172 B. R. Srinivasan

Since rp—m << 0 we have by Lemma 7

k 1 ro— m)

;5”;_ .D;(ck—s, ks

s=0

re—m
1427
+ k

=0(z ).

Theorem 5 is now immediate. The following theorem results at once

from Theorem 5 when we take m = 2.
THEOREM 6. If 7o < 2, using the notations of Theorem 5,

7(1-+e)

1
M) (e E @ 1 x ey
Ap¥(@) = — (r+1) (T +1) Z (,m,bl_‘_nk_r_l) 1P1(—%1m ,nk_r_l) -+

NyoeMpppyPy <D
7=Lyen—r—1

+ O(m(lc-}-re—ﬂ)/k) .
Particular cases:

1. If we take r =0, ¢ = —1, k=2 in Theorem 6, we get
(30) 270@) =—2 ) pfaln)+0(1),

n<z/2

aresult due to Landau [1], which was the starting point of Van der Corput’s
investigations of the Dirichlet’s divisor problem.
2. Taking r =0, ¢ = —1, k=3, in Theorem 6, we get
N T
(31) 4@ ——3 ) %( ; )+ O (@) .

. _/_I \ Ny Mg
NN, MNP

We have, from Theorem 6, trivially

(r.0) (T-H’rg—_ll
A (@) = 0Dy (@)} + O (eI
= O(af%+e-Dk)  if yp <1, by Lemma 7.

T shall return to the general problem of the order of A{¥(z) in a sub-
sequent paper.
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1. In many problems in the analytic theory of numbers, it is necessary
to obtain non-trivial inequalities for exponential sums of the form

(1) E e'lni]'(n)

n

where f(n) is a real function. An important method of obtaining such
inequalities is due to Van der Corput (*). Titchmarch ([10], [11]) has
extended Van der Corput’s method to two-dimensional sums of the type

(2) Z eﬂzif(zmn) .

m,n

We consider here sums of the type

(3) Z e2mif(ni,...np)

N1geneslp

for arbitrary positive integer p and extend, step by step, Van der Corput’s
theory in one dimension to these p-dimensional sums. In the case p =1
the present method reduces completely to Van der Corput’s method.
Tn the case p = 2 the present method includes (and in fact, slightly re-
fines) Titchmarsh’s method (cf. [8] also).

The method seems to be of general importance, but in eaeh applica-
tion there arve considerable difficulties of detail. As a straightforward
illustration, I consider here the lattice point problem of certain many-
dimensional hyperboloids which I have considered elsewhere.

() For an account of the method and references, cf. [12].
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Defining Dx%x) by

@ G e

r
Mooy TG ST
F=lunk—1

=1, 0>—2; r, k integers such that 0 <r < k;

where x, ¢ are real z
and setting

(%) D) = Pi(w) +45°(@)
‘where
k—r
(r:0) _1 % _ 18k =T\, —e—r—1) ttug
(6) P (w)—gmg( 1(E)urr g

k-r—a

><{1+%ua— us(us+1)1f wu(y)y =ty

if us = or/(r+8) and or = 0;

[

= coeff of u*—1j m

{1+1}u w(u+1) f 1/)1(y)y““'"2dy}k+

alte k
+—97 {H—%e—g(ﬁl)f%(y)y“t’“zdy} if r=0, ¢ 0;
1

= coeff of u*—"in m”“{l—i—%u——u(u—(—l) f «pl(y)y-u—ﬁdy}h if g =0,

1
we have (ef. Theorem 6 of [9]) if ro < 2

2 1 ( /] )7(1+Q)/(T+1)
e X
My eee Ml—p—1,

1
[ P )
F=l,uk—r=1

X ( il e 0 (%e--ro—~2)/ 1t
ke nl...nk_,q) 0 )5

(M) A =—( )(o~+1)

where
8) ¥1(u) = u— (integral part of u)—}.

We concern ourselves with the problem of order of A0()
quite elementarily from (7), the result (cf. [9])

(9) A7) =0

Let of*® denote the lower bound of 6§ where

. We have,

(m(k—l—m—l)/k) it re<i.

(10) AP () = 0(a")
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Then (9) gives

k+ro—1

(11) af? < =T

if re<1.
By the application of the present method we prove
o 10— Bi—r 70— Pio—r : .
(12) <1—|—Ma,x( T il ) it re<2,
where

2(h—r)(k—r+3) 23 26 55

(13) ﬁ’“"’=(7o—-r+1)( F—7r+3)—1'14'17°41
it k>r+5, k=7r-+4, r+3, r+2, respectively,
2(k— 3 16
(14)  fhor = (h—r+3)

(k—r+1)(k—r+3)—1°23
it ¥ >r-+3, and k = r-+2, respectively.

(12) is an improvement over (11) when

re < k———ﬂ,’;__r (,,(:f)i) (<1). *

In the case ¢ = —1, D{"?(x) represents the number of lattice points
bounded by the coordinate hyperplanes and a certain number of hyper-
boloids in a k—» dimensional space. If further we take r = 0, the problem
of the order of A{*?(x) is precisely the general (Piltz) divisor problem.
‘We have from (12), (13), (14), when r» =0

oo _ (k=1 )(k+3)—1 33 25 27
%S BT 1y(k+3)—1'56" 51782

it k>5, k= 4,3, 2, respectively.
When % =2 and ¢ = —1, the above result is due to Van der Corput
([2], [7]). In the case ¢ = —1 (divisor problem case) further improvements

on (15) are known (cf. Theorem 12.3 of [12]) though (15) is better than
the classical estimate of Landau [5], who proved that

(15)

0-y k-1

=2.
k-}—l for k=2

We first prove a number of lemmas. We then use them to obtain
theorems on finite sums of the type

- 1(r+1)
21 e—2mi z
Moy eeaip

ety

and finally use them to obtain the required estimates for AP ).
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Throughout the paper, 4 denotes a positive absolute congtant
(sometimes depending only on p) not necessarily the same at each oceur-
rence. The notations

f=0@, [<y
both mean that |f| < 4|g| for all values of the variables considered. The

notation f > < g means that f < g and ¢ < f. The letters n;, »; denote
integers.

2. Levma 1 (Lemma of partial summation). Let ¢(n,, ...
denote any numbers, real or complex such that if

y Tp)

(16) Gy geney Mp) = E Gy iy )
<=y
i) BN}
then
Gy s tp)| <G A< <Ng, i=1,..,p).
Let h(ngy ey np) denote real numbers, 0 < h(ny, ..., np) < H, such thal

the 2°—1 expressions

(17)

»
(n A;’,‘,)h(nl, weny Tp)
i=1

where each a; = O or 1, the case a; = ... = ay = 0 being excluded, keep a fixed
sign for all values of n; considered. Here Ay, is defined by the equation
A b (g, cony ) = Mgy eury M) — R (Mg, ..

oy Wiy Py 1y Mggery weey M) .

Then

| gy s md (i, ey )| < 31437 G

1< Ny
L )

Proof. For convenience in the proof, we adopt the convention
that all the functions considered denote zero if the lattice point (14, ..., ;)
is outside the relevant domain, ie. 1< m < Ny, ¢=1,...,p.

First we observe that

(A8) g{nyy ey ) = Gy, vy M) —

2 G(Ngy eoey — 1, o0ry M)+
i

+ 2 G(nyy oy my—1, .y my—1, ...

4

s ip) = oo+ (—=1)PG (g — 1, ooy Mp—1) .
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To prove this we count the number of times & ¢(», ..., v,) occurs on the
right-hand side of (18) when we substitute for G(n,, ..., n,) etec. using (16).
Tt » (0 < r << p) of the »’s are less than the corresponding #;’s while the
other »’s are equal to the corresponding n/s, the number of times

g(v1y ey ¥p) is counted on the right-hand side of (18) is
¥ ¥ , , 0 it r>1,
1“(1)+<2)”---+(“1)-“(1*1) ={1 5 oo
This proves (18).
Next,
8= Z Gy ceey Bp) R (g, ony My) -
1< Ny
T=1yees®
2 h(nyy ooy p) {G(‘nu . Mp)— 2 Gy ooy =1, e, M)+
TyenesTlp
o b (1P (1, .., mp— 1))

by (18). Hence

D Gy ey ) Ay Anghl(sy vy 1)
TyyeeesTip
— Ny, ey NNy ooy Np) D Bpa

A1yee3dp

where

2 Gy ey Nip) (HAQ’)M”U “> M) -

Agyeensp =1

al: :“P

In the above sum >, , n; = N; if ¢; =0 and the sum is taken over

@ensOp

1=ny < Ny—1 for jed, the set of s such that o = 1.
Now,

|8agpipl < G D) I(ﬁAZ’,)h(nl, ey )|

Ageeeslip J=1

=@ n ( 2 A””)h(nl-’ Ty n”)’n1=Nj for 7€J

jeJ 1<ny<Nj—1
< GH2™' if r is cardinality of J.

Acta Arithmetica VI 12
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So
8] < GH + Zi’ (P)eme™ = 42 +5") 6T .
=
Hence the lemma. When p = 2, the above lemma is Lemma a of [10].

Remark 1. In particular, the above lemma holds if the condition (17)
is replaced by the condition that the 2P —1 derivatives

are of constant sign for all yalues of @, ..., % considered.'
The above Remark at once follows from the observation

(H A2) o ey )
n » « 2.
=f f f{[](%i) }h(wl, ey ) L! (dag)™ .
ng+1 i=1

Remark 2. The above lemma is still valid if the hyper-rectangle

1< <Ny, i=1,...,p, is replaced by an arbitrary region D contained
in the hyper-rectangle and (16) is replaced by

(16" Gy ooy M) = 2 g(¥ey ey ¥p) -
1SHENg, 1=1p000P
(1yeenp) €D

To see this, we have only to apply the above lemma to the new
function g*(ny, ..., ny) defined as follows:

. _ gy ey ip) I (Mg, ey mp) €D,
g7(my wees o) = 0 i (g, ey mp) ¢ D

LemMA 2. Let f(®y, ..., %) be real in a region D contained in the
rectamgle a; < w; < by, j=1,..,p. Then

»
‘ ] (b5—ay)

erif(nang) & f:_iwﬁr_. +
%

(nyyeenp)€ D

»
11; [ d—a))

e2mif(na+unnayeeinp) =f N2y p)

+ 3

12
’
% -
IS~ Nyyeefip
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where the summation on the right-hand is taken over the lattice points
(Nyy eeey Bp) for which both

(Mg +uyy Moy ey 1) and  (ny, ey Mp)  lie in D,

%, being an integer and the only restriction on ¢ being 0 < ¢, < by—a,.
The above lemma is due to Van der Corput (cf. Satz 1 of [31)-
Levuma 3. Let M and N be positive integers, uy (> 0) and v, (> 0)

A<m<M,1<n<N) denote constants. Let A, (> 0), B, (>0). Then

there exists a q with the properties (Q, and Q, are given non-negative numbers)
G <qg<@, and

M N
2 Augnt Y] Boge
m=1 n=1

M N ar N
< Z Zu’”T”i"/-A-f#ann +2AmQ?m+ ZB"‘ 2o
n=1 m=1

m=1n= n=1

Proof. Consider

M N
fl@) = Z A izt 2 B,xv, x real.
m=1

n=1

Let

D (x) = Max Apa*m, g(x)= Max Bpz—v.
<m< M <N

Then &(x) is monotonic increasing, while g(x) is steadily decreasing.
Hence ®(x)—g(x) is steadily increasing and there is a unique g, such
that ®(g)—g(g) = 0. Also D(z)Z g(a) according as v Zg,. We con-
sider three cases.

(i) Suppose g, > ¢,. Then &(Q,) < g(Q,). So
N
1(Q0) < ME(Q,)+ Ng(Q,) < (M +N)g(Qs) < 2 B9
(i) Suppose ¢o < @y. Then g(Q,) < B(@y). So

M
1(Q) < M®(Q,)+ Ng(@y) < (M+N)D(Q) < ) AuQi .

m=1
(iii) Suppose @) < g, < @,. Then P(g)—¢(go) = 0 gives
A g = Bpg, ™

for some a, f such that 1< e < M,1 <8N .
12+
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We have

Ug+1g ﬁ

Flge) < (L+N)B(go) < Augie= VAPB
M -

AnBYr .

‘yj Um+Pn
< V
m=1 n=1

Tn all the above cases, the Lemma is true. Hence, the Lemma.

The above Lemma is Lemma 4 of [7]. Since we are using the Lemma
often in the sequal, we have reproduced its short proof here. In the case
Q, =0, @, = oo (s0 that the parameter ¢ is unrestricted except that is
positive) the Lemma is due to Van der Corput (Hilfssatz 4 of [1]).

Remark 1. The constant involved in the majorisation < depends
only on M and N (in fact < M +N) and so is absolute if M and N are
absolute constants.

Remark 2. The inequality above in Lemma 3 corresponds to the
Dbest possible choice of ¢ in the range 0y < ¢ < @, i.e. the above inequality
is stronger than (i.e. implies) any other inequality obtainable by con-
sidering any ¢ in @, < ¢ <@,

Proof of the above Remark 2 is easy and is given in [7]. Remark 1
is obvious.

3. Throughout the following lemmas, we suppose that D is a finite
region in a p-dimensional Euclidean space and that any line parallel
to any of the coordinate axes meets it in O(1) straight line segments, and
the same is true for the interesections of D with regions of the type fa, << const
and fg, > const, ¢ =1, ..., p, where f(@, ..., #p) i8 & real function defined
over D such that the transformation y;=fs, ¢=1,..,p, is one-one
~ over D. We suppose further that any line parallel to any of the coordinate
axes meets the surface got by equating to zero any of the second order
partial derivatives of f in O(1) points.

The conditions regarding the regions and the function f are in particular
satisfied if D is bounded by O(1) algebraic surfaces of bounded degrees
and the surfaces f, = const, fuq = 0 are also algebraic and of bounded
degree.

LeMMA 4. Let

1 a(;"mﬁy ) fmi.)

= Aryrs ., >0 din D
a(mil’ "',wiﬂ) = b z! ’

A< <f<.<i,<p, 1<ssD),

where the ©'s are independent of the @’s. Then

[ Y P A —
Py . Visety
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Proof. \Ye shall prove this by induction on p. When p =1, the
above lemma is well known (Lemma 4.4 of [12]). We have ’

I={..[elas,..ds,
D

j} eff+if...

I

D,\fyl<Vr i=1 DDy
F=Typ lij‘>,"r.7
”
= J+ ZJJ' y 8ay,
i=1

where Dy is given by |f,| <] 7 for 1 <s <j. Now,

I'er = j ...f

DDyl |>Vrs

Dnl)j,ilw,b]’r_j

DDty >17s J)r;bj,fmﬁ] 5

- ¥ 1 f J 0 Fda. ... dn

= = | ... | sinfdx,...dx;. ;
Ll,__fwy(fn 5 : f Xy f 1dm,+1...dmp

oA

Wag >Vrs

cosfdr,...dxs,

1si
f—(;ﬂl—fldxl oo dyy Ay . dr,
xj

It

If

1

by successive application of the second mean value theorem, since 1/f

has O (1) maxima nad minima on any line parallel to one of the coordina,tzé
axes. By the above and by the hypotheses on the regions, the sum here
cpntains O(1) terms (the &’s and DJ’s in each of the terms are not necessa-
rily the same). Also Dj satisfy the general conditions satisfied by D
Hence, by the induction hypothesis, .

red; :0(-}:-_-;) -0 (/L)
] 7y ] Pyeetim1?is1.e.Tp 3 PO )
Similarly T Pt

Vry.ry
We make the transformation y;=7f., j=1,..,p in J. We then have
I= .|

Dl V7
=10

imJ,-:()( 1__) and 8o J,:O( 1 \’
VS

ez, ... dx,

O(feyy wony Fu)
(@1 e 5 @p)

) =0 ()

Il

1D (Y1e-0slip) V
€% (Wi--nilip ay, ... ayy
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since D’ it contained in the hyper-rectangle |y} < Vrs, 4 =1,..,p. Hence
the lemma. ' o

Lemyma 3. Let f(@y, ..., @p) Posses continwous partial derivatives up
to the third order in D. Again let

A<l <. <, <P, 15 8<D)

\a(fzﬁ, .-.1fzg,) > Ar‘i-’«lm,,.:f'> 0

O (%iyy vy P,

and

faumg] < Arats IS ARragri  throughout D.

Further, let fol1, .y ) =0 for j=1,..,p. Let a; and f; be the
values of f., at the end-points of the largest segment. of the ourve T = .
= fags = fopy = +or = fay = 0 which containg (Cy, ..., ¢p) and lies entirely

- within D for § = 1, ..., p. Then if m is the number of changes of sign in the
sequence

O(fary ooy fuid 5
1, A =1,..,P;
T By, e T
then
7 (gt if(cperca)
1/2

i A
f;fevdml"'dmﬂ-(zn)” ’a(fmu -..1pr)
Ay, - si0p)

(€1,.0-Cp)

»
< F:_lﬁ-;{RUWM) + 2,,,7 (l%;'_] + ]%])’ .

=1

Proof. We write

1= [..[¢an,..dv,
D

=[] wdnyt S [ .. | oVim,...dn,

D[ fyyl by j=1 DDy
;i‘=ﬂlc,j...m el =>0rs

4
=J+ Qd;  (say),
g=1
where D; is given by |f,,| < ors for 1 < 8 < j and 8 is a positive constant
to be chosen later. Here we assume that the region |fs,| < ér, § =1, ..., 0,
is entirely contained within D, that is

s gMin(‘i‘i"—‘,'ﬂ‘).

19
(19) el Wl
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By repeated application of the second mean value theorem (as in the
proof of Lemma 4) and by Lemma 4, we find

1
Ji=0 (:51'1...'rp) )

We put in the integral J, y; =f,,, j =1, wey P, and

(20)

n
DYy -eey Yp) = Zwﬂ/i‘f(wu cers Bp) ©
=1
Tl‘hen Py, = ws,j =1, ...,p, and & has continuous third partial derivatives
in the transform A of the region D, by the tramstormation Yi = fayy
1 <j<p. Then we have

ory oy 2 )
1 D,y
(21) J = f f P B LGRS N P
by e Y1y o5 Yp)

Now put ay = Dy,,,(0, ..., 0) and

2y oy Yn) = ) a2 > ey, .

1<i<p 1IKI<I<p
We have
0 o df‘ orp »
(22) S aypay, = [ . [t 3 [ f e,
—00  —00 —béry,  —drp =1 Dy,|uyg|>8rs

where Dy is given by |ys} < drs for 1 < s < j and |%s| < oo for s > 4. Again

20 = QYT+ Ga+ 0atr) +o. + golyp + W, p=1Yp—1+ -+ 0 Y1)

»
= Z 47 (say),

j=1
where

% —_ (a(QUH ) @ﬂp)/a(gbﬂﬂu Trey ¢yp))
Oy s Yn) | Wity ooy Yn) 0,000

Now the matrices (Dyy,) and (fu,) are inverse matrices since
\ | om; DYy 0wy
; Dy, fom, = ;‘é—yi pr a_w; =0y
(the Kronecker delta).
And so we find

- (am,, s Tags) /aml, fm))(

a(m1, ey a;f_l) 3(.’12“ oy w;)

— —Aj—l
e Ay

(say) .
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Now where
~ N A ér1 orp @
X - X a5 UL Yy~ P)
03) [ | erdyay = [ &R oyt o JEum, {agz(),,l, , By) _la(aq(sm, .
Dufun|>éry D e >0 [ T Y11 -1 Yp) | Yusoees Yp) 0
1 1 o1
=0 (Dyyy oy D i Z Upy=®) (=8 0e)
(lQ1|671 ]’léh %\) = I L —7/32 { { Ay, ... dyple 7= TV e 1.
O ——— yl AR ) lTJ) ----- ‘,rl -—drp
=0 (3%— n 1/ %L(’;ﬂ-—-’%p_)) ) Now
1 Ay weey Wp (C1300sCp) . 2 2
o b6, = cofactor of fuq, in H(f SW "] .r,? 1 <_}_
= O( 15 77_> 77 H(f) __J f 12) Ty T

) (where H(f) denotes the Hessian of f),
by repeated application of the second mean volue theorem, and by

Lemma 4. Similarly, for every § =2, ..., », Jary eoes fap)
< Rrai...

81'1{6(1'1, ey @)

i . = of et and
(24) ff endy, .. Ay, = 0(: ; 7). O (far, o ,fzz,))

Dy, [yl >dry & (8(D @,.) y ox; (3(:(' )
7 (0 . G .
Next ___‘(___1!1’ ey Fyp ) - @ 7 _1_’____1’
oY; 3(']/1, sery ?/71) L lH f
o - —i(z' ) 2
(25) f fe”Xdyl...dyp= f j & i ey Aoy < S’__l_ 57,;’.1_4’1"< . Ra ,
Jeo - Je - Ly TieTp 1Tl
7
” o .
- ] 1 (2 [ G dz) & _ 2 (cofa,ctor Of fr in H(f))
iy y e = gy H(f)
i 1 v 9 N
g1 @ == > Dy O reotactor of fug in H(f)}+(cof. of fu,) 5 H(@)}
= (27-;)1)/2 Vﬁ— (f) LIJ o Yr
.lQI-.-qz:bl : ’ 1 1 R¢~§...7'f,1‘z+ﬁ-..ri_ R 1
- (27:)27/261‘;! @—2m)|@(fagy <oy pr )2 s < ’i——"f 7‘%2% . e, ity Fon
8(5('1, oy %) (C1annesp)
where m iy the number of ¢; < 0 for j =1, ..., p, i.e,, m is the namber < TG
of changes of sign in the sequence
(j Now
E} ey Fg) . ory dip
+1’ ATy vy Ty j o= 1,.. P . \ ((D @ ))
ISl 7 ey ' “Y1yerd TUp) ayy ... dy
(@yy oy 2g) I <_5‘n _.;[ A.J 1yl 6;;/1( (yl,. ,yﬂ) (Erreontn) Yior W

From (20) to (25), we have
(by the continuity of the third partial derivatives of @)

f—"(p—'ZWLH H(C100005Cp)

't 1 e e R
’ f:cn 7fm M ++L +0((511 ‘) (27) < 8%ry.. TPZ(SH 2 2 6p+1 -

ﬁ(w” . ) p’“ Tiatn

(26) I= (27‘:)(27/")

(C1sessCp)
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and
ory orp }_)1
1 . H
28) I" €« 44— Z"hq)m-@ 1+o(0 0)‘(]'/1 N
1P 5y a1
!5!:1 'p 1}1
<5 | ) 1009 B ety | -
Mo 5 b ik
%
— &, ...1',,2_1 & rargree R
P etp A TP
R
p+3
<4 Proetp
From (26), (27) and (28) we have
f.L‘(za—zm)H/(c,,...,o,,) 10
I—(2m)P" < (M ROPH -Ré”""’)
STy e el t R

3(501’ 7%) (C112001Cp)

provided é satisties the conditions (19).
Now by Lemma 3, there exists a é satisfying (19) such that

1+R620+1+R6p+8 R1/<P+2)+R1/(P+4)+M x( ¥y , ”)
] lay] ” 184l

< Ro+D g+ | ( ) i
2’ Iaﬂ 184l

Hence we have, choosing this J,

o 2m)tif(epmnp)
I—-(2n)" o

(fzu !f%v)

(3(% - @p)

(€1000,Cp)
R0+ | pafw+h } ( 1 ) )
v A K\ )

It R <1, B < RY®*9 414 5o we have Lemma 5. If B> 1, Lemma i

follows trivially from Lemma 4. This completes the proof of Lemms 5.

4. ProPOSITION. (The general Fourier summation formmula.)
Let D be a finite region in the p-dimensional Buoclidean space suoh that
any Uine parallel to any of the coordinate awes meets it in a finite number
of line segments. Further, let D have no lattice points on the boundary and
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let owifow; (1 <i,i<<p) be continuous on each of the bounding surfaces
of D. If D(xy, ..., ) 18 any real function with continuous first order par-
tial derivatives in D, then

200 D B(nyy .y my)

(R2sM2,emesip) €D

2 2 f ff@ (&1, Dy, n y p) €200 Hmbontodly . iy, .

y=—00  pp=—00

In the case p = 1, the above formula can be proved, under the con-
ditions stated, from Euler’s summation formula (cf. p. 13 of [12]). Proof
of the p-dimensional formula follows by repeated application of the
one-dimensional formula. In the one-dimensional case, modifications in
the sum on the left-hand have to be made if the end-points of the range of
summation are integers. Analogous modifications have to be made in the
left-hand side of (29) if there are lattice points on the boundary of D. To
avoid this, we have stipulated the condition that there are no lattice
points on the boundary. In any particular case, it is always easy to choose
2 domain equivalent to the given domain, for which this condition is
also satisfied.

Henceforward, D always satisties the conditions stipulated above,
in the statement of the Fourier summation formula.

LeMMA 6. Let f(xy, ..., ¥p) be real, with second order partial derivatives
in D. Let fo; have O(1) mazima and minima on any straight line parallel
to a coordinate axis in D. Further, let o; = Minf,,, f; = Maxf,, and »;

D D

be any real constants, 0 < n <1 for j =1,..,p.

Let
Oz -y I > Arg ., >0 A< <. <t3<p,1 <8 <p)
a(wh!' 7wh) * )

throughout D, where the 1°s are independent of the 's. Then

E eﬁnif(m,....np) —
D

?
20i(f{Z1500esTp)— ;‘ij,)
...fe = dey . dap

ag—n<vj<fjtn; D
T=1y0esP
1 _ 1
« S [] A [Tosto=rn
jeT V¥ per

where the sum is taken over every partition J, J' of the set of integers
1,2, ..,p, J’ being non-null.
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"pProof. We may suppose without loss of generality that

ni—1< ey <1y, j=1,.,0,
s0 that » >0, § =1, ..., p. For if ¥ is an integer such that
p—l<g—l=a <n, j=1,.,p,

and
— kepity

G(@yy oeey Tp) = F&1y oy L) = Toyiy, — Toglly — ...

we have to prove

RGN geeesm) wul 3 > 2nt (@ tp) - .E (rg = keges}
ye — \ J ’ e dry...dx,
snd “d Nt
D ;"'71<’J‘]°4<ﬁj+”1

< \"’11 (ﬁ;—a{ ) I“I'IOg(ﬂf’,._aj',_,‘z)’
L ited’

i.e. the same formula for g(a, ..., &p)-
We have, by the Fourier summation formula,

, Ay 2551f(ng, -0 Mp) -
S= e = Z

D e

% 2 (H gy een ) .EVM)
\ f f e d,...dwy, .

p> —:-—-oc

Call the range of integers a;—7; < v < ;7 or equivalently the range
of integers 0 < »; < f;+n; by R; and let R; denote the complement of I,
in the set of all integers, for j =1,...,p. We have

(30) 8= 8.

where

»
o 2ri(f — Xnges)
Z f...je o iy di
”lff\’y,nJ D

,7’ e’

SJ»,/: »

and the sum iy taken over every partition J,J’ of the set of integers
L2,.,p

We first consider the simple case when J' consists of unity alone.
Assuming 9, ¢ R{, so that, in particular, » == 0, we have

b Uypen b,
2mi(f— Zvjtl’j) P mtepny L bRt vy
J f dm,,:Zj e day f j e dae,

o) ap Ap-t L
and
by . P by
_ gnif—nz\b e
it -no) (g, = ( ! J fa (e |
a — 2mivy [ g ! 27ty (fa,— 1)
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Now if », < 0 or v, > B, + 71, and f,, is monotonic, <+ fu/(f-,—»,) is bounded
and monotonic in the same sense as f.,. Hence if » ¢ Ri, we have

r
i(f— 5 vizs)
(31) f“_fe t o dry...dxy
D
by by .., 2
- 2 {( —2minTy J fgei’m(f‘%”‘m) iz )T1~b1
97‘77‘”1 o ri=ay

v
&

2 »
fﬂtl I L S T cos \ !
+ Z(‘)mﬁ (For— 1) )51""’51; t;J ...E' isin f— _?_/ U.vj)dwg...dxp}
g5

by repeated application of the second mean value theorem, since the
domain of integration can be split up into O (1) domains in each of which 7.,
is monotonic separately in each of the variables.

Now we have

—2rivyr
(32) 2 ezm;'! < %' 2711:1! (F— 2,
v,sR 1<y <fyitm
f=]
{33) Z "’1(7‘1{”1_7’1) (§1:82,00016p) < ‘2 7 "’113‘11‘ B} 2 "’1(”1'./3i 1)
v1€R{ P n= m=p+m

<log(fi—a+2).

From (31), (32), (33) and Lemma 4, we find
E -1
ami(f— Evm) j— aj
f f 1...olacﬂ,<lo,n,r(ﬁl—al-5~2)[[ ! ;7 .
neR, =2 Vg
1 1
vj € Ryj=2,.

Tn an exactly similar manner, we can prove the more general result

bimai 1 [ Trog(py—ay+2)

(34) 850 €
jeJ Vrf e’

for every partition J,J’ of the set of integers 1,2, ...,p, J' being non-
null.

From (30) and (34) follows Lemma 6.

LevMa 7. Under the conditions of Lemma 6, let A, be defined as the

smallest region containing the latiice points (v, ..., v,) such that

DA lfo—n] <o oo o fop—vp| < 0p # .
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Then we have

»
Eni(f(xl,...,x,,)—‘z,‘ vyig)
E il mp) E f f e =y Ly
D

(V1revp) €4y D\fm,—",l<17,
i=Lop

< Z 11’3]—7;7+1 [I log (B — air+2)
e

where the sum s taken over every partition J,J’ of the set of integers
1,2,..,p,J" being non-null.
Proof. We have, using the notations of the the proof of Lemma 6,

(35) Zf o om~Fred, . ity —

vj€ R,
P
P
omi(f— Zvymy)
- D ff e 3 deydry= ) (Lt..+I)
(¥1y0r ,vp)ﬁA D, Ifau,“’ﬂ <m; vi€ Ryd=1,..,0
5=1,eip
where
zﬂf(f‘zﬂiw:r)
f f dwy ... dwy ,
lfz,—V,Pﬂ,

D; being given by |fu,—vs| < 7, for 1 < s < 4.
We can now assume without loss of generality that

<y <my+l, j=1,..,p,
so that » >0 if weR;, j=1,..,p. We have then, as in the proof of

Lemmsa 6,
. bp by »
I [e-—zmv;mf f ?nz(l—%‘v,z;)d i ]mynb;_
= T ee [ &Ly oo A,
! 2 Z =2y, 2 O g
ap ay

vj€ Bgj=1,....p O(1) vjeRy
=120

+Z(2mlf;;_vl))ﬁ’ o f f ;;;;( Z v,w,)dwg...czmp},

oQ)

since the domain can be split up into O(1) domains in each of which
=& fuu/(f2,— 1) is monotonic separately in each of the variables and bounded
because |f,,— »| > », throughout.
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Hence we find, as in the proof of Lemma 6,

— 1
E I, <log(f, ]Y Bi aj + )
vj€Rpj=1,00,0 =

A similar result holds for every other term on the right-hand side of
(35) and Lemma 7 now follows from 35 and Lemma 6.

S. THEOREM 1. Let f(y, ..., @,) possess continuous second order partial
derivatives in the hyper-rectangle D', a; < x; < bj, j = 1, ..., p, containing D.
Let

fomgl <425  (1<4,j<p)
and

O(fuyerTry)

T Z Ay A, >0 for 1< <hh. <<, 1<r<p,
3((1/‘,;1, ey wl'r)

throughout D', where X's are positive numbers independent of x, satisfying
the relations (bj—a,-)lif £ (b¢-ai)}.ﬁ and b} = aj+1. Then

.

8= Z ) o H ((bj— as) A2 4 25 .
(ngsees0p) € D i=1

Proof. We have from Lemmas 6 and 4

S<[]ﬁ7 Vv;,+1 2[1/37

Now

l— log(By—aj+2) .

Bi—a < 2 b— @) Ay <€ (bi—ay) dyy
and
log(B;—a;+2) < log{(b;—a;)A;+2}
< {(b— a5) 2y + 21"
= 13 (b — -+ 2/ A
< Mf(bj—a;+1/A;)  since bj—a; >1.
Theorem 1 is now immediate. ‘

THEOREM 2 (The general Van der Corput transformation.)
Let f(xy, ..., ,) possess continuous third order partial derivatives -in the
hyper-rectangle D', a; < x; < bj, =1, ..., p, where b; > a;-+1. Let

O (fay s oo Fay) ", (1 iy < o <ig < p )

>4 1<s<yp
3(#iyy +eey Wiy)

8

Lo
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and R0
2 7
<A ] A
o < 4 Gay=ay Vo S AT = w) G a)
throughout D' D D.
Let (T -y Zpp) De defined by
Joil @y ooy Tpn) = P05 (5 ey vp) €4,

where 4 is the transform of the region D by the transformation y; = fq,,

i=1,..,p. Then, if m is the number of changes of sign in the sequence
(fayy -5 fug) .
+1 S ’ j=1,.,p,
DB (@yy ey B)
we have
»
i @ypoerest ) = B v}
o Q i=1
cﬂni}‘(n, slip) —G“ (I’ 2m) \ ’6 1/.’
. d(f.l'n ’pr h
(1150000 € D [T 1p)SJ ..’.,A___.__
O @yy veey Tp) ppoentyy)

<<Rp+;, L \ ][ (? | bs ——ag)_{b, a,_Hog(

—+ 9)}
i= 1 877

Proof. In the following proof a; and B (am < fn») denote the
values of f,, at the end-points of the largest segment of the curve fy, = »,

i=1,..,j-1,7+1,..,p, which lies entirely within D. Also
=Minf,,, f=Maxf,, j=1,..,p.
D D

The region 4, is defined as in Lemma 7. The region A4, is defined as the
Jargest region contained in 4 containing lattice points (v, ..., »,) such
that the hyper-rectangle |y; —| <1, j =1, ...,p, is entirely contained
in 4.

‘We have, by Lemma 5,

?
2mi(f— X vss)
.. | e t dmy

{36) v Ay —
(V1seenspp) € 4y D,}j_m{—vﬂ;:y
o 271 f(yys1e wpy) = E‘ vyt
_ *4—(27—27") 1
[ P f””' ’f’” ) [+
Dyy o 79313) [CPR ]
D Gi—) o1 2 1
- T4
<] [ 22 (55t i)
J=! I(bs -—a,) 12{ (br—ay) ﬁf— v+1<u,<2,e,l—1 ﬁj”_w v— o
P P
(Bi— o) (b;—ay) f’“ \! r
LRSS . SE—)
| £ =) By BB D)
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Now
N p n
37 j— aj bi—a .
0 b < L OG0 e—a <5—a
=

Also, the error term introduced by replacing the domain of summa-
tion 4, by 4, and 4 respectively in the first and second terms of the left-
hand side of (36) is

<Zb_
<>Wb—-a,II( )

As in the proof of Theorem 1,

_ag) (bp _ap)I[(ﬂs'—as‘l—l)

8$F7

(38)

log(fy—ay+2) <7+
and so
(39) | 55255 | [rosttr—aet2)
JUI'=(1,2,....p) FeJ i'eJ’
JED 2
bs—a,
< Diogtg—a+2 ] [ (r+252).

\ j=1 s#7
Theorem 2 now follows from (36) to (39) and Lemma 7.

THEOREM 3. Let f possess continuous partial derivatives up to (k+42)-th
order in the hyper-rectangle I, a; < a; <b;, j=1,...,p, containing D.

Let k=Fk+...+kp =1 and k; > 0. Let g = ka‘ o and
1
d,(g’”‘*___ﬁ’ )| Ao iy >0 (<t <l <. <l <p, 1<K P)
C*(:I,‘,'l, ceey Z‘r[‘)
gl < Ady (1 <4,§<P)

in D', where A’s are positive nwmbers independent of x, satisfying the

conditions (b;j—ay)ds; < (bi— ;) Az, Further, let
b=atl, K=2% K;=22""  for j=1,..,p.
Then
S l Arif(n &1
0 =7 2 i)
Ho—a) [10-a)"?
) L 1 [N S | -1
\ 2K —2 K oK
< L\J (bu *—du) +o +apinpe  +
n=1

Acta Arithmetica VIII 13
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1 1
+ Z (a0l )K(ﬂ+1———23)+ ST " Hence, by the given conditions of Theorem 3, the conditions of Theorem 1
o iz o2 : are satisfied for the functions Af with Uy in the Dlace of 4y and so we
=< 1 1 have by Theorem 1
“E i< \1 9—1, K (D2—8+1)
+ o as + (o507 ) »
; 12 —1/2
RS A . (2) 8= 3] amstenn < [ 40— a) (OB + (T ™

where the dash in the w-sum denotes that the sum is taken over those u for R L . .
which &, > 0, and And, by successive applications (k; times w.r.t the variable n;) of Lemma 2
’

to the sum §, we find

b
40) =[] ®—a)", 2 - i
g (43) 8 < [[0j—a) g+ g+ + ")+
=1
= coeff of «° in [ A { - ——} if  s#pl24+1, 2 1-UE UK
@) 1 i =an ] o) 752 S sl
P m 7=1 L L
1= log (b; — az)¥ coeff of 2t in ] el —-——-—} . where
Apj2+1 Q{ Og( (1,7) —] (bj-——aj)}ﬁ
0 bo—a, fo [ R A . =1, ..
Proof. Let <g< T f=k .t Rt At b, e=1,..,p,
a:j == a:,-+u1¢tkl+__,+k,_1+1+...+uk,jtk1+,,,+k, (1 < ?‘ < p) and Usgj in 1%‘ lS’) rans th.rough
where the u’s are positive. , _
Then set I1<u=u<¢g.—1 (a=1,...,%),
1 1 .. .
- , , U, being the oth = in the sequence i, ..., %g; %izy ooy Ukg2y ey Uiepp-
4f =! of Tt @1, @2 ooy @p) Aty Al From (41), (42) and (43) we deduce, putting os = g5...qs (1 < 8§ < k),
H ; 8 —1/2 , —1/22 1/22 + —1/2k 1/2k 4
=U[..[g@i,..,ap)dt...d% (44) —— <o e et ok
§ y Tp
b o0 7H1 (b;—ay)
where =
U= Uy eor U1 Wng oee Uiy = —+ Z {as @p/z S}IIK t 0% K Z ayh
If now 0<s<pl2 pl1<e<p
% =7 ‘Hltk LT et ,1 K <r<s) provided the g’s satisfy the conditions
W=ttt (1<j<p), k=0 .
then T mEiEE R (45) Frr<a<bh-a, PL<e 1<p<h
8(Afzys ooy M) where B = ky+ .ot Kozt 1, ey Byboetliy a=1, ...,
Oy ouey 1)
0yt @y s Tot) o Tty (@ e ) o e
= f f i\ ""a P Tt 00 0 TP gy b Now it can easily be shown by induction, by appealing to Lemma 3,
5 & (@5 oeey D) that there exist g, ..., gr_1 satisfying (45) such that

1 1
[ 005 (B1ry ooy Bp1)y ooy Goy (Bigy ooy Tps)) »
8 B, \ 1Ly ) Ypl)y 1 g \Wigy 3 “ps, ” 1 _ o ’, _ I
U ff B@ny s ) Abyy o Bl (A7) o™ o 0}[224----—{-91» llzkgi/kl < 2 (b @) "M En 1 g KD

p=1

fl

0 []

13*
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Again by Lemma 3, there exists a ox satisfying (46) such that

48) o Y fwlP R Y df
0<s<p/.’-+1 PRI €D
YRR - —yK YK | 1K —1j2K
& @ VEETN L THE Z a - aprnpe” T+

P21’ <P

' 26 y1fK(p+1—29)
+ Z {ustpi iz} + y

o<s<p/2 o<

J(K—p—29+1)

+ Y (aa

,)/..—— 9)1/K(11/2—S+ 1) R

058 )2
PRI <P

Choosing gy, ..., 0 a8 above, we have Theorem 3 from. (44), (47) and (48).
TerorEM 4. Under the hypotheses of Theorem 3,

1 1 1 K+428(K-1)
“Ra \ K K EKipE~-1)
m ,\ bﬂ— a,, —+ 2 Qg U +
H (b;— ay) ,r—l os<pf2+1
=t 1 11 K@ik 2
TR T pE-DHK K~ RAnE-1) \‘1 '
+ o Ao + ag 7 Qg -

PR+FI<SIP

Proof. We choose gy, ..., op—1 a8 in the proof of Theorem 3, but

we choose
AK—1) o1 1 »
TpE-DTE 2K~2 K :E
or=a g0 that Ok =ap 0k -
Then we have from (44) and (47)
» . __}_
8 N x5,
R A
” bj—ﬂq) n=1
= 11 K+>s(K 1) _1__K+(17+2)(K-1) - 1
\ | ER'EWpE 1 K K+p(E-1) K
-+ ) a5 o +a > g
0 < pf2+1 plAt+1se<p
provided
’(I\ 1)
TPE-NIE
Qg - < w.

Thus we have Theorem 4 in this case. In the contrary case Theorem. 4
is trivial. Hence the theorem.

Remark. Evidently, in view of the remarks after Lemma 3,
Theorem 3 gives the best possible inequality that can be obtained by
a judicious choice of the parameters and hence is in particular stronger
than Theorem 4. In the case p = 1, Theorems 3 and 4 reduce to the
following Theorems.
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THEOREM 3'. Suppose f(x) to be real and has derivatives up to (k- 2)-th

order (k> 1) in (a, b). Let
0 < Apwo <% @) < Adpss 08 duws < —[F@) < Adiga
throughout (a,b). Let b > a+1, K = 2%, Then

Z £ < (b_a)l¥$§~2)+(b_-a,)l—(k-ki)[;’,Kl;‘—_)lleKn%_(b__a)l—ll?.}'\' .
a<n<b

THEOREM 4'. Under the hypotheses of Theorem 3'

y g.mf(n) <

a<n<b

— ) AETY - (b ) TVE QAR
Theorem 3’ is Van der Corput’s inequality (Satz 4 of [3]) for one-
dimensional exponential sums, while Theorem 4’ is the Titchmarsh ine-
quality (Theorem 5.13 of [12]). In view of the above remark it follows in
particular that Van der Corput’s inequality is stronger than Titchmarsh’s
inequality. A direct proof of this statement is given in [7].
6. The lattice point-problem. We require the following further lemmas.
Levua 8. For arbitrary M >0 and for any function g,

9 D wlglm, )

{(n1seeunp) €D
8[1)‘ +Zl y —"mﬂm(ﬂ; +57p)

(Myseee M)SD
where v, i8 the function defined in (8), |.D| is the volume of the region D
and 8 is any positive inleger.
Proof. We have

M_m(l M“)

m m8+1

ERThTS
Mm* f
0

+1/M

'Pl(g(nu ) np)‘*"i‘.%') ﬁdyi
Z M
e

221G (11,0000 0p) o < ' .
i ( J Me—2 rnmudy) — Z O~ 2T, mp)
m=—cc
where ¢, < 1/m and ¢, < M*/m*** and the dash denotes that the term
corresponding to m = 0 iz omitted. Hence

UM UM

8 s
G 3w [ e [ gty mi+ Yu) [ [ an
{Ry)...sTip) €D 1] 0 =1 1
’ ) m‘% . . cd
< 2 Icml lge—ﬁmmﬂm,".mp) < Z l Ajj e—2nimg(ny,e.np) M]n(% ,._/”_:l;[ﬁ) .
me=—00 m=1
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Again p,(u)—w(v) Su—v if w0 Hence we have
yu ' oym
ZM“f f (g(%l, - ) Zﬂ/a)nd%
D 0 i=1 yar _431 N
<Z"P19(’"'u ey Tp)) + Z Msf f (Z ?/d)][di‘l;'
D (yyeeesttp) € D o 0 j=1 g=1

T
:Wp))+ 2—}[ Z

(n2y--snp) €D

y"p))'l‘éjﬂ |D] .

—_—.Zzpl(g('n],
D

< 2“[’1(9(""“
D

Similarly .
EM’ f f%( gy vy M) +2J’)Hd%
D ~1/M —1M
s|.D{
2'}’1."(”’19' ) Top)) — oM
So
(31) 2 "P1(g(”17 () '"’17))
(Bgseersnp) €D ey LM

< Zﬂ.’[s f f "P].( (Myy o 7'”'17 +Z"J1)dei"+8i1)|
D 0 0

(49) now follows from (50) and (51).
LevMa 9. If ay, .., ap are any real numbers, then

Zax,...,aw _
. r -

0<hp<hpa<a<hy s=1

logz
(r+2hathatethe<yos

Proof. When p =1 we obviously have

2h1a1 < wa;/(r+2)+ logw .

logx
0<h<;Ts  Togs

We prove the lemma by induction on p. We have, if p >1

Zab..-.ﬂﬁl 2hgﬂg+...+hp+1,ap+l 2711%
r - )
0<hpia<enSha hy€hi< — ( L — Ty~
Jogw 9K Ry 5 p+1
(r+ 8Py H g < T+2\log
ul
(n+ ot lpey
1 ey r+2
< 2’&30»2+ Ahpprapts {2 igay 4w 2
O i hy logw
(r+9hgthstothpsics (if ay # 0)

p at...tas -
ghortothoty 2 » e (loga)?™* + (log@)” .

icm

Lattice point of problem many-dimensional hyperboloids. 1T 199

1+ GGy enns . e a ar
- S’ 102,080 00p31 | wr+g 2"«1 e )
d T+1 ! 7+1

D opt.atasdr
< (logaf’+ D@ " (loga)~?
§=1
gt eetag41—-Say/(r4-2)

@ p
e {(logm)p + Zw s+rie (log:v)p_"}
=1

(by the induction hypothesis)

P+l ayt..tas

< (loga)®+ Z:c L (log )P0,

8=1

Hence the lemma follows by induction on p in the case a, 0.
It

G =w=a=0, 050, 1<

3 < togar X3

and the lemma again folows in this case. If, however, all the o’s are zero,
the lemma is trivial. Hence the lemma.

s<p,
then

1/(r+1)
where D

We now consider the exponential sum § = e  \m-na
D

is the region a; <y <<
Theorem 2 to S. Here

2(1,,, Ty gy T < 1, i=1,2,.

2P, and apply

F@y oy 2p) = _( @ )ll(r+1) ’

1 1 @z 1Y(r+1) A
f’”’_'r—}—l'aT;(wl...mp) , J=1,..,p.
4 is a region (2) contained in
1 1 z 1 2 .
ri1 pErrE a,~<j<r+1 o’ i=1,.,p,

where 2 = (@/a...ap)Yr+D) >a; > 1 if the sum 8 is to be non-null. Here

we find
r=22, R=z", m=p/2,
»
+7r-+1 1
LG mp-)—zvfmf« == (Zzﬁ)mmm (v o)t
i=1
O fars wons fag) R W~ T o Tty
(@15 ove s ) l(epyomiyy) S “ (r+1) (1---70) )
3t

(%) Throughout, we are considering only reglons satisfying the general conditions
‘we have imposed before.
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Hence by Theorem 2, we have Hence, by Theorem 3,
i 1 plr+1)
(52) S— e—j ? (—Tj——l—— )ﬂ(@i{“——w)ﬂw”” X N —k E _P 1
. r+1 53 > S NEE=2 1 (5 2 _1ym YE
prr4l —+ (83) zp/al ap —1—z o'y + (7 2op-nz )t
__E p+2r41) o PAr+1 1/(p+r41)
X v (v199.+.7p) 2 e e ‘“( + )‘ﬁ”“p"'rﬂ)(hlmvp) 2 \ 2 1 v » P 1
/ Ve D —5% —~k , 5—s+1 =, -5, =k L_e o TR
D G S L I T A O
2, 0<s<pf2
pp+H-—1 v 1 1 g F1<s<p
<z Ao+ {azz ~+10g<~ +2)} i l (#+2 2a) _r 3 PO
g= 1 §#1 +z 2K[ Z {Un—so'(p—-l)lz}K(p'{_l—ﬁs)‘}‘
P 0<s<pf2
< z”g::’—:%lﬁ—zgq]( y ‘li) , ’ \ —k (g““)(g“s""‘) &G l2—s+1)
"£-==J1 ! . + Z {(z ') = Op—s p } o
. 0<s<pf2
since PI2+1Ks’<p
1 1! 1 pp+4)—1
1 L 1 ot 1 1 . N
E 2 5 'Iz 2 We can now nme without 1 of generality that
log(a—%?) ]’ (# +2 %) <o £ <z 0+4) ’ an 1 ass without loss generality tha
i ! A
s#i x4 zaz..zap=1.
because z > a; > 1. . o k0 .
Next we consider the sum Then, in the above, we can choose 65 = @y...as if s # p[2—1. Hence, if
0 <s<p/2
8 = 271 F (#1500 p) 2,
, —25 2 —(p—28+1) Op-s O\~
Btomtp)ed {op—slp—p2) (Tp+1i20@—1)/2) = (G—LL ) (;_P._/)
where now tp—1)i2/ \O(p—1)/2
- ptr+1 Yp-+r1) = (A sz tp—s) AT <1
F(@yy erry Bp) = e (5, ... ) (A2 Gpms) Qpiviz S
. . . So the sixth term on the right-hand side of (53)
and A’ is a region contained in
—PRK 12K
1 s, L .® . < 7" opriete-or) s
) T SIS T =L e Py and the third term
(r+1)2 a; r+l a h
: o 5 <& (o rpp-ve)
and apply Theorem 3 to §'. Here we easily find that = w+120m-1i2 .
& . b 5 Algo from (52) and Lemma 1 we have
o =2o", n a
j=1 ’
. _ o (54) S22 & ——+ 2 UAPE -2 gy .
Uy =2 plz(z Icw )'n/.. adﬂﬁ zp/a/]'ap

where "
From (53) and (54) we find

. ’ i ; it P
s-th elementary symmetric function of ay, ..., ay if 8 % 5 -1, 8 < Zz"“ai‘...a;‘}’, say, where ao>0().

Oy =

n
. . k
ls—th elementary symmetric function of ay, ..., a, I I (log 1) ! of s=%—1
: a,
) i=1 1 () When p = 1, the term z~'o, in (54) gives rise to an g, < 0; but in this case
the convention being o, = 0 if s is not an integer. 2-1g, = z-'a, < (z~'a,)"% and so this term can be omitted.
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Hence by Lemma 8, for arbitraray M >0 and s>Maxa,

@ \UeHD
8 = Z (% (nl...fnp) )

(Ayeesnip) €D

< 2 2 (mz)™as* ... ag?Mi LA o
O R P Rl

m=1 a

- %l?f')" ;‘zanagl'"“;p{ Z me ™ M* 2 mao—a—l}

l<m<IL m>M
< f—& + 2 (M2)"as*...az" .
Now by Lemma 3, there is M > 0 so that
8, < 2 {(zop) 0t ... alp 0T

Hence, by Lemma 1,

r(1-+0) 1
55 2 ( T ) 1 ( @ )r+1
{%5) i \my ...y P\

r(-+e)

T\ r+1 r o gy ap L
< (?r_) E {{(mop)rtiay ...ap Ptoo

? a

: ?
1 1 9y r 1
1 J——— — e — e
< E @ +f+1 ('re 1+an) altae 1 (9+1+a0) .
I 1 7
a F=1

Hence

71+ 0)

1
8, = z r+1 T Y
2 2 (%1 fnp) ¥ ((nl ...np) )

nlA..aL‘,n;-HQE
r{1+0) 1
(_ . ) ~ v ( ; B
Ny el Wy i

=l

Ryernhip ahiny<2hst1

1
nl...n,,‘n?-'- <@, J=1,.,p

2 Shytp (537 .

L~
Bince Sp,,...n,-18 obviously invariant for interchange of any two A’s, we

"have
|8l < Z

456)
B i oshp<...<hy
(r+2)ha+m+...+h,<}g+:“; o

I
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From (55), (56) and Lemma 9, we deduce
yi

s {a)
(37) 8, < 2(logw)”“"2 o'

A=0

where

2
/'l—l—l—Z ag
§=1
1+a

+(a)
58 ‘) _ 4 Te— ]2 Ha)
(58) Y 14 Tora+1’ 2a

’

A
> a, denoting zero if 1=0.
8=1

We now choose &y = ... = ky_y =0, kp =% in (53). Writing down
the various values of j°, we find, for fixed 1, that j{’ is a monotonic
function of the variables of summation s, s’ in (53), and so i correspond-
ing to the end-values of s, s’ alone matter. Substituting the resulting

values of jﬂ“) in the expression for iﬂ{’), we find that the values for i

are again monotonic functions of 1, and so here again i and 4 alone
matter. We find the best possible choice of kto be k=1, ifp>4 k=2

if. p=2or 3and k=3, if p=1. Choosing these values of %, we find

_ 2(p+4) 16
Tp+2)p+H-17 23

if p> 2, p =1 respectively ;

(39)  fo=Minis"

) @ 2p+1)(p+4) 23 26 55
- (@ __
(60)  Jp=NIn0'= G o+ -1 14’178

if p >4, p = 3,2,1 respectively.

So finally we find that (57) reduces to

re—ip ro—.

Jo
8, < &P g (loga)”
Noting that j, < 2, we have from (7)

ro—in re—io
(61) A2 @) <@ Prrpg T T (loga) -

(12) is now an immediate consequence of (59), (60) and (61).

In conclusion, I wish to record with great pleasure my sincere thanks to Profes-
sors V. §. Krishnan and C. T. Rajagopal for the keen interest they evinced in the
preparation of this paper and last but not least, to Professor V. Granapathy for his
valuable suggestions and eriticism.
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Another note on Hardy-Littlewood’s theorem
by

S. KNAPOWSKI and W. STAS (Poznan)

1. In this paper we return to the subject of [3], i.e. to the investiga-
tion of the bebaviour of

(L.1) Bly) =D {Am)—1}e™, y>0,

N=
as ¥ —~0-+. Unlike in [3] we shall be interested here in oscillatory prop-
erties of the function (1.1). Hardy and Littlewood showed [1] that on
the Riemann hypothesis there is a constant K such that each of the ine-
qualities

Py > 2

(1.2) 7

F(y) <— ot
is satistied for an infinity of values of y tending to zero. In connection
with this result we shall supply here inequalities similar, though somewhat
weaker, to (1.2) holding however in an explicit form and without any
hypothesis. In the proof we shall use the method of Turan (see [5]), partic-
ularly its development to the study of oscillatory questions in prime
number theory (see [4]). Our result reads as follows:

THEOREM. For 0 < 8 <6 (1) we have

10g(1/5)10g10g10g(1/6))
-1 -
{1.3) é,}:ﬁnf'(y) > 672 exp( 14 Toglog (1/3)
and
5 - log (1/5)logloglog(1/3)
| Iy Y —14
(14) in Fly) <=9 ”“P( = oglog (19) )

COROLLARY. Replacing the exponent % in (1.2) by §—s, &> 0 and
arbitrary, the inequalities are satisfied (without any hypothesis 1) for an
infinity of values of y tending to zero.

() ¢; and further c,,¢;,... denote positive, numerically calculable constants.
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