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STUDIA MATHEMATICA, T. XXIL (1962)

On modular spaces of strongly summable sequences
by

J. MUSIELAK and W. ORLICZ (Poznat)

1. We shall apply the following notation: 7' is the linear space of
sequences of real numbers with usual definitions of addition and sealar-
-multiplication (one might also consider sequences of complex numbers,
without any essential differences), Ty — the space of “finite” sequences
(i. e. sequences whose elements beginning with a certain index are all
equal to zero), and Ty, T, and T, — the spaces of sequences convergent
to zero, finite-convergent sequences and bounded sequences, respectively.
The sequences will be denoted by » = {1}, 4 = {s.}, ..., and 2™ will denote
the sequence by, fy, - .., &, 0, 0, ...; 6, Will mean the sequence 0,0,...,0,1,
0, ..., having 1 at the n-th place, j — the sequence 0,0,...,0,1,1,...,
1,0,..., having 1 at the p-th, (p+1)th,..., (p+¢—1)-th place and
zevos at other places, and finally ¢ — the sequence 1,1,1, ...

By ¢-function we mean a continuous, non-decreasing function ¢ (u),
defined for 4 = 0, p(0) = 0, p(u) > 0 for v > 0 and ¢(u) - oo as % — co.
g-functions will be denoted by ¢, v,.. and their inverse functions

by ¢ 1, po1s - -
Let # = {,}¢T. We define in T the functional

1 n
(@) = sup— g (Ih)-

This functional is a modular in the sense of [9] over 7, i. e. it satisfies
the following conditions:

Al. g,(z) = 0 is equivalent to » =0,

A2. qu('_m) = an(m)!

A3. g, (0m+ Y)Y < 0p(@)+ 0, (y) for o, >0, at+p =1

We denote by T; the class of sequences & = {t,} for which

ks
1
(1.1) lim*ﬂ—ZqJ(Mtvl) —0 for every 4 >0. )
N0
p=1
Evidently, T; C T, C T%. It is easily seen that T, is a linear space
and g, satisties in T the following condition (cf. [9h:
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Bl. g,(dz) + 0 a8 A— 04, wely.
In particular, if ¢(u) = %%, « >0, we shall write T, instead of ;.
In this case (1.1) is equivalent to

1 n
im = 3[4 = 0;
oo W —

thus T becomes a field of sequences strongly summable of order a to zero.
In the case of an arbitrary g-funetion ¢ we may consider I%; as a field of
sequences strongly summable to zero by a method being a generalization
of the classical method of strong summability of order a. Another genera-
lization of the method of strong summability of order « will be given in
gection 3.

1.1. Since the modular g, satisties in 7% the condition Bl begides
the conditions Al-A3, the norm generated by op Mmay be defined in I
by means of the formula

(1.3)

(1.2)

Hx"”cu =inf{e > 0: g, (w/s) < ¢}.

It is easily seen that ||||7 is & complete F-norm in T4 and that the
coordinates %, of the sequence # = {t,} are continuous functionals with respect
tio this norm. If ¢ is an s-convex p-function (0 < s < 1), 1. e. if p(au+ pv) <
< dp(u)+ o) for u,v >0, a, § > 0, o®+f° = 1 (this implies that @
ig striotly increasing, for assuming 0 < % < v we have p(u) < ¢()u’fo* <
< ¢(v)), then a norm may be introduced in T4 as follows:

(1.4) l|m|]§”q, = j,nf{g >0: Qrp w/ells < 1}

The norm (1.4) is s-homogeneous and eqmvaleut to the norm (1.3)

(ef. [6], [10]). If s =1, i. e. if @ 18 convex, then |-|if, is a homogeneous
norm.

1.2. In the sequel we shall apply the following formula, if ¢ is s-convex:
+¢—1\\"°
e, = (w_ (FH— )) :

”en”gm = ((P— ('”’))_s
13. If zeT belongs to Tg: then |lz—a™% >0 as n — oo,
The easy proof will be omitted.
COROLLARY. The space T35 is separable with respect to the norm -1l

{of. [8]).
L31. 2T belongs to T2 if and only if Jla"—~a™% 0 as m,n > oo
2. T0A Ty

(1.5)

in particular,

(1.6)

=Ty ~ Ty for arbitrary two p-functions o and .
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Proof. It is sufficient to show that T¢ ~ T, C T% ~ Ty. First, let

us note that if |t < mn for every », then

2 :” < w2+ (m—1)p Hmn \1
n i =Y o(n) !

=1

(2.1)

Indeed, let ¢, = 0 and put ¢, = ky for kyn <t{, < (k-+1)y, k=0,1,
.ym—1. Then [t,—t| <n for » =1,2,... and writing {n5} = {»: ky
<t < (1)), o =1 if 4 = 2f for a certain » and ¥ =0 if i = n*
for each », we have

m—1 n

m—1)p(2my) 1 ‘nw

nooc
1 »1 R (
= 9 N\ B (2kn) < ).
ngw 0=y 2 gn.w( ) T T

Hence

1 n 1 n 1 n
= = t— — 21,
%g;w(msngw(zm m)+n;w( )

—L)p@mn) 1 1,
<ylan BEIDL N

o(n) 7

p=1
which proves formula (2.1).

Now, given an o = {t,} eIy ~ Ty, & 2 >0 and an & >0 we choose
an 7 > 0 so that p(2n) < e and then two integers m and n, so that |if,{ <
< mn for each » and

1\ ep(n)
5’ VLD < St 1) p @)

Then (2.1) implies

n
1
= vt <e
" p=1
for n > mn,, whence wel%y.

Remark. It may be also deduced from formula (2.1) that if
@; = {ti} «T% are uniformly bounded and if the sequence {u;} is modular
convergent resp. ||-{s-norm convergent to zero for a g-function ¢, then
{w;} is modular convergent resp. ||-ll;-norm convergent to zero for an
arbitrary g-function .

24. A q;-functmn @ is called non-weaker than a p-function p fo'r large u,

in symbols ¥ —% @, if there exist constants %, b, u, >0 such that
p(u) <bp(ku) for

Studia Mathematica XXII.

for n > 410

U = U
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Ity é @ and ¢ l% y, the funetions ¢ and ¢ are called equivalent for
1 , . )
large , in symbols ¢ < y. Bvidently, ¢ ~ u if and ouly if there are con-
stants a, b, ky, kay 4y > 0 such that (ef. [57)
ap (k) < p(u) <bgp(kyw) for
2.2, If TeC T2, then w;ieTh, llally — 0 tmply |al, ~ 0.
This immediately follows from the closed graph theorem.
2.3. The following three conditions are equivalent for p-functions:
1
(@) v 3 o,
(B) ToC T, ‘
() lleille — 0 smplies Jlai|ly — O for arbitrary m; Ty
Proof. («) > (B). Take an 2 = {t,} I and an arbitrary A >0 and
let %, b, u, be the constants mentioned in definition 2.1. Then we write
t, =1, if [t <u/d and & =0 if || = u/d, and we put & =i,—1.
Obviously, #,eTy; ~ Ty, whence by 2, {t} ¢T,. On the other hand, we have

n T
1 b\ ”
= 30 < — ot
5 2 P <5 Y ekt

for every n, whence it is easily seen that {,'} ¢ T5. Hence @ = {t;} |- {1,'} €T
(B)=> (y) follows from 2.2.

(Y) = (). Let us suppose that ¢ —Z% @ does not hold. Given an ¢ >0,
a number % dependent on ¢ may be chosen satisfying the inequalities
p(u) =&, y(eu) > 2 p(u). Now, choosing an integer n =2 go that
3en <e(n—1) <op(w) < en and writing » = eu, we have

W = Uy

1 2
oy (v0n) = — plen) > o plu) =1,

whence
el > 1.

But, on the other hand,

1 1 (o
0p(e7 ve,) = E P " <eé,
whence

loenlly < e.
Thus (y) does not hold.

‘An immediate consequence of 2.2 and 2.3 is the following theorem:
24. The following eonditions are equivalent:

(@) p ~o,

(f) Ty = 1,

(Y) the norms ||y, |- 115 are equivalent in T;.

Similar arguments as in the proof of (v) 2> (w) in 2.3 give

icm®
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2.41. The condition o,(®,) — 0 is equivalent to g = 0 for every
@ Ty iof and only if @ satisfies condition (A,) for large u, i. e. p(2u) < kp(u)
for w = u, (cf. [8]).

2.5. In order that the ||-|&norm topology in T, be locally s-convex(Y),
it is necessary and sufficient that ¢ ~ %y where x(u) = w(u®) and v is a con-
vex p-function.

Proof. In order to prove the necessity let us choose an s-convex
neighbourhood U of zero in Ty and a number 6 >0 so fhat lllly < 68
implies we U and that v U implies ||z]j; < 1 for every zeT,. Given a number
o satistying the condition ¢(6~'u) > 6,.we choose an integer # > 2 so that

(2.2) d(n—1) < p(67 u) < on.

Let « > 0 satisfy the inequality o* < 1. We choose a positive integer ¢
such that .

(2.3) i < g’ <1,
Since by (2.2)
1
0,(67 ue,) = —«p(%) <6 for v,
v

we irave llue,llz < 8, whence ue, e U for » > n. Hence (2.3) and the s-con-
vexity of U yield

ntg—1
auel = E aue,c U,

V=N

but this implies [euel|ls <1, whence
q

Py ¢ (au) = g (aue]) <1,

é
by (2.2) and (2.3). Thus we have proved the inequality

n—1 1 fu)_,
¢ (au) <1+T < 1+3 w(—)Za )

%

’ 2
6)’ where ¢=1+—,

)

(2.4) plan) < ca“¢(

() A set U is called s-conves, it a, 8 > 0, °+ 8% = 1, @, ye U imply an+fyeU;
evidently, if U is s-convex and if G5 e @y >0, oS4 a =1, Bysenes By e,
then aimi+...4+ an@ne U. A linear topological Hausdorff space is called locally s-con-
vew, if there ig a base of s-convex neighbourhoods of zero in it (cf. [4], and [1], p. 163).

2
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for all u such that g(u]d) = 6, d’p(u[é) =1 and 0 < a' = 1. Now, the
necessity follows from (2.4) in the same way as in [7].

The sufficiency of 2.5 is a consequence of the following statement
which is obtained applying 2.41 and 1.1: .

2.51. If rper, where y(w) = w(u’) and yp is @ convex @-function,
then, there ewists in T% an s-homogencous norm equivalent to the norm |||l

In particular, 113 follows from 2.5 and 2.51 that

2.52. If the |- ||&norm topology in Ty is locally comvex, then Ty with
this topology s a Banach space.

2.6, Let ¢ denote a convex- p-function satisfying the conditions

0 —t 0 as % — 0

( 1) % ’
u

(o0y) i )—\oo as % —> 00,
[

Then there exists a funetion ¢* complementary to ¢ in the sense
of Young and, as is well-known, ¢* is a convex ¢-function satisfying
conditions (04), {ooy), too.

Given an arbitrary © = {1,} ¢T%, we write

1
i = supsup — ¥ 4,8,
ol = upsup - 3 s,

where sup is taken over all y = {s,} <5, satisfying the inequality

v
0 (y) < 1. Sinee, applying Young’s inequality to the funetions ¢ and ¢*,
we get the inequality

n K a3
1 1 1
2.5 = Vs < M+ — N ¥ (s,
(2.5) v 2 \M.A}J«p( g 2, )

for every A > 0, ||l#|[;* is finite. It is casily seen that |- o i8 & homogeneons

. o )
norm in Ty and the coordinates 1, of w = {#,} are eonfinuous Functionals
in thig norm.

2.2, The norm |- satisfies the inequalitios
(2.6) Hlle® < llalffy < llalp®  for  weTy.

Proof. Igequality (2.6) may be obtained by a modification of a known
method; we give the proof for the sake of completeness.
It follows from the definition of Il that
k)

1
(2.7) = D he <[alk®  when  op(y) <1
Pl
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and
n
9 TN, <
(2.8) 2 b S ol ope () When  gp(y) >1.

=1

Trirst, let us assume that zely, = 0. Let 9 > 1. We choose 5, >0
in such a way that

[tnlS ( [t}

ﬂHmH'{l - l)“‘ﬂ”*a) =+ 4 (Sn>7

where # =1, 2,... Hence

. L b5, 1\ 1
39 2 Bl w2 ‘”(ﬁumu‘“) 7—2

for # = 1,2, ... Since 1, = 0 for sufficiently large 5, we also have 3, = 0
for sufficiently large n, say n > f,, and consequently, g (¥) < oo, where
j= {gn}-

Let us suppose that g.,(F) > 1. Then, by (2.8),

[l

. it ]9
(2.10) w2 5‘ 6 < a¢ «(7)
for n = 1,2, ..., whence, choosing n, so large that
7!0
1 Kooy o L =
T 2; ¢ (8) = ﬁew“(y),

we have Dy (2.9) and (2.10)

1 "D ‘tl 1 )
772 (ﬂuru‘“) 5 mll) < G0,

ie.t,=0fory=1,2,..., 1. But this implies 5, = 0for v =1,2,..., 1
and, consequently, gx(7) = 0, a contradiction.
Thus we have g, (7) <1, whence (2.7) and (2.9) yield

1w it,| 1

22 s <o

© 1~ | I
L""( nwu’;") S 2 ! ( Tl ) st

for every m, i. e.
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Hence by definition (1.4) with s = 1 we obtain

(2.11) o, < lllly?,

where zeTy. However, if © = {} <T does not belong to 1y, then, by

1.3 and 1.1, ||lz" —a[f, — 0 a8 5 — co. Moreover, by (2.5), also [~ af,* > 0

a8 7 — oo, whence inequality (2.11) holds for the element w, too.
Finally, we have

1xts, 1y [ 1 v
.y A A LoxX7
- . @ <— (]7("—"‘) '"-"Z (I’“(f"’u[)

n&d llaly, ~n & \lwlliy)  w <

&
<@ (_._) o) <2
RRAVTA R

if o, (y) <1, whence
|
3. In this section ¢, ¢ will denote convex g-functions. For such a func-

tion ¢ the m_verse function ¢_; always exists and is a concave function.
Now, we define a modular |

il < 2 llf, -

4

() = Y
P

in 7. By means of this modular we define in Ty a norm
(3.1)

(6D

lalll, = inf {e > 0: g} (x/e) < 1}.

Let us note that norm (3.1) is monotone, i. ¢. if & = {t}, v={s}
and |s,] < [t,| for every , then liwlll, < 1elll,. Moreover, '

(3.2) llepllly = (p_1(1/g))~

The norm (3.1) may be applied to define i
eline some generalized strong
methods of summability. Let 7% be the clags o i
¢ . of sequences @ == {1,} satis-
fying the condition i ¢ 080 = () wals

(3.3 i 1 0
(33) qugmmm=&

It is easily seen that T,C T% and that for plu) =u'y azl, we

b ; y
have Ty = T, (cf. (1.2)), for in this case p_, (1 fn) = w7 ], == (}i‘ JB, )
v td .

1

The method of strong swmm ili i ) : i
duced. in. [11] by Ta,g ability defined by condition (3.3) was intro-

1(2 3 A D . . .
in 7% the norm berski(2). Evidently, Ty is a linear space. We define

2) Stri -3 : .
o whi(c)h v:“:ilze épe?lxl?’ng, Taberski defines in [11] the norm i1 1%, the definition
; v in (4.3), which i i . AP
tions (0, an (ecy). ), which is equivalent to the norm - Illp if @ satisfies condi-
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1
(3.4) flally = supe_, (—) [
n n
where » = {t,} ¢ T4. T% provided with the norm -]} is a Banach space
and the coordinates #, are continuous with respect to this norm.

34, If & = {t} 1%, then |o—a") — 0.

Proof. Lety = z—a®. Then [|[y"]ll, = 0 for » <k and |y" [, < Il="|ll,
for n >k by the monotony of the norm |||-{ll,. Hence p_,(1/m){iy"|ll, <
< g_1 (1 /) [Ja™]]l, = O as 0 — oo, whence, given an & > 0, @_ (1/n) [[y"[ll, <
< ¢ for all n, if k is sufficiently large.

OOROLLARY. Th is separable.

341 @ = {i,} T belongs 1o To if and only if " —z"|l =0 as
M, # —> oo. _

The necessity of 3.11 follows from 3.1; the sufficiency is evident.

3.2, In order that T C T it is necessary and sufficient that lzlle — O
implies |[:rn[]f; — 0 for every sequence of elements @y <Ty.

The necessity immediately follows from the eclosed graph theorem.
The sufficiency is obtained from 3.11 and 1.31.

33. 1,C Tﬁ, if and only if there exisis o constant & >0 satisfying
the condition
(3.5) p(dur) < ¢(u)p(v)
for all w,v >0 such that p(w)p(v) < 3 end plu) = 1.

Proof. Necessity. Let Tf;CTf;. By 3.2 there is an 7 >0 such
that if ||z|7, <%, then ||m]l3, <1 for every zeTy, and we may suppose that
7 <4 Now, take u,? >0 such that

(3.6) plu)pe) <7, @lu) =1,

Hence y(v) <7 and we may choose an integer n = 2 go that

-

7
(3.7) <y <EL‘,

whence ¢(u) < n, by (3.6). We may choose an integer r satisfying the
inequalities 1 <7 < n so that

(3.8)

whence
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Thus, by (1.5),
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Since ' Ty, there is an integer n, such that

1 .
“'“"I(";”;l,/r = 1) (‘/’_1 (”‘Hﬂﬁl)) & (r/v_‘.l (H)) s . 1 ”1
’ ’ (3.13) 52 oty <6 for =g
Hence by the definition of % we have — I
1 11\ y hence p(At)n™' <6 for 1 <» < n, and since @A) =1 if 1, £ 0, we
“’7'/’—1(m) (7/&1(-7—)) < Juneull, <1, have ) )
whence » 2 p(0hetyy . (1[n) < 71;2(, Qo) <6 <1,
3.9 B o <
paftintr—1) by (3.10) and (3.13). However, by definition (3.1) of the norm [{-|f,,
But y_, being coneave, the inequality r < » gives this gives ‘
nn 1 € 9 )
”(Eﬁ'—'i) >vifo) >3 ”’(f») G14) M@Yl < G < nam O

i 12 14), gi
and by (3.9) we obtain Finally, inequalities (3.11), (3.12), and (3.14), give

" (1) -y 1 pa(I/n)[la"ll, <e for n >y,
o a) <l s
whenee, Dy (3.7) and (3.8), 3.4. TﬁC Ty if and only if there exists a constant & >0 satisfying

1 1 the condition
N
vz me) < ‘”(E s (m))

Now, choosing 6 = 442 we conclude the necessity in 3.3.
Sufficiency. Let o = {t} Ty, 4, > 0. Assuming p(A,)n"" < 6 and Jor all w,v >0 such that wo <9 and w = 1.
@(4,) > 1, where 6¢(0,1) is given by (8.8), we have by (3.5) Proof. Necessity. We suppose that 7% C 7%. Then there is an
7 > 0 such that ][:EI]Z, < n implies Jjz|lf, <1 for every zeTy, and we may

1 2
- < ;q)(u)'l/}(’!}).

N

(3.15) w(% wu) = g (u)p(v)

(3.10) w(élt,,y)_l(l)) < o ,uﬂ)_l__ . suppose that 7 < 1. Now take u,» > 0 satisfying the condition
. n n
; (3.16 uv < (1) %=,
Given an & > 0, we choose A >0 so large that 1/63, < 4e and that : Y 1_ ’ . )
P(Au) <1 implies |u| < Le. We write =ttt o = {1}, @' = {1} Then v < p_,;(1) and there exists an integer » > 2 such that
where ’ i . 1 1
i ] 1 3.17 -— < il
1 = [f) llff o(At) =1, (3.17) wﬁl(n) <v <y 1(%_1)
f ) \ p(Agt,) < 1. |
Then we have 7 (A1, ; Hence, by (3.16),
[ 1 1 1
(3~11) "P-l (ll’ﬂl) mm“'“w < 1()_1(1/’”4) |H(m')n”|w + "/)~1(1/1‘l/) [(w”)”’”lw' UYP_, (;;) <77"/)~1(1)7 y"(;y— UPp_y (;,;)) <1.

The norm [il-11, being monotone, we ha : '
, ve
re Thus there exists a positive integer r such that
ie iie )"”LP < “‘1%86"|Hw == ‘%8(111_1(1/"))—1, § there exists po ger.
- € : 1 1 1
. 3.18 — L rpl|l— uy_ —)) < 1.
(3:12) val e ll, <3 for w—1,9,. . (848) g =7 (n v (v
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Tet us remark that » < n. Indeed, supposing 7 >n, we should gel

1 1
ny ;7%1/)_1 " <1,

whence % < 7, Which is a contradietion.
Now, taking n <j < n-7, we have by (3.2)

- 1 -1
(8.19) HlMﬂ’H!w =1 («/1,.1(5.—;7;;175_)) .
However, (3.18) yields

1 (1) ,_ (1)

T < ;

7 Wl S )
1 1 1 1 1) ( 1 )
- -t - Il < P B I [
7 W‘l(j) < 7 W“l(n) \w“l(r Pt j— 1|1

Consequently, by (3.19) we obtain

whence

— [“/)"}(1/]) —
wor (L)(j—n-+1))

-,

1) o
wﬁl(j a1,

luhlly <n-
But according to the choice of #, this implies

Ien iy, < 1.
Hence we obtain by (1.5)

an\\ ™ nr—1\\"" -
(9”(—)) < (‘”(——)) = Iislly < 1

and thig yields
(3.20) plu) <22
”
Now, from (3.17), we obtain y(») <1/(n—1) < 2/n for n > 2, whence,
by (3.20),

S

no 2 . 1 (
-z 1 p).
— 2 ety

O’J!!—‘
|

1

2r
_ But, by (3.18) and (3.17), the value on the left-hand side of these
Inequalities is less than ¢y~ uy_,(1/n)) < p(n~'wv), whence

1 8
p(u)p(v) <8y (; m) ) (-~ wn)
7
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for wv <#y_(1), w =, and the necessity of 3.4 is proved with
8 = n min(}, p_;(1)). '

Sufficiency. Let @ = {t,}<T%, £, = 0, and let the number (0, 1)
be given by (3.15). Assuming that Af,y_;(1/n) < 6 and X, > 1 we have,
by (3.15),

1 1 1
(3.21) Y (—5 Myp_y (g)) = o).

We choose now two arbitrary positive numbers 1 and ¢ < (1) and
we take a 1y = 1, 4y > 1, such that A,u <1 implies p(u) < & We write

L, =1t-+t,  ={&}, ' = {,'}, where

i Ak =1,
zlo i Agh, < 1.
Then 4,4t < 1, whence (i) <& and

’
v

1 n
(3.22) 72 p() <e.
b
r=1

Now we take 7 = dy_,(e)(Ady_;(1))"". Since o' «Th, there is an
integer m, such that

yo1 (L) [ll()" ]l < 7
for u 2= n,. The norm |||}, being monotone we thus obtain by (3.2)

o p-1(1/n)
" opoa(1)
hence AyAp_; (1/n) < dyw_;(e) < 6, whence, by (3.21),

dy_ale)

=y @/l < poi (L))", <7 <m,

1 (/It')/l hit) < 1Ut' = <
o o (A, §n¢(o ) <y 5 oMyl <e

for 1 <» <n, n>n,. Thus

\%

4 o LN
(3.23) Eglp(n,)gs for =,
Finally, Dy (3.22), (3.23),

n
1
—W;er(lt,,) <2 for n =mn,,
r=1

ie wely.


GUEST


140 J. Musielak and W. Orlicz

! -

55. If T = 1%, then p(u) ~ (p(1ju))™
Proof. We take a number 6 > 0 introduced by 3.3 and 3.4; we may
always suppose that 6 < p(1). Let u = 1/6. Then du z= 1 and ou- u*1 = 4§,

whence we may apply (3.18) with du and %~ Yin place of w and o, respec-

fively. We obtain
(3.24) p(1) = p(ou)p(lfu).

Moreover, taking u > 1, = max( /8, (1) @1 (1)/8%) we got g 02! (1))
> 1 and, by the convexity of ¢ and by (3. :)

52 "1 /_6_( b )(;I) < B
77(1,1(1))’”(4)\\1/)(1) planp () <o,

whence we may apply (3.5) with 6wy (1) and b instead of % and v,
respectively. We obtain

u( & )< ( o u) 1/)(1) <——6—-q7(r3u)1/1(1>
") S P\l Sy wl’

ie.
1)1 &
(3.25) C e(su)y (ﬂ) =5 vy (1/)(1))'

Formulae (3.24) and (3.25) give

-1
L opion) <— < 5(1/)(1)1,0( > )) ¢ (0n)

for w > u,, i e. g(u) ~ (p(Lfu) ™" (ef. 2.1).

CorOLLARY. There ewist p-functions @ such that _’1’3 # 1.

Indeed, taking ¢(u) = ¢“—1—u it is easily shown that the condition
o (u) LJ(¢(1/u))‘1 does mot hold, whence T% - 7%,

The above corollary may be strengthened as follows:

3.51. If there emists a o, > O such that

(3.26) ' fm 2% _ o

usoo W

for every o = oy, where @(u) is @ convexw p-function, then for every conves
p-fundtion p, Th % T%.

In particular, 'if @(u) = ¢ —L—u, then [” # 1T for every oconvew
p-funetion .

Proof. Let us suppose that e T° and that condition (3.26)
holds. Take % >max(1/ y @-1{1)), Whele 4 >0 is given by 3.3 and
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write & = du. Choose v, = y_,(8/p(u)) and take 0 < v < n,. Then p(u) > 1
and @(u)p(v) < 4, whence, by 3.4,

(3.27) p(av) < ep(v),
where ¢ = @(u). Now we choose an integer » > 0 so that i
(3.28) D0 " <o Ko,
Then, applying (3.27) successively, we obtain
(3.29) " p(v,) < p(v).

In order to estimate ¢~"~' we write s = (n-+1)lge/lge. Substituting
n+1 from this equatlon into (3. 28), we get

Igc/ige 1geflga
(__ < ¢ = gt < (_) ,
av, 7

2 lgeslga
(——) p() <wp(v),

av,

whence, by (3.29),

1 piw) <w(v)
a” v ?°

where o = lgo/lga. This shows that

(3.30) 1im 22 S
[ xs
for the above chosen o (see [5]). Now, ¢ may be chosen arbitrarily large, for
' _lge lgp(w) '

T lge  Igé+lgu’
and it follows from (3.26) that
im Igp(u) —
U300 lg'u
We suppose now that T% = 7% and that (3.26) holds. Then, by

3.5, there are constants k, u, > 0 such that ¢(du)y(Lju) <% for u > u,,
whence

bS]

(0u) p(1ju) _ &
i . < — p P = U, 0.
Gur (Lju)y 5 for u = uy, 0 >

Applying (3.30) it is easily seen that
lun ﬂl < oo
oo U’

where o may be chogen arbitrarily large, which is a contradiction to (3.26).
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It may be still asked whether either T, C Ty or T;C 1T, always
holds. As the following examples show, the answer to these two questions

is negative.
352, (a) If g (u) = (L+w)lg (14 w)—u, then there are wel'y which do
not belong to T,l,’,l.

(b) If @a(u) = ¢ —1—u, then there are @ e T4, which do not belong to Ty, .

Proof. (a) Let us choose § >0 asin 3.3 and let ¢y (u) =1, ¢y (), (1 /u)
< 8. Then, supposing Ty C Tf;l, we have ¢,(0) < @y (w)e.(1/u), by (3.5).
Hence g, (#)p; (1/u) > min(8, p,(8)) for ;(w) > 1. However, this is impos-
sible, for @, (u) < #** and @,(1/u) < 1/u® for sufficiently large w.

(b) Supposing Tzz C1Tg, and applying 3.4 with » = dfu, u > 1, we
obtain g, (1), (8/u) < pu(1). However, this is impossible, for ¢,(u) > %u-’*
and g,(8/u) > 6%/2u%

4. A sequence z = {{,} will be called g,Tesp. ¢, strongly summable
to @ number t = t(x) if {t,—1t} Dbelongs to T§ resp. Tf’,,. Let us remark
that the g,-method of summability iy defined for an arbitrary g-function,
while the @,-method only for convex @-functions. g,-methods of summa-
bility were introduced by assumptions (o), (ooy) in [11]; it follows
from 3.51 that in the general case they are not equivalent to the g¢,-
methods. Hovewer, if p(4) = 4%, a =1, both methods coincide (we have
then strong summability of order a). It is readily shown that the me-
thod ¢, as well as the method ¢, is permanent. We shall denote the field
of summability of the method ¢, by T'(g,).

4.1. For every o-function o the field T(p,) provided with the F-norm
Ily defined in (1.3) is a complete normed linear space, and the coordinates
i, are continuous with respect to the norm |i-|,.

Proof. It is easily seen that the modular o,(z) satisfies condition
B1 for every x<T(p,). It remains to show that T'(p,) is complete (ef. [9]).

Agsuming @, = {£}} T(p,) and g, (A(z,—2,)) ~ 0 as p, g — oo for
every A >0, we get 1 —i,a8n — ooforv = 1,2, ... and g,{A(w,—a)) 0
for every 4 >0, where » = {t,}. It is sufficient to show that xeT(p,).
Take an & >0 and let " = t(x,). Then {f;—1"}eTy for n =1,2,...
and we have

1 n 1 13 ] »“j
1yup 4 i P __ 40 ) D1y o (13— g2 .
ol =) < n;oo(ltu P+ g;m(m )4 “Z p(ifE—11) < o
for p, ¢ sufficiently large and a certain n = n(p, q); hence the sequence
{f'} is convergent, say " — 1. Now, given 1 >0, we have

1 ” n
quﬁ(lltv—t[) < gw(3l(mp~—m))+ %2 PBAT =)+ pBAlr —1]) < e

=1

icm

Modular spaces 143

for a fixed p dependent on ¢ and for sufficiently large n. Thus {t,— 2} Ty,
i.e. el (p,).

Continuity of the coordinates ¢, with respect to the norm -1l is
obvious. .

441, The generalized limit t(x) is defined uniquely and it is a distri-
butive and modular-continuous functional in the space T(p,), 4. 6. if
op(A(wy—2)) = 0 for a 1 >0, where @, (gu), weT(py), then t(x,) — t(x).

The proof follows the same lines as that of 4.1.

4.2. If the field of summability T(p,) of o p,-method is a B-space
by a Bynorm || |I° suech that the coordinate i, are comtinuous with respect
to ||-]1°, then ¢ ~ v, where v is & conver p-function.

Proof. By the assumption and by 4.1 the norms |||° and I-lly are
complete in 7'(p,) and the coordinates are continuous in each of these
norms. Hence, by the closed graph theorem, the norms ||-|° and |-||* are
equivalent in T'(g,). Since T is a closed linear subspace of T(g,) in the
norm |- |z, the norms ||-{|° and |- ||y are also equivalent in T¢ and it is suffi-
cient to apply 2.5 with s = 1.

In particular, it follows from 4.2 that

4.21. If there ewists a matriz-method of summability whose field is
identioal with the field of a q,-method, then ¢ flvw, where y 18 o convex
@-function. '

This is a generalization of a Kuttner’s theorem [3] (cf. [12]).

4.3. If a convex g-function satisfies conditions (0,) and (ooy), then the
inverse p_; of @ and the inverse ¢*, of the function ¢* complementary to @
in the sense of Young satisfy the inequalities

% < ooy (Wt (u) < 2u  for

This theorem is known (cf. [2], p. 25). For the sake of completeness
‘we give here a proof which makes no use of the integral representation
of the function ¢.

Proof. Given a % > 0, we chooge » >0 in such a way that

w>=0.

‘ ww 1 % 1,
4.1 [P ——OY (RS T - 2).
1) gty (w) W qo(qo’f.l(u)) b ? (e)

‘We have
127 1,
4.2 < 14— (v).
(4.2) () e (v)

Indeed, if » '¢*(v) <1, then » <g¢*,(u) and wofup’,(u) <1, and
it u~'g*(w) >1, then, by econvexity of ¢*, w '¢*(vju~'¢*(v)) <1 and
wo fugl (u) < w " (u). )
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From (4.1) and (4.2) it follows

1 ( o )<] 1 (\%1_ )
v\ ST T w ¢ (p_y(u)=t)
whenece, by the monotony of ¢,
1
((I‘~1 (“))ﬁl < W @ (n,
and, consequently,
< g (W)t ().
On the other hand, applying Young’s inequality to the values ¢ (),
@1 (1) we get the inequality
‘P—l(u)‘Pil('M) < 2u.

4.4. Let ¢ be a convex g-function satisfying (0,) and (eco,) and let
¢* be as in 4.3. We define a norm in 7 ag follows:

(4.3) llallly = sup ' %s,,

¥=1 -

where the supremum is taken over all sequences y = {s,} satisfying the
inequality Zgp(js,|) <1. It is well-known that |||-|} is a homogeneous
norm satisfying the inequalities

(4.4 3 Nl < llal, < ol
for all wel}.

The following formula holds (ef. [11]):
(4.5) lle" 7 = nepZy(1/n).

Indeed, we have
n

n
1 1 1
1= sl <= *(l5]) < =
v (”Zt ) %é’w (nh) < =,
‘whence
T
. /1
D Il < mm(~),
r=1 n
and, on the other hand, taking s, = o*,(1 [n) for v =< m, we get
n n
S =1 S =gt (1),
=1 y=1 ’ "

4.5.‘1.%69@ method T(qy), where ¢ is a conver p-function satigfying
the conditions (0,) and (oo,), is equivalent to permanent row-finite matrix-
-method of summability 4 = (a;q).

@
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In the cage when ¢(u) = u*, « > 1, this theorem is proved by Zeller
[121. ' ,

. Proof. For every positive integer n, a finite number of sequences
Si(n)y £ ==1,2,...,m; j =1,2,..., p(n) may be found such that

Dt (gm) <1

ya=1

and

1 n
(4.6) 5 llelly < | 3 tsim)] < flall}

y=1
for every sequenee :ty,ta ...,1,,0,0,...
It 2 = {t,}<I?, then we have by (4.6)

n 1 )
;‘ » (n){ <o (;) a1

Applying (4.7) with & = ¢, (4.5) and 4.3 with 4 =1/n we get_

an S (2 s <o (2)

11 1\, (1 1\ < 1y, (1
8) <= = Z) <o = ! =le* (=) < 2.
48 3 <3 w_l(n) (p_l(n) ¢ (n) gsu(n) <”"’~‘(n)¢—‘(n) <2

Let a}(n) = ¢ (n)g_, (1/n)si(n), where ¢ (n) are chosen in such a man-
ner that

@9)  Ndm=1 for n—=1,2,..55=1,2,...,p().
Tnequalities (4.8) imply } < |d(n)] < 2.
We form now a matrix 4 = (ay) as follows:

ar(1),0,0,. . .. ... ...

It is easily seen that the method A4 satisfies the required conditions.
Indeed, inequalities (4.7), (4.4) and definition (3.3) of the space TZ imply
that every sequence meTf,’, is A-summable to zero and, conversely, every

Studia Mathematica XXII. 10
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sequence A-summable to zero belongs to I°. In particular, sequences
convergent to zero are A-summable to zero; moreover, by (4.9), the ge-
quence 1,1, ... is A-summable to 1. Thus 4 is a permanent method and,
moreover, a-sequence is A-summable to ¢ if and only if it is ¢,-summahble
to . :
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Les intégrales de fonctions presque-périodiques
et les sections de séries de Fourier

par

5. HARTMAN (Wroctaw)

R. Doss a démontré que, f étant une fonetion presque-périodique

o0
(p- p.) de Bohr et Zane”'ﬂt sa série de Fourier, si les points « < f sont
=1

& distance positive du spectre{2,}, alors la série partielle 3 a, ¢! constitue
a<iy<p

le développement de Fourier d'une fonction de Bohrln[3]. Doss ajoute
qu'un résultat analogue subsiste pour les fonctions p. p. Stepanoff et
P. p. Weyl. Nous nous proposons de généraliser ce théoréme en atténuant
les conditions et en admettant une notion plus générale de presque-pé-
riodicité. L’auteur tient 4 remercier M. J. -P. Kahane de ses remarques
et de ses utiles conseils au cours de la rédaction de ce travail.

THEOREME 1. 8¢ f(2) ~ Y a,é™" est une fonction p. p. Bohwr, Ste-
n

panoff (8), Weyl (W) ou Besicovitch (B) et si p(t)eL? (—oo, co) est une
Sonction continue paive ow impaire, dont la transformée de Fourier

()~11m—— f{p e it

N—00

est integrable (L) dans (~—oo, co), alors la série Yan,p(d,) e représente
T

le développement de Fourier dune fonetion p. p. de Bohr, Stepanoff, Weyl
ou Besicoviteh respestivement.
Démonstration. Si f est p. p. Bohr, p. p. S ou p. p. W, la fonetion

=)

(1) o) = [ fli—w)pw)dn

~00

(bien définie pour presque tout ) est du méme type respectivement,

- ce qui est facile & vérifier, puisque peL(—oo, co), en partant de la dé-

finition intrinsdque des classes examindes, ¢’est-i-dire d’une définition
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