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On the number of integers <«
whose prime factors divide »
by
N. G. pE BrUON and J. H. vAN LinT (Eindhoven)

1. Introduction. In a paper with the same title as this one, the first
author considered the functions
1 F(a) = ftn, @), Ga)=1(n,n),
Nn<T n<E

where f(n, #) is the number of integers <z which are produets of powers
of prime factors of n. It was shown that, if z—co,

(2) log (o7 F (w)) ~log (&7 6 (x)) ~(81log ) (loglog z) % .

In this paper we shall prove that F(zx)~G(z), thus giving the answer
to a question raised by P. Brdos (letter of September 15, 1962).
Without using the arithmetical properties of ¥ and @ it is possible
to derive from (2) that limsup G (»)/F(z) =1 (see section 2). In order
to prove the stronger assertion ¥ (z) ~@(x) we need more delicate methods

(section 3).
In [1] it was shown that
(3) logé(a(k))_l~(810gm)%(loglogw)"3‘,
(4) F(o)=w ,; (a(®) ™+ 0(2),
5 ¢(@) = 3 (o—1)(a(t) +0(e),

ksz
where a(k) denotes the kernel of k, i.e. the product of all different primes
dividing %.
The fact that F and @ are not too easy to deal with, is connected
with the complicated behaviour of the corresponding Dirichlet series

2 a(n)n=s = H (1 +1Tp’il-—T))

ne=1
if §—0.
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We shall not use the rather deep relation (3) explicitly, but only
the following weak consequence of (3): for each positive constant M
_ there is a positive constant € such that

(6) D (a(k) ™ > Coga)™
© k<

for all large values of 2.
By (4), (5) and (6), the statement F(x)~G(x) is equivalent with

(1) D h(a) ™ =ofa Y (a(0) ) (@c0).
k< k<sw

Our proof of (7) will be based on the following idea: if a positive sequence
@y, @y, ... is such that for every prime number p we have

S ol Ja),

n=,ptn n<e
then also
2 ((p(fn)/n) Uy = 0(2 an) .
n<e nNExT

This method can be used for other problems of this type. We shall use
it a second time to show (section 4) that (7) remaing true if on both sides
the summation index % is restricted to 2-full integers, or to 3-full in-
tegers, etc. An integer m is called A-full if m is divisible by at least the
Ath power of each prime which it contains.

Throughout the paper, in the notation ¥ the upper suffix (1) will
denote that the summation index is restricted to A-full integers. And
we put
®) Sila) = 27 (ali) ™

k<z

Our main interest is, of course, the case 1 =1, viz.

8y(@) = D (a(®) ™.
k<

Another way of expressing (7) is (see section 5) that Sy(x) is slowly
oscillating in the sense of Karamata, and similarly for the analogous
sum 8;(z) over i-full integers. This fact can be used for proving abelian
and tauberian theorems involving §,(z).

It can be proved that the Dirichlet series corresponding to S;:, and
S, respectively, satisfy (see [3])

O (a(m) ™ 1t o (a(e) ™
% A y(“‘)gz) DI

n=1
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if §> 0, s—~>0 (y is Buler’s constant). This leads to the conjecture that

.

o 8,(z) ~2" e "?(210g wfloglog )t 8y.11(w)

if 2—>co. In order to derive this from the behaviour of the ratio of the
corresponding Dirichlet series, it seems that we need to assume that
8r+1/8; is slowly oscillating in a much stronger sense than we actually.
proved. .

In section 6 we prove that anyway log8; has the same asymptotic
behaviour aslog 8, ; in fact we show that 8,(2)/8,(@) is at least (log(x +1))* .

2. Proof of limsup G (z)/F(x) = 1. Define xn = €*, yn = ZTn—1. Then
by (2) and (8) we have

(9) log 8, (#a) ~2n(logn) ™t = o(n).

For any ¢ with 0 < ¢ <1 there is an infinite sequence of n’s for which
8y(yn) = (1 —e) 8y(zn), for otherwise we would have

Si(as) = C(1—e)™™ for all large n,

C not depending on n. This contradicts (9).
If »n belongs to the sub-sequence mentioned above, we have

SHa@) <o Sla@) tan 3 falh)”
k<yn .

k<, Yp<K<Tn
< Yn Z (a(k))_1 + &y Z ((’1(79))—'1
k<wzn, k<zn

< 2e2n 8y (2n) ,

if n is large enough. Now using (4) and (5) we infer that the ratio G () [F (#n)
tends to 1 if n runs through the sub-sequence. As obviously G(z) < F(z)
for all z, the proof is complete.

3. Proof of (7). We need two lemmas. The second lemma is stated
in & more general form than needed in this section, which only requires
the case 2 =1.

LeMMA 1. For k=1,2,3,... we have

Proof. By the formula d/a(d) =t the set of 2-full divisors d of &
if mapped one-to-one onto the set of all divisors ¢ of k/a(k). So the lemma
follows direetly from the well-known formula ”Z‘ p(t) = n.

n
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LuywA 2. Let A be an integer =1, let p be any prime, and B> p*,
Then we have for all x> 2

)n(l?)

(A+1) ( )_
= 3™ jnto sums extended over all %
k<

logx

‘)p logp v( ) log
log2

STlogB z_J

(a (@)™ + (1+

r<z,ptk
(As usual, =(B) denotes the number of primes <B.)

Proof. We can split. Si(z)

x
without factors p, all & containing just 1 factors p, all k containing just
1-+1 factors p, ete. We obtain, if » is chosen such that » > 4, p" < B,

S;_(a}) P Z(ﬂ)( (76) —1 Z S’(l) ( (k) -1 -1

j=A4 kéwp“f otk

>a+e—A+0p3 2 (@)

k<2l B, p4E ‘
Sinee B> p* we can take » = [log Bflogp] and it follows that

logB

(10) 8y(z) = Sz( @B},

where the asterisk indicates that the summation is restricted to %’s not
divisible by p.

Next we consider the sum S83..(#) occurring in the lemma on the
left-hand side. We split this sum into two parts according to

a(k)y>B or a(k})<B

First consider the terms with «(k)> B. The formula %/a(k) =h
provides a one-to-one mapping of all (1+1)-full numbers onto all A-full
numbers, and with this mapping the %’s with ¥ < #, (k) > B are mapped
onto A's not exceeding x/B. It follows that the first part of our sum is
at most Si(z/B), to which we can apply (10).

The second part of the sum does not exceed the number of mtegerq
k with a(k) < B, k <. These are products of powers of the first x(B)
primes py, ..., Pap)- For each exponent there are at most 1+ (loga)/(log2)
possibilities. Hence the second part of the sum is at most equal to the
7 (B)-th power of that expression, and the proof of the lemma is complete.
‘We now prove (7), i.e

TaEOREM 1. If a(k) denotes the product of the different prime divisors
of & then

k 1
m=o(w2;-(—k—)) (% ~+00) .
] k<z
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Proof. By Lemma 1 we have
2 llat) = 2 3 3 )
d[k

? o(@a(d) [z/d] < wZ" (@a(a)/d

p(d/a(d

/ZM /AL

We shall gplit the latter sum into two parts. We choose a number 4 > 2,
and we consider the = (4) primes which do not exceed A, viz. Py, ...y Pua)-
Now the first part of the sum is extended over all ¢ which are 2-full,

<o and divisible by (p1; .-y Paty)*
For these d we have
n{A)
p(dja(@) < (da(@)W, where W=][@—p,
fe=1

whence this first part is at most
W D (a(@) ™ <aWs(@) .
a<z

The second part of our sum runs over d’s which are, for at least
one i (with an i < n(4)) not divisible by p;. Therefore, this part of the
sum is at most

(2)
zfa(d)
i<n(4) d<z, pitd

This can be estimated by Lemma 2, where we take A =1, and B> A%

It results that
x(B)
M)

- 2 Kla(k) < (W—l—
If ¢ > 0 is given, we can choose A such that W < }e; next we can
choose B such that 2logAd < }elogB. Finally, by (6) we know that

L+ ﬂogw)/(h)gm)"‘m < Le8,(x)

for all large x. It follows that, for all large =,

ot D Kfa(k) < e8y(o) .

k<z

2Alog A
logB

loga
1 +10,»3','2

As this holds for every &> 0, this proves the lemma.

4. Restriction to A-full integers. The proof of Theorem 2 (p. 355)
requires, instead of Lemma 1, a slightly more complicated convolution
formula.
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Every multiplicative function f is completely defined when for each
prime p the numbers f(p),f(p?, ... are given, in other words if its

p-component
1+ ()2 +1(P*&+ .

is given. If we have, between f, ¢ and h, the following relation for each p

Nipne D gp# =
j=0

j=0

s

h(ph)el

<
1
S

then & is the convolution of f and g, i.e.

D H(@)g (kjd) = (k)

alk

for all k, whence, for all >0

PRICEDNIOEPINIOR

<z d<z 1< [z/d]
‘We take for h the function defined by the series
1 _}__pl—lzl +pﬂzz+1 +pa+1zl+2 + ey
for ¢ the function defined by
1+ pi—igh - pRO—Dg2h . PS8 |-

whence we have to take for the series which defines f:

241 ©
2 L 2
(1—p*ie) (1 4 pAigh LprAtl L) =1+ py—lzi + p———p P,
j=i+1 =21

It follows that F(k) =0 if %k is not (A-+1)-full, and, otherwise f(k)
= k{a(®)™* [T (1—p~), where the product is extended over all primes p
for which p* divides k.

Notice that (k) = kfa(k) if k is A-full, and 7 (k) = 0 otherwise. Hence

S kja(h) = D h(E).
k< k<=
We have, for all ¥ > 0,
gty = V424 L L [P <y
=<y
and it follows that

(11) SPa(ky < D F(@d.

k<z d<w
‘We can now prove

icm°®
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THEOREM 2. For every A (A=1,2,3,...) we have
> I 1
2 ol )"
k<z k<z

Proof. As in the proof of Theorem 1, we take a number 4 > 2, and
we split the sum in the right-hand side of (11) into two parts. The first
part consists of all d which are (A1+1)-full and divisible by (p; ... D)™
For such d we have f(d)/d < W/a(d), whence this first part is at most
wWSl(m).

The second part consists of all (A1-+1)-full d’s which are, for at least
one ¢ (1 <4< w(4)) not divisible by p;". By Lemma 2, the contribution
of these terms is at most

24Alog A log x\=®
long Si) + (1+10%2)
The extra factor 1 arises from the fact that we do not only consider d’s
which are not divisible by p;, but also d’s with exaetly A-+1, or 1+2, ...,
or 22 —1 factors p;, and we use the fact that 3¥ (a(k))™", extended over
all A-full & < » with exactly § factors p; dividing &, equals p;* 3@ (a (%)™,
extended over all A-full k < z/p} with p;rk. The remaining part of the
proof can be copied from the proof of Theorem 1.

S. The 8;(z) are slowly oscillating. For each 2, the function Syz)
is slowly oscillating (in the sense of Karamata), i.e. for every fixed ¢ > 0
we have Sy(cx)/Si(x)—1 as z—co. For, if 0 < ¢ < 1 (a restriction we may
obviously make), we have

kZm (@)= 3P @m) = 3 <™ XV ufal,
<

k<<cz cr<k<z cx<lk<z

and the latter expression is o(Sy(@)), by Theorem 2.

The fact that Si(z) is slowly oscillating can be used for proving
abelian. and tauberian theorems involving that notion. For example, it
can be used to show that

S gt () By) it
1<k<oo
This follows by application of an abelian lemma (see [2], Lemma 1) which
is the abelian counterpart of a tauberian theorem of Karamata.

6. Behaviour of S;(z). It is not difficult to show that log8){x) has
the same asymptotic behaviour as log8(z). We can prove a stronger
result, viz. logSi(x) = log Sex) + O (loglogz). This follows from

TaEOREM 3. For 1 =1,2,...; 2> 0 we have

Sx(w)log (% +1) < Srra(x) < Su(w)

y>0, y—=0.
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Proof. The upper estimate is trivial. In order to prove the lower
one we notice that every i-full integer % can be uniquely represented
in the form & = mr4, with the restrictions that » is (A 41)-full, » is square-
tree, and (n,7) =1. As a(k) = a(n)r, we obtain

Sim) = 27 (am) ™ X',

n<e r<zin

where the dash indicates restriction to squarefree r with (r,n) =1.
Ignoring these restrictions, we obtain

Su(w) < Sra(w) Z =t L Bya(w)log (@ 41) .
r<afn

This proves the theorem.
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Verschirfung der Abschitzung von (3 + i)

‘W. HANEXE (Marburg/Lahn)

Einleitung. In dieser Arbeit soll eine neue obere Abschitzung fir
die Riemannsche Zetafunktion £ (s) auf der ,kritischen Geraden® s = %+t
hergeleitet werden.

Grundlegend ist dabei die Idee von Weyl und van der Corput, die
in der approximativen Funktionalgleichung der Zetafunktion auftretenden
trigonometrischen Summen in Exponentialsummen {iberzufithren, die
unmittelbar eine nichttriviale Abschitzung gestatten.

Bei Weyl und van der Corput waren diese Exponentialsummen stets
eindimensional (vgl. [7], Chap. 5, 8. 81-101) ().

Titchmarsh erzielte durch Einschaltung zweidimensionaler Exponen-
tialsummen bessere Abschitzungen (vgl. [3] und [6]).

Min [3] verfeinerte die zweidimensionale Methode und fand damit
fiir jedes beliebige aber feste positive &

(g 4at) = O (1892 +e)  (f—o0) .

In der Literatur wurde bisher noch keine Verschirfung dieser Abschitzung
verdffentlicht.

Im Beweis von Min tritt das Problem auf, fiir die Nullstellenmannig-
faltigkeit einer Hesseschen Determinante eine Umgebung mit bestimmten
Eigenschaften zu konstruieren. Diese Umgebung ist nun im wesentlichen
durch die Anzahl der frei wihlbaren Parameter in drei vorbereitenden

",y Weylschen Schritten® bestimmt. Min beschrinkte sich auf vier Parameter

(vgl. [3], 8. 459, (4.7)) und konnte daher als Umgebung einen Parallel-
streifen wihlen, was bei mehr als vier Parametern nicht mehr moglich
gewesen wire. Infolgedessen konnte die dreimalige Anwendung der
»Weylschen Idee“ nicht voll mit insgesamt sechs Parametern ausgenutzt
werden.

(1) Dié Zablen in den eckigen Klammern beziehen sich auf das Literaturver-
zeichnis am Schluf der Arbeit.
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