simple
manner

LeEMMA 4. The inequality
(2) lullp,e = 1Dz Dfully_ oy g 151

holds for

B when |o| <p, 8] <4q,
" l By when lo] >p,|f <q,
B_, when |o] <p, |B| >q,
0 (L) when |o| >p, B >q.

When 2 is the N-dimensional cube and B is the class of all functions
which belong to C°(E") and are periodic, with Q as the period-paralle-
logram, then the inequality (2) holds for all weB without any restriction
concerning the support. :

2. Some differentiability properties of the spaces H,,(2,B)

2.1. The present chapter contains some inequalities concerning the
norms || |z, which are similar to the inequalities for the norms | |,
obtained by Ehrling [1]. From these inequalities follows and analogue
to the Sobolev Lemma for the spaces H, .(8Q, B). ) ;

We make the following assumptions concerning the domains
(j =1,2) (see [1] and [8]):

Studia Mathematica XXII. 7
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1 1
1° The boundary 2 of Q is a get-theoretical union of a finite number

of pieces T each of which can be represented in a suitable chosen system
of coordinates by the equation

o = f(@1, ..., Tr)
when the point (&, ..., ¥z_;) varies over a closed domain of the space
E®-! and the function f satisfies the Lipschitz condition.
2° When. the coordinate system is chosen as ‘in point 1° and the

1
positive direction of the zp-axis is oriented outside f£2, there is some
positive congtant h, such that for every point #« T the segment (4, ..., 25_;)

1
= eonst, f(#y,...,%r_1) >%r >f(@1, ..., 2r_;)—h belongs to 0.

1 2
3° 0!5 is the boundary of 402 L Q.
4° there exists an R-dimensional spherical sector 3 W_ith a positive

1
radius and a positive spherical angle, so that each point x¢ 2 is the vertex
1
of a sector X, contained in 2 and congruent with X.

5° !12 is the union of a finite number of regions each of which ig de-
fined in a suitable system of coordinates by the inequalities

0<@, <d; (i=1,2,.., R-1),

<
0 < op gg(wly ---ymR—1)7

where d; are some constants and g is a continuous function with positive
lower bound.

2

6° Q satistied conditions 1°-5°, the point xeE” being replaced by
Y eES .
Let P™(R2) be the class of all functions 4 having the following pro-
perty: each derivative (in the ordinary sense) D°u (0 < |a| < m) exists
and is continuous everywhere in 2, and can be extended to a continuous
fanetion in Q. P™"(Q) hay a similar meaning, when the derivatives D*u
are replaced by D3Dju (0 < [a] < m, 0 < |B] < n). We put by definition
P*(Q) = N P™(Q) ‘

M=0

From the inequalities proved by Ehrling in [1] follows in gimple
manner )

LeMMma 5. Put for ueCP(Q)

at a
iy = ) IDEDjul,,

lal =k
1=l

icm
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There are positive constants A and 1, (depending on Qm, n) such;
that the inequality ‘

kal n m
_‘_] —_— — 0
(8)  jul; <A™ (t!uiiwt“*”lutil,ﬁt"”“}uia,nirlu!?n,n)

(0 <k <m;0 <T<n)

holds for weP*(Q) and t > t,.

With the aid of similar estimates, as used by Ehrling [1], can be
also proved

LemMmA 6. There exisis a positive constant A (depending on 2, |a|, |6])
such that for uwP*(RQ)

,(4) i 1D Dju(a, 9)| < 4 Wz, [5] 1
5) sup [ |DiDfu(e, y)l dw < AN, [ 4p101 :
2 i
YeQ Q '

In the inequality (5) the roles of © and y may be interchanged.

2.2. We suppose now that B is a subset of P*(Q). The following two
lemmas show that the functions belonging to the space H, (2, B)
with, sufficiently large indices have some regularity properties analogous
to those given by Sobolev’s Lemma in the case of the space H,,.

Lemma 7. LetueH,, (2, B) (m > R[2,k > 8/2). There exists a fune-

B [

tion u,eP (Q) such that the equalities

o 1 R S ’
D:Dju(@, y) = D:Dfus(a, y) (0 <ol <m—2,0 < gl < k—;)

hold almost everywhere in 2. So the space H,. (2, B) may be treated as

R 8
M |1,k |=]|—
a subset ofP1 [z f2] 1(.Q).
Proof. According to the remarks of the section 1.6. and to lemma 6

it is sufficient to show, that the norms ||| o211,k 8j21—1 A0 || [z aTE
compatible on B, where ;

Il Mz = sup [DEDSu(, 9)l.
(@Y e
Let {u} C B be a sequence fundamental in the both norms and

tending to zero in the norm || lbnr2)-1,k-[5)2-1- Because of the com-


GUEST


100 H. Marcinkowska

pletness of the space Hpnr(2,B) it is a square summable function
u such that [[u,— 4|mx e 0. But

e y){dwdy-gf{u(m, y) dady| <Qf i (2, 9) — w(@, y)| dady

1/2

~and the integral on the right is not greater than [ |luy— %y ;. The-

refore
[, y)ldwdy = 0
Q

and so %(w,y) vanish almost everywhere in £, q. e.d.

1
As a consequence of inequality (5) we obtain (with A, = [Q'F A

sup [ [DsDju(w, y)ldo < Aqlulfa, s
2

yel .é
for uweP® (). A similar reagonning as in the proof of lemma 7 shows that
the norms [I| |llmx—rsjzj—1 @0d || |lm, are compatible on B, where

el < 572 f | D3 Du(w, y)|da.
Um
0<falsm
o<ipl<l
From this it follows
LevmA 8. Let weHpy(2,B) (m >0, k>8/2). For
2
(0 < la| < m) there emists a function u®<P "2 0Q) such that the equa-
lities

[ DaDju(, y)iw = Dju*(y)

1
Q

each «

(0 <la| <m, 0 <|B] < k—82)
2
hold almost everywhere in Q2. So for 0 < |af
JDju(w, —)dw
1

Q2

< m the functions

2
may be treated as belonging to the class P*~SP=1( 0y and the derivation of
order f§ with respect to y (0 < |B| < k—8/2) can be made under the sign
of integral, when this last derivative is taken in the sirong sense.

3. Application of the spaces Hy 4(9, B) to the study of weak
solutions of some non-elliptic equu‘tious

34. Let ‘A be the class of all differential operators defined in Q,
which can be expressed in the form

icm
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(6) Im = 2

=l

+ (-1

o<lal Ja"|<<m

1)m+nD;D5 (a’aa'ﬂﬂ’ D;' D,’?' u)+

Il ﬂ

) DL DY (bawpp D DEw)  (mym > 0)
0<ifl,ipri<n
ol +la’|+ 18] +1B° <2+ 1)
for sufficiently differentiable « and which satisfies the following assump-
tions concerning the coefficients:
1° Guqpp and byugs are complex-valued functions infinitely differen-
tiable in ©2 and having all derivatives bounded in £,
2° Gouipp (5 Y) = Boragp(®, y) for (z,y)e,
3° let ¢ be the system of complex numbers ,4(lal = m, | = n);
when one puts '

u _
Q@ 9505 D Gourpp (8, 9) Lapluor
Jl=|a’| =1
Bl=#"j=n

there exists a positive constant @ such that the inequality

>d D) 1l

la|=m
1Bj=n

Qz,y; L)

holds everywhere in Q.

The expression on the right of (6) shall be called canonical form of
the operator L. From assumption 3° it follows that the operators of class A
are not elliptic in Q. In the special case n = 0 operator L has the canonical
form

(68) Iu= 3 (—1"Di(0wDiw)+ Y (—1)D5(be D5 w).

iaj=la"j=m T o<l jaf|<m
laj+lo’|<2m
1 2
It is elliptic in © and ifs coefficients depend on the parameter y Q2.
So the study of operators belonging to 4 gives us some informations about
the elliptic operators depending on a parameter.
R

Denote by 4, the differential operator I — >’ 8%/dx;; A, has the same
i=1

meaning, when z is replaced by y. Simple caleulations show that

(u= D' (= )““(l l)D‘”u,
Ol
and similarly for (4,) (r =1,2,...).
follows in a simple manner
Lemma 9. When Led, the formal adjoined operator L™ and all the

products of L with 4, and 4, are also in A.

From the definition of class A
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holds, when the functions Rebue (lof = m), Reby
Rebyg, have a lower bound in Q ewoeeding t,.

Proof. Let I;,(u) be the Dirichlet integral corresponding to the
first sum in (8). According to the condition 3° (section 3.1) we have

H. Marcinkowska

3.2. In the following we apply the Hilbert spaces defined in chapter 1
to the study of the weak solution of equation

Lu =w,

when L belongs to A and v is an element of some space H), ,. Our procedure
is similar to the method used by Lax [7]in the case of an elliptic operator.
We start with some energetic inequalities, which are analogous to the
well known inequality for elliptic operators given by Géarding [4].
LeMMA 10. Let L be an operator of class A with m,n > 0; so each

differential empressions Az dgLw, A;LAju, 45 Ldru, LA Aju,
< 89, wePT(Q)) can be brought to the canonical form
(—1)m+“+’+“D;+“I)5+"(aua,ﬂﬁ/ D;""”Dﬁ"‘ v,u) +

la]=]a’]=m

}/5! 187[=n

— 1)1 D8 DE (g DE D 11).

0<Ja| [a” (<m+r
<161, 5| <
o H 44 <20 0

Denote by I,s(u) the corresponding Dirichlet integral and let Q satisfy
the assumplions of section 2.1. There are some positive constanis ty, ¢ (de-
pending on Q, L, 15, 8) such that the tnequality

(WeP¥(2), 0 <7 < 70,0 <5 < 5,)

X

(iBl = n}) and

IIW‘,S (u’)l > ¢ “un’%n+r,n+s

I:,s (uy =d I“ﬁh-(—r,nu-

The second sum can be presented in the form

(1)
(— 1yt (l’r ) ( ) DE D (Rebouan DD ) -
o lpir . ‘ul M

ospriss
|af=m

(2) ,

(— 1)”"““*'"’( )( ') D D+ (Re boggs D DB 10) -

Oglul<r {'u ‘ |

0ivics

1B]=1

® i [ 7 ,

(—1) D D}y (Re byggy Dt Dy ) -+

N ] M

o<l <s

) o o I

o<lal, I <metr (=Lys D“‘Dz(dﬂﬂ’ﬂﬂ’pw Dg %)y

<CIBI, 18" |<n -+

1,18 ]!
l“l+|a ]+Iﬂl+lﬁ’l<2(m+n+r+s)

icm®

Non-elliptic equations 103

when the coefficients @,z do not depend on the functions Rebyq
(la] = m), Rebygs (18] = n), Rebyy, (they depend only on the derivatives
of these functions of order at most  with respect to #, and at most s with
respect to y). Denoting by I*(u) the Dirichlet integral corresponding
to the sum @ in (11) (j =1, 2, 3,4) we obtain

Bo() >t (Jukrot ) IDE*Djullng+ Y IDF Dyulfay)-

laf=m laf=m
o<|ai<r lpa]="
0< i< 0y

From this and from similar estimates for I;,(u) and I:,(u) follows
12) T o () + I7 () + Lg () 2 by ([Ulmyr ot 105 npst [ul50)

The remaining integral 1;’,5 (u) ean be estimated with the aid of in-
equality (3) .

(13) Iie(w) < -
. M(_JL SO e (@ YLD, 3 IDF D wl
oo

1B1,1871<n+-8
laf4]a’| 4+ 18]+ 187 <2(m 07 +8)
S p@) (lult g+ttt Ul nyst Uhirnrs) (210,

when ¢(t) — 0 ag t — oco. Suppose t; > &; so from (10), (12) and (13) we
obtain for ¢ > 1,

\Ir,s (u)] > (d"‘ q(t)) I“’[rzn srnds T 1y (1 - ‘r(t)) (u ig,(l -+ Wﬁn.‘w,o +|'“'l§,n‘: s)
Let

for t >1,. So for ¢ > max({, #;)

d 1y
!If,s(u)! = lu]m+rn48‘ 9 Iu 0+[“]'m+ro+iu!0n¢5)

and according to the estimate (3) we get the inequalibty (9), q.e. d.
Using similar arguments the following two lemmas can be proved:
LeMMA 11. Let L be an operator of class A with m >0, n =0 (so it

is an elliptic operator depending on a parameter and its canonical form s

given by formula (6a)). We suppose that Q satisfies all the assumptions of

section 2.1 and we denote by I.(w) the Dirichlet integral corresponding to
the canonteal form of the operator ALL or LA%. There are some positive
constants t,, ¢ (depending on 2, L, 7,) such that

(14) L)} = olulfere  (weP™(2),0 <7 <),

when the function Reby, has lower bound in Q exceeding 1.
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Lemma 12. We suppose that all the assumptions of lemma 11 are true;
lot I (u) (0 <7 <75, 0 < 8 < 8,) hawe the same meaning as in lemma 10,
So there are positive constants ty, o (also depending on Q, L, r,, 8o) such that
(15) L) Z elulfyrs  (WeP™(2),0 <7 <70, 0 <5 < 5,)
when the functions Rea,, (la| = m) and Reby, have a lower bound in Q
exoeeding ts.

Remark. Simple calculation shows that the inequalities (9), (14)
and (15) are true in the case I = 43" A7) (m, n = 0). More generally, when
Guargpr = Dougp == 0 for a % o’ or f # ' and the remaining coefficients
have a positive lower bound in @2, L satisfies the energetic inequality

(16) ()] = ellln,

although the assumption that some coefficients are large may be not
* satisfied. (I(w) denotes the Dirichlet integral corresponding to the canonical
form of IL).

The inequalities (9), (14) and (15) can be brought to a different form
when we suppose that the coefficients Qaorppr B0 Dogrpge (OT oo ADA by
and the function % satisfy such boundary conditions that after the inte-
gration by parts the boundary integrals vanish. 'We obtain then the
estimate

A7) W Lrgw, w)| = ollulfnyrnps  (weP®(R),0 <7 <1y, 0 <5 < 80),
when L, denotes some of the operators A AL, A;LA, AL Ay, LA 45,

3.3. In this and in next section we suppose that Q is the N-dimen-
sional cube defined by inequalities ol <o (t=1,..,R), |l <ea
(j=1,...,8). Let B, be the class of all functions infinitely differentiable
in the whole space BV and periodic with £ ag the period-parallelogram.
Our purpose is a study of periodic weak solutions (see definition 2) of equa-
tion (7) with the aid of the spaces H, (82, B,). We begin with the follo-
wing differential inequality:

LemmaA 13. Let L be an operator of class A with cocfficients Crrppr
and Boyps (07 @y and boar) belonging to By,. We suppose that the inequality
(17) 4s true. So

18) H“”p,q < (’“Luup—zm,q_zn (u €Bp)

(¢ denotes some positive constant depending on Q, I, Toy o).

Proof. We suppose, for example, that » < m, ¢ > n (the remaining
cages may be treated similarly). Let P=m—r, g =n+s (0 <r <1y,
0 <s <s) and let u be an arbitrary funetion of class B,. By means of

icm
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Fourier expansion w,eB, can be constructed such that ALu, = ». From
Lemma 4 it follows that
(19) ”u“m—r,n+8 < Glnulnm.f-r,n-;.s .
Applying inequality (17) we get
62””1”2m-—7m+s < J(Azl}u: ul)] .

After integration by parts it follows from this, in virtue of lemma 4
and theorem 1, that

(20) Ilu‘ll‘?n+r,n+s < C3 ”I’u”—m-«r,—n-;-s ]|u1”7n+r,n+s .
From (19) and (20) follows estimate (18), q.e. d.

Leyya 14. Under the assumpiions of lemma 13 the set I' of all functions
Lo (when veB,) ts dense in every space H,, (2, By).

Proof. According to theorem 2 it is sufficient to examine the case
p=—myq>—n Let 1 be a linear functional on H_p (2, By) va-
nishing on I". From theorem 1 follows the existence of Upe H 1, (2, B) such
that

1(2) = (2, %)
Consider the bilinear form
bw, )= (In, )

Because of the estimate

(eeH (R, B,)).

(weH, (2, B,),veB,).

lb('L’, ﬂ)i < Ilu’”m,n“L””—m,wn < onu”m,n H”“m,n

it can be enlarged to the continuous bilinear form on the whole space
H,, (2, Bp), and according to our supposition

b(v, ) =0  (veH,,(Q, By);
in particular
(21) b(ty, uy) = 0.
From inequality (17) it follows in the limit that
1B (2o %6)] 2 o |ltolfr n 3

therefore 1y = 0 and aceording to theorem 1 the functional has the norm
zero, also vanish identically on H —m,-n(£, Bp). Thus we have proved that
I is dense in H_, _.(Q,B,).

Let now f, be an arbitrary function of class B, and ¢ a positive number.
When we apply what has been just proved to the operator Ay A5 L it
follows that there exists a funetion feB, such that

JJJ; J;Jfo_ Jrr J;Lﬂl—m——rﬁngs < &.
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From lemma 13 applied to the operator dz4y it follows that
an“‘ Lﬂ'-—mrq—r,—n-ys <06 ”A; A;(fOMLf)“—-mqg—n-—s:

and therefore I'"is dense in the space H ., . _nys(2, Bp) (7,8 > 0), q. e. d.

3.4. Definition 2. Let w, v be two elements of a space H, , (2, B,)
and let L be a differential operator with coefficients belonging to B,.
We say that « is the periodic weak solution of the equation

(7) Lu =

if the equality (#,L*¢) = (v, ¢) holds identically for geB,,.

The following theorem ig analogous to the differentiability theorem
of Lax [7] for elliptic equations.

THEOREM 3. Let 2 the N-dimensional cube and L an operator of
class A satisfying inequality (17) with coefficients belonging to B,. We
suppose that w is the periodic weak solution of equation (7) lying in
a (sufficiently large) space Hy o (2, B)y. When v is an element of
Hp (82, By), then w s in Hy, omgim(Q, By).

Proof. From the generalized Cauchy inequality we obtain applying
lemma 13 to the operator L+ (when we suppose that 7, and s, ave sufficiently
large) Co

I(L+‘Pa w)| < G“””p,q HL+‘P”—1:--2m,--q_2n-

So the linear functional 7(y) & (p, u) is bounded on the dense subset
T of the space H_y_sm_g (2, By) and therefore can be prolonged uni-
quely to the linear functional on the whole space. From theorem 1 it
follows that u belongs to Hy sm g (2, Bp), q.e. d.

It follows from theorem 3 and lemmas 7 and 8 that « has some differen-
tiability properties in the classical sense, when the numbers p--2m and
¢+ 2n are non-negative and at least one of them is sufficiently large. In
the special cage n = 0, from theorem 3 follows the differentiability of
periodic weak solutions of elliptic equations depending on a parameter
(according to the remarks in section 3.1).
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