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On primitive prime factors of Lehmer numbers II

by
A. ScHNzZEL (Warszawa)

The present paper is devoted to the investigation of Lehmer numbers
with more than two primitive prime factors. We retain the notation
of [3] with small changes that will be clear from the sequel.

In particular,

n odd,

7 even,

_ [,
l a———ﬂ

where @ and 8 ave roots of the trinomial 22— I*?2+ M, and L and M are
rational integers, K = L—4M 0. Further, Z denotes the complex
conjugate of any given z and ke(n) denotes a positive integer n divided
by the greatest e¢th power dividing it. The main result of the paper runs
as follows.

TreorEM. Let (L, M) =1, ¢ = 3, 4 or 6. If I** is rational, K'* is
an irrational integer of the field K (C.), K is divisible by the cube of the
diseriminant of this field, =, = k(M) is squarefree,

2
He = 1

and wjnes is an integer relatively prime to e, then for n > neL, M), Pn has
at least e primitive prime factors, and n(L, M) can be effectively computed.

Lemuma 1. Let e, m, n be positive integers, min, and let 3 be a character
modm such that x°+1 =y and that for all ¢5%0 (mode) characters 27 are
primitive. Further, lot

if e=6, M =3 (mod4),
otherwise ,

=t(tm) = D, £,

s
(rm)=1

let y, be a character modn induced by yx, and let x(=1)Ye be any fized
e-th root of y(—1).
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Then, there exist polynomsals A2, y) (0 =ii <€) with coefficients
from the field K ({.) sueh that

vl o, 9) =[] fo—z(=1)" 10 eny)
(r:;;»‘:l 1
= Ao, y0)+ D (= L)ieran=iyld (ae, ye)
4=]
1) ro(wa y) = Ay, x),
2) Afw,y) = Aesily, ®) 7= (=1)  (0<i<e).

Prooi. In the course of this proof we shall denote by ay, ay, ...
<3 b1y bay oy €1y Gy ... the mumbers of the field K (L), by P&y, .0
and (&, 7, ...) the ith fundamental symmetric function and the swm
of the th powers of the indeterminates &, 7, ..., respectively. Wo have

()

(3) i @5 ¥) = ) (=10 1)y ey al— 1)
7=0

and by the Newton formulae

— (‘k
p;= ; , Doty a0y .S’] 8%. .- .
at-2agF o Roge= §

On the other hand,

n
- TR i
Szl ny ooy i~ )G = X 4ir) & = 2 (b2
(=1
Now, it follows from well-known results ([1], §20, theorem Iv)
that under the conditions agsumed with rvegard to character y, 7(yh|Cl)
can be different from zero only if

=0 (mode) or m

(n, %)

and in the latter case

W, 1)

p{m)

(JL) n) g (m/(m, i)
(

2 if  4e=0 (mode),

Ye(ni(n,4))’

Tl Gh) =1(4|Eh) x (.JL..)J(_ " -t(.’fﬂ._) e
I # (, 8)m * (n,i)m)x (ny ) @(nf(n, )’
. n
l it m (m ’

where (% = (™,

On primitive prime factors of Lehmer numbers I1 253

This implies that
(4) pj(ln(l)Cna cery Znl— 1)} n ) = 2 Doty T1 T oo THE
g 2yt et liogy =
Now, it follows from other well-known results ([1], § 20, theorem VIII)
that-for suitable e;, 7; = ¢;7i; thus if

o+ 20+ kay =§ =i (mode),
we have

oy, a9 ag
{5) T T = Capoper i -

Tormulae (3), (4), () give

(6) P (i @, 9) = Agla®, )+ Z 1= 1)leviae=iyid iz, yo) ,
=1
where _
n)—J i/
Aglw, y) = 2 1) 2= H Dyt Gy T A :f)/ayn ’

0= j ()
apb 2ottt Feag = F 20 (M0l £)
A, y) =

(=1 2= 1) Dty oy "0

a2y lg ;,m(lalr'(mndr)
0<i<e)
are polynomials with coefficients from the field I (Z.).
To prove formulae (1) and (2), notice that
?_L 12
IT 70 =il ] r)=n=2y".
(r:;:;:-l (1";:)21
It follows that
B ) =[] fo—2-170E)
(1
n
= [ (~2=07"5008) H (v — (= 1" (r)ths)
Pl
[(XDL] (rrl)=1

— ~lr(n)/e I'I 70 (s v, x) = (%) Y, %) -

sl
(rn)=1
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Applying formula (6) successively to v(xn; 2, ) and y(xa; ¥, ) and taking
into account the well-known equality

(7)

we find (1) and (2).
LeMMa 2. If e =3, 4 or 6 and o is a product of normalized irrational

primes of the field K (C.) (1) such that m = @ is squarefree and (m, e) = 1,

then there exist a primitive root of unity L, and o character y satisfying

the condition of Lemma 1 and such that

7= 2(—1) 7o

T(7'16m) = L (= )BT (0 <i<e).

., e—1 . ,
Here arg ole = —i;zurgw, argwlt = %argw +£—'3—2T:, 7 (— 1) g any fived
(4, €2)-th 700t of y(—1) and
1
(8) Zi,; - dﬂ_wx(_1>(‘m5[63+‘l(4mﬂ)l .

Proof. Let @ = mm,...7, be the factorization of w in the field K ((,)
into normalized irrational primes. Since wa is squarefree, nombers py=n;7;
( < k) are distinct rational primes, and since (w®,e) = 1, p;+e. Now,
for ¢ = 3, 4, 6 there exist two characters ymodp; such that y¢+! = 4 and
all y¢ (0 <i<ce) are primitive. It follows from the formulae, given in
[1], § 20.4 that for one of these characters, which we denote by xy,

%(4,6%) ¢ -1
(=177

(9) T(i1l) =1 2,
whence by (7)
(10) (25 p)® = as(— 1)

Further, it follows from the connection between 7(y;|lp) and r(x}"lt,“p,)
(ef. [1], § 20, theorem IX) that

(11) (2 1) = 753

(12) (45 | Epy) = i

Finally, formula (7) implies that for ¢ = 6

(13) (2 |8ny)" = 2i(—1) ] .

Formulae (9)-(13) can be written together as follows:

(14) T 1pp)* = 2(— 170 (6=3,4, or 0).

(*) An irrational prime = of the field K ({,) is normalized if @ = A By, 4 =2 —1
(mod38), B = 0(mod3) for e = 3 or 6, and w = A +BE,, 4 = B+1(mod4), B == 0(mod2)
fore = 4.

icm
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Put
[ k
C"‘:!—ICT’I’ }:znlj‘.
] j=1

It follows from the properties of characters %7 that x? are primitive char-
acters modm for all 540 (mode). Besides, we find from (14) and a well-
known theorem ([1], § 20, theorem VI) that

T(Xi[‘:m)e = y(— l)'fa’/(i,cz)ae—ﬁwi .
It follows hence that

(5 |Em) == 2y (— oL yfelte) le=le  ile ,
and by (7)

1
i [ 1(4,60)] 5
o = y(—1)4eH ghe-t ,

which completes the proof.
Proof of the theorem. Since k(a&) = x,, there exist tiwo integers
o and o of the field K () such that « = ofw and wo = .
On the other hand, by the assumption about K we have
K =0 (mod27) (e==3 or 6),

K =0(mod6d) (6=4).

Therefore, since I =L—4M, (L, M) =1,
(M, 6) = (aa,e)=1

and a fortiori (x.,e) =1, (a,¢) = 1.

It follows from the latter equality that Imef = 0 mod (1—Z)°. Since
also Tma = 0 mod (1—2%%, we get Im » = 0 mod (1—£2)°. Since wé is
Squarefree, o is not divisible by any rational prime and thus @ or — e
is a product of normalized irrational primes. But Pu(— ofw, —aio)
= 4 Py(a, f), therefore we can assume that o itself has the said prop-
erty. Applying Lemma 2 t0 o we find a character y satisfying the con-
ditions of Lemma 1 and such that formulae (1), (2) hold. et yuy, be the
induced character modn/n, (by the assumption ,|n/ne), and let y(—1)=
be any fixed eth root of y(—1).

Now, for ¢==0,1,..,e—~1, put

(1)

W@y f) = P dniny} aile’ lsl’ﬂ) ’

where

ol = gyplle ﬂ”" = glle ,
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Since § =@, we find from Lemma 1 and Lemma 2

15)  Qa, B) = Agfa, @)+

< i PRI e et i
+ X (— 1) (1) B ¢ w(ade) © (@) Ai(a, 7)
i=1
el i P
= Ao, @)+ s D (((— 10z (—1) ©P ™ F A (a, @) +
i=1

(1) (= 1) R A, (0, ).

Now, by formula (1)
Aya, @) = Ay, a) = Aya, @),
and by formulae (2) and (8)

B~ o (— 1) &~} A fa, @)
2-4-i(4,6%) i . e
=g(—1) G g (—1) eg(=1) BNE e AyE, a)
e—1 W e
=0y (—1) ¢ g (—1) @D ol A, i(a, )

50 that all the terms of sum (15) are real. Therefore, the numbers Q%(a, 8)
are real. On the other hand, they are of course algebraic integers and
by (15) they belong to the field K(Ca,x(—l)‘/e). Thus, if x(—1)=1,
they must be rational integers. If y(—1) = —1, ¢ =4 or 6 and (m—1)/e
iy odd. Since M = m (mod 2¢), (M —1)/¢e must be odd. This gives, for
¢ =4, M = 5 (mod8), which is incompatible with the condition that L2
is rational, K = 0 (mod64). Thus e = 6, and we conclude that in this
case numbers QP(a, B) are real integers of the field I (f.). Taking the
relative conjugates of the numbers Q¥(a, ) with respect to the field
K({,), we find as in the case of complex conjugates, that they are equal.
This proves that Q%(a, f) (0 < i < ¢) are rational integers in every case.

On the other hand, since (n/n, ¢) =1, we have
Tne
6) [ [ s 2,91 = [] = r=155)
(h%/ng)““

= Qupr, (¢, 2(—1)y9) .

It follows from the definition of #, that 7, = 1 unless y(—1) = —1, and
in this case 7. = 2. Therefore, we get from formula (16)

an nQ('?(a7 8) = Q%/ﬂa(‘i: Z("l)ﬂ) = Qnla, B) .

=0
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Further, it follows from (16) as in the analogous situation in [3], that
the common prime factors of any two numbers @, 0P (0 <i<j<e)
must divide the discriminant of a¢»—1, equal to ene». However, by
Lemma 1 of [3], no prime factor of en can divide @,(a, ) with an
exponent > 1. Thus the numbers ¥ (a, B) (0 < i < ¢) are relatively prime
in pairs, and in order to prove the theorem it suffices, again by Lemma 1
of [3], to establish the inequality

(18) 199(a, Bl >n  (0<i<e).
To this end, notice that by Lemma 3 of [3]
(19) 10g 16, B)1 < P log o] + 2emitlogin

On the other hand, by the fundamental lemma of [2], we have for
n> N(a,p)

(20) log | Q@u(a, B)| > (p(n)
It follows from (17), (19) and (20) that for n > N{(a, f)

—2"™log’n)log|q| .

log{Q¥(a /3]>( z(n) —2"™1og? n) logla]—2e¢(e—1)n"log’n .
Since |a| > 2¥2 and for n > 108

(ﬂgb—) 2"™1og®n )1 5 — 2e(e—1)n2log?n >logn (e < 6)
inequality (18) certainly holds for

7 > max (10W N(a, B)

and the theorem is proved.
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