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1. Let M, be the maximal value of the determinant of the n-th

degree,
M, = max @l
12l

of a matrix composed of elements «,;, which are real and absolutely no-
greater than 1. Paley [7] has remarked that, since a determinant is a 1t
near expression in all #;;, the maximum value of a determinant is attained
for a matrix

(1.1) (esr), where ;=41 (1<i,k<n).

In the sequel we shall generally denote by (e;) such a matrix and
by W, its determinant, » being its degree.
According to the theorem of Hadamard [5] we have

(1.2) M, <2,
If matrix (1.1) is orthogonal, then
(1.3) M, = n"*,

The inverse theorem is also true.

Matrices (1.1) for which (1.8) holds are called matrices of Hadamard.
The degress #, for which there exist Hadamard matrices, will be called
Hadamard numbers. The set of Hadamard numbers will be denoted by H.

Sylvester has proved in [9] that 2?¢H for ¢ = 1,2, ..., and that
the necessary condition forneHisn = 1, 2, orn = 4¢, whereq =1, 2, ...,
making at once a very interesting supposition that 4geH.

The hypotesis of Sylvester raised interest of many authors: Searpis
[8], Gilman [4], Paley {7], Williamson [13], [15] and Brauer [1] have
found some classes of Hadamard’s numbers. Here we list sufficient con-
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ditions for 2 < neH, which are due to the above mentioned authors;
in this list p denotes an odd prime number, while 2, and n, are two ar-
bitrary Hadamard numbers not less that 2:
(&) n =2
b) n = p"—{—l =0 (mod4);
o) n=m(p"+1);
d) n = NN,
e) n = (p+1)% where p+2 is also a prime number;
f) n = ¢(g—1), where ¢ is the produet of numbers (2) and (b);
) m = nyng(p"+1)p";
) m = r(r+3), where r and r+4 are products of numbers (a)

(
(
(
(
(14) (
(g
(b

and (b);

(i) n = m,ny8(s+3), where s and s-+4 are both of the form
P +1;

(G) n =172.

Williamson [14] has determined the extremal determinants for
gome % £ 0 (mod4), namely he hay shown that

(L.5) M, =92, M,=293, M,=255 M,=2"9,

He has also proved that if 4g<H, then there exists a matrix (e;)
of degree 4¢--1 with
(1.6) = (5—3/q)(4¢)"

and a matrix (e;) of degree 4¢—1 which is a submatrix of a matrix of
Hadamard, with

*.7

W4q+1 = ]eikl4q+1

Weg-1 = leilag—1 = (44)24-1-

He also remarked that there exists a matrix (e;) of degree 21 with
|€s%lar = 229-51t which is greater than W, in (1.6), and a matrix (e;)
of degree 7 with |e;|, = 2%:9 which is greater than W, in (1.7). In view
of (1.6) it is possible to form a matrix (e;) of degree 2(4¢-1), namely
the direet produet [13] of the matrix in (1.6) and the matrix (i —}), to
the effcet of
(1.8) leirlaara = 2(89)"(5—8/g)2.

Similarly, forming the direct product of a matrix in (1.7) and matrix
( ! _i) we get a matrix (e;) of degree 8¢—2 with

(1.9) lecelsg—s = 2(8g)"".
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As M, i8 the sum of m minors, a minor not less than I, /m exists
among them; hence
(1.10)

My = My(m—E)t/m!.

The signs of minors and of their elements are, of course, the same,
since otherwise we could obtain a greater determinant by changing the
signs of elements. This also implies the existence of minors legl,., of the
determinant M,, with

(1'11) ]giklm—l < Mm/m'-

The easy construction of a determinant for proving

(1.12) Mz = 2°M,,

is well-known.
Szekeres and Turdn [10], and Turdn [11], [12], give the evaluation
from below of M, for all #» by considering the expression

1/2¢
S1 le’lkl } Jl[ua

MY = {
("'zk)

(1.13)
where the summation is taken upon all different matrices (ey) of the
n-th degree. For (1.13) we have

HmMED = M,.

g->00

They compute (see [10]) ME? for ¢ = 1, and g = 2 (see [11], [12]),

and obtain
(114) M, >Vn! ~a™ @m)e™  (see [10]),

M, ]/7 14 Vol a " ]/n-;-4 (27n) ="

where ~ denotes that the ratio of the two sides tends to 1 when n — oco.

Turdn [12] supposes that it is possible, by making some longer caleula-

tions, to obtain ME? for ¢ = 3 and better evaluations than (1.14).
Let ¢(n) be determined for natural » by

(1.15) M, = nPo-emiz

In virtue of (1.2) we have ¢(n) > 0 and, according to (1.3), p(n) =0
if and only if the matrix of the extremal determinant is orthogonal.
The aim of the pregent paper is to estimate from below the determinant
M, by estimating from above the expression g(n).

We prove that, for a sufficiently great n, we have ¢(n) < n*+d
with a suitable ¢ < 1 (Corollary 7), and, by assuming Riemanns con-
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(see [11], [121),
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jecture, we prove that, for a sufficiently large =, we have ¢(n) <
< butlog (n2)+d (Corollary 8). (From the result quoted in [3], p. 242,
follows only @(n) = o(n)).

2, LEMMA 1. Let (a:) be o square matriz of degree -+ 1 with a,, = a,
Grpyr = by Gpp1y =6 Gz = & and such that the remaining parts of
it two last columms as well as of its two last rows, are identical.

If |@ily 4 the determinant of degree v of @ matriz (@) deprived of the
last column and the last row, and |ayl_, 8 the determinant of degree r—1
of a matric () without last two columms and rows, then the determinant
[@clesr of the degree v+1 of a matriz {ay) is expressed by

(2.1 @il 1 = (@4 d—b—0)|agl,— (b— a)(¢— @) |@ixlr_1-

In order to verify (2.1) we subtract, in the matrix (a), the r-th

row from the (r-+1)-th row and then the r-th column from the (r--1)-th
column and so we get the matrix (b;), in other words, we have

by = @y for 1 <i, k<,

bigpr =bpap =0 for 1<4,k<r—1,

bpppr =b—a, by, =0—0, bryen = a+d—b—ec.

We get (2.1) by developing |byly.; Wwith respeet to its lagt column
and row. -

THEOREM 1. If W, denotes the determinant of a matriz (ey) with
emm =1, and W,,_, denotes the minor of the element €y, then there exists
o determinant W, satisfying the relation

(2.2) W771+1 = 4(Wm"'Wm—l)!

and thus we have

(2-3) Mmq-l = 4(1‘1/7’7‘)]‘/Im-

Proof. If we take, in Lemma 1, 7 =m, ay =€y, ¢ =d =1,b =0
= —1, and two last columns and rows according to this Lemma, we get
Wm+1 = 1aik|m+l = 4(W’m_‘Wm—1)1 or (22)

Consider a matrix (ey) of the extremal determinant MM,,. Aceord-
ing to (1.11) there exists a minor W,,_, < M, /m. Without loss of general-
ity we can assume that W,,_, is a minor corresponding to the element
émm. We get now (2.3) by substituting (e;) into (2.2).

COROLLARY 1. If 4qcH, then there ewists a determinant Wy, of degree
49+ 2 with .

(2.4) Wigpe = 2(10—7/g) (4¢)™.

icm

EVALUATION OF EXTREMAL DETERMINANTS 115

According to (1.6), we have W,,,, = (5— 2 (49" and, after William-
son [13], there exists a minor of this determinant, W,, = 2(4¢)*", to
which we apply Theorem 1 and thus get

Wigs = 4(5—3/g—2/40) (49" = 2(10—T/q) (4¢)%,
ie. (2.4).

COROLLARY 2. If ¢(d¢—4) <¢+2,25, and p(4q) <o, then, for
40—4 <n < 4q and g = 8,
(2.5) @(n) <e+1,25+2logyg.

According to (2.3), and to (1.15), we have

M,y = (n )00 gmeln 4Mn(1 — i) it RSO
n n

which implies, for n > 8,
en?(n+1)

p(n+1) <gp(n)+log, Bn—1) < p(n)+2log(n+4)—5,

(2.6)
in view of the inequalities
log.e/4® = —2,55,

(n+1)/(n+4) <1,

1ng(%/(’"l—1))2 < 0,4,
log,1/(n+4) < —38,55.

Since
2log, Ziri <01, -(-"3%_(14”;—2) <1 for n > 60,
210g2::ji <0,214, 1og2% < —0,114 for 60 >n 27,
we get from (2.6), for n > 28,
@1 pnt2) <¢(n);1oggi%);%l < p(n)+ 2log,(n-+ 4)— 3.

In view of (1.10) we have

w2 o, 112
M, , > Mn _ 2—w(n)/z(n_1)(n—x)12.(1,‘__1_.) (L_l)__;
n n—1 n

hence, for n > 3,

(2.8) o@(n—1) <g@(n)+2logsn—log.e(n—1) < p(n)+2log,n—2,75.

From (2.8) we get

(2.9) @n—2) <@p(n)+2log,(n)+log, < @p(n)+2logyn—2,75.

et(n—2)
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Assuming, in (2.6) and (2.7), n = 4¢—4, and, in (2.8) and (2.9),
n = 4¢, and taking into consideration the assumed inequalities involv-
ing ¢, we get (2.5).

3. Lemma 2. Let (ay) e o matriz of degree v and (by) a matria of
degree s < r. Define a matriz (¢i) of degree v+ s by

iz for i<r, k<o,
(257 for i<, k>,

it = Diorpr for i>r,k>r,
—bi s for i>r, k<s,
arbitrary  for i >r, s <k <r.

Then we have
(3.1) Cilrrs = lQzle: |Binls* 2°.

To verify this, define a matrix (d;) by

Qg for i<r, k<7,
0 for i<r, k>,
di = X
l%i_r’k—r for i>r, k>r,
| ean for i>7r, k<.

Thus we see that (dy;) is obtained from (c;x) by subtracting, for k <s,
a column with index % from a column with index »4- k.

Developing the determinant |d;l,,. after the first  rows and taking -
into consideration the zero-elements in (dy) we get

[Ciklrys = |dik|r+a = |@xlr |2bix}s = |a'ilclr|bik13287
and thus (3.1).

TEEOREM 2. If p(n) is determined by (1.15), then for every integer
m and n

(3.2) p(m-+n) < p(m)+o(n)+ m—nl;

if m #n in (3.2) we have the sharp inequality.

Proof. Let (a;) be a matrix of the determinant M,,, (b;y) & matrix
of the determinant M, (¢;;) & matrix formed from (a;) and (b;) in a way
described in Lemma 2, and M., = |Gilmen. Owing to (1.18) and (3.1)
we geb

Mm+n = M;n+n = Mm']‘/[n2mimm’m
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and, since 2 min(m, n) = m-+n—|m—n|, we have

L\ m)i2 | g —p(met )2 s emig, 02 g [p(m)+ p(n) —ment ]2
(3.3) (m-+n) 2 2 My =m""-0""2
m—n \™? n—m\"? )
= (m_}_ﬂ)(’”’“")lz (1 + ) (1 + ) . 9~ [ptm)+ p(m)+im—ni]/z |
m-+n m-tn

Congider the inequality
(3.4) e‘”’r>l——{;>0 for z<r, 0<vr,
which is sharp for # # 0. If we raise it to power —r <0,

e}
r—ax

and substitute » = s+2 >0, s >0, we get

84

& < (1 + ip—) .
s

After substituting s = (m-+n)/4¢ >0 and & = (m—mn) /4, and once
more @ = (n—m)/4, we obtain from (3.5) the following inequalities:

(3.5)

m—n mj2 n—m nf2
(1 + ) > e(m—n)[4 ; (1 + _____) > e(n_m)]«l. 3
m-+n m-+n

In view of this, inequality (3.3) implies

(3.6) (m—+ ,n)(m+ﬂ)l?- L g—e(m+n)j2 > (m—i—n)(m+n)’2' o~ [em)+pln)-+im—nilj2

Hence (3.2) follows. In virtue of the sharpness of (3.4) for # =0
we see that inequality (3.6), and therefore also inequality (3.2), is sharp
for m—n # 0.

CoROLLARY 3. We have
o,

11

According to Table I of this paper, for ¢ =1,2,...,22 we have

@(4q) = 0; therefore, for s = 0, we have (8.7) in the interval

(3.8)

(3.7 ?(4q) for ¢ =11,12,13, ...

11-2° < g <11-2°F%
Assuming that (3.7) holds for ¢ in (3.8) with s =k, we see, accord-
ing to (3.2), for m = 4[¢/2], n = 4(¢—[g/2]) that (3.7) holds for ¢ in
(8.8) with s = k-+1; namely,

- 4[g/2] | 4(g—1g/2])
p(49) < Tl + ool

4q
—8-+4(¢—20¢2D) < 1 —4,


GUEST


118 K. FLOREK

for [¢/2] and g—[¢/2] belong to the interval (3.8) if s = k. Thus we gee,
by induetion, that (3.7) holds for ¢ = 11.

4. Lemma 3. If
(4.1) p(p) = o(q) =0,
(4.2) pn) <e, 1<ec for
then, for & = 0,1,2,..., we have

P

1 .
(43) gl <o+ (g p)2" 3 lg—p)—=1  for 2fp <m < 2%

Proof. Condition (4.1), according to (1.4) (a) and (d), implies
(4.4) P25 p) =p2Fq) =0 for k=0,1,2,...
Instead of (4.3) we prove by induction (4.5) and (4.6):
(£.5)  p) < c(k),

= for 2%.p <n 2%y,
(4.8) g(n) <o(k)+d(k)—|n—(p+q)2"| :

‘where .
9 L q\k
@n o) =erz - -+ T gy,
_ k
ws gy =Ly B,y
3
Let us remark that
(4.9) o(k) = o(k—1)— d(k)+ (¢—p) 2",

(4.10) o(k) = e(k—1)+d(k—1)+(g—p)2**.

. We verify equalities (4.9) and (4.10) substituting (4.7) and (4.8)
into (4.9) and (4.10). Inequalities (4.5) and (4.6) hold for k = 0 in virtue
of (4.1) and (4.2).

Supposing that (4.5) holds for k¥ =1 we shall verify that (4.6) will
be valid for k = I-+1.

In order to do this, divide the interval 2"'p <n <

< 2%¢ into
two subintervals:

(i) 2% <no=2"p+h <2(p+g)
and
(1) 2(p+q) <n =2'%+h <2 g

n =
(Notice that in both cases 2% < h < 2Y%).
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Now, applying formula (3.2) to the numbers 2'p and h in the case of
the first subinterval, and then to the numbers 2'q and %, and since o(2'p)

= p(2%g) = 0 in virtue of (4.4), we get

p(n) = p(2-p+h) < o) +h—2"p = (i) +0'— 2 p
in subinterval (i) and

p(n) = p(2-g+h) <o) +25g—h = e()+2" q—n

in subinterval (ii). Further, according to (4.9), where k = I+1, we have

@(n) <e(+1)+d(l+1)+n—(g—p)-2'—2""p
=+ 1)+ d(l+1)+n—(p+ 92,

for 2 < n < 2 p+¢) and
pn) < ﬂ(l+1)+d(l+1).— n—(g—p)-2'+2"1q
= e(l+1)+d(+1)—n+(g+p)-2
for 2'(p-+g) <n < 2''¢; hence we obtain (4.6) for k =1+1.

Let us remark that in (4.6) the inequality continues to hold if we
substitute a plus sign for the minus sign before the absolute value. The-
refore we may write

(£11) p(n) <e(B)+d(B)F(n—(p+¢)2"")  for

Assuming that (4.6) holds for k¥ =1 (which means that (4.11) holds
too), we shall see that (4.5) is valid for & = I+ 1.

Consider again the subintervals (i) and (ii). Applying formula (3.2)
in the same way as before we get

p(n) = ¢@p+1) < oD+ al)—(h—(p+g27") -2+
o()+d(l)+(g—p)2" ",
for » in (i), and
p(n) = p(2'g+h) < oM+ a(l)+(h—(p+92")+ 21
= oM +d(N+(¢—p)2,
for m in (ii). Moreover, acecording to (4.10), where k& = I+1, we write
p(n) <e(l+1) for

which implies (4.5) for k = I4+1. Since (4.5) and (4.6) hold for k& =0,
and it was shown that if they hold for k¥ = I, then they hold for k = 141,
go they hold for ¥ =0,1,2,...

2kp <n < 2kq.

oty < < 24,
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According to theorem 2, in all cases where 2'p #h or 2% s b the
inequality (4.5) is sharp. But if ' =h or 2Z_¢z = h, then, aceording to
(4.4), the inequality (4.5) is sharp as well. Hence the inequality (4.3)

is sharp in all cases for k£ = 1, 2, ... Therefore, according to (4.5) and
(4.7), we have
2 1—(—=1)
P <ot 2 (=)@~ 1+ T2 (g pg)

for k=1,2,... and 2% < n < 2%.
Since, according to the theorem of Sylvester for g >p 4, we
have ¢—p =>4 or ¢—p—38 = l, we see that for k =1, 2,

2
@(n) < o+ for 2% <n < 2%,

or (4.3) for £ = 1,2, ...; but (4.3) holds also for ¥ = 0 which is immedia-
tely verified in view of (4.2) and of the fact that (¢—p)/3 = 4/3.

TEEOREM 3. If

(4.12) p(n) =0 for 4=0,1,2,...,m,
where Ny .y >y and 8 < 2y = Ny,
(4.13) «> max (”—“lﬂ),
1=0,1,2,, . m—1 Ny
(414) f> max max (qp(aa,)— Wi =My i"f’?i'i—:’fi),
I=0,12, m-1 n<ngngy 3 3

then for n > n, we have

. 2
(4.15) p(n) < 3 +p-1.

Proof. Substitute p = n;, ¢ = m;,,, in Lemma 3. Then, in virtue

of (4.12), we have (4.1). Because of (4.14) we have (4.2) with ¢ =
= B+ (nsp1—ng)[3. Therefore, according to (4.3) we have, for every

k=0,1,2,...,and i =0,1,2,..., m—1
Ny 41— Ny 2 1
Mm<ﬂ+4%m443m”~wJ~;wm—m>1
2 2 — 1,
=f-14+= 3 (Bipr— 1) 2% < —14 = ”H—;z—“-l 2%,
(]

ok, . ~
for 2%m; < n < 2%y,
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Replacing, in this mequal1ty, (Mip1—ms)[n; by o and 2 oFn, by »
we get, according to (4.13), the inequality (4.15) for 2%, < n < 2%y 19
k=0,1,2,...,4=0,1,2,...,m—1

Since, by agsumption, 2n0 = R, We see that for n > n, (4.15) holds.

COROLLARY 4. For n >4, we have

C2
(4.16) p(n) < gn—0,996.

In view of Table I we have ¢(4) = ¢(8) = 0, and, according to (1.5),
we have

@(8) = Blog,5 —8—2log,3 < 11,7—8—3,16 = 0,54,
@(6) = 61 6log,3—2log,5—10 < 649,5—4,63—10 = 0,87,

@(7) = Tlog,7—4log,3—12 < 19,7—6,33—12 = 1,37,

4
i.e. we have p(5) < p(6) <@(7) <1,37 < 0,04+ —.

Hence, if we put n, =4, n, =8, m =1, in theorem 3, then a =1
fulfils (4.13) and, according to the above estimation, g = 0.04 fulfils
(4.14), which proves (4.16).

COROLLARY 5. For n > 48 we have

2
(4.17) p(n) < oz n-+10,65.

In view of (4.13) and of Table I we have a = = %for 48 < n < 96,
and according to (2.5), we have
p(n) <2108,22+1,25 <2-4,4T+1,95 <102 - for 48 <n < 88;
according to (2.5) and in view of Table II we have
p(n) < 2log,23+5,25 < 2,453+5,258 < 14,31 for 88 <n < 96.

Both cases imply, in view of (4.14),

8
14,31 — o = f = 11,65,

whence follows (4.17) by Theorem 3.

COROLLARY 6. For n > 1080, we have

7
(4.18) p(n) < gg7 +30,7.
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In view of (4.13) and of Table I we find that a =

4
Bz 1
270 < nj4 < 540. Looking through Table II, according to (2.5) and in
view of (4.14) we find that

8
210g,(535)+ 23 — 3 < B = 38,7.
Having « and § we obtain (4.18) by (4.15).
5. THEOREM 4. If
(5.1) plng) =0, myy>ng for i=0,1,2,...,
and if g(n) is a function defined for integers n = n, in such & manner that

(5.2) ¢(n) = min(n—n,),

n<n

and p(@) s & function defined for real values ® = m,, non-decreasing and
such that

(8.3) 1<y,

(5.4) p(2n—g(n) = w(n)+g(n),

then from the assumption
(5.5) p(n) <p(n) for
it follows that inequality (5.5) holds for every m = m,.

Proof. Obviously, according to (1.4) (a) and (d), ¢(2%;) = 0; hence
we may eomplete the sequence (5.1) so that n,., < 2n;. If for ny < n
< 2n,; formula (5.5) holds, which is verified aecording to the assumption
for ¢ = 0, we shall see, by Theorem 2, that (5.5) holds for n, < n < 2nyy,.

For2n; <n = my+h < ny+ny—Lwehaven; <h < nyyy—1 < 2n,
In view of (5.1), (5.2), (5.3), and (5.4), where n = h and applying for-
mula (3.2) to the numbers n; and h, we get

(5.6) p(nith) < ph)+h—n; < ph)+g(h) < p(2h—g(h)
< p(2h—h+-ng) = p(n;-+-h).

For n = n;-+n4,,, according to (5.2), (5.3), (5.4),
Theorem 2, we have

(5.7)

Ng <N K 20,

(5.1), and to

‘77(7"1’*‘"1,4-1) 77‘1-1_1_’”% = 1"*‘(”’1—{ 1_1""”1 1'{'.‘](’”’11-}-1“1)

) <
< "P("%—;—I“" 1) g('n’i+1— 1)< W(Z("bi-»—l‘— 1)"‘9(%1:4-1"“1))

< 1/’(2"%'4-1_ 2+n;— g1 <y (ni+1 — ;).
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For myt+ng+1 <n=n,+h <2n,;,—1 we also have n;+1
< b < nypy—1 < 2ng; therefore, for n = A, according to the induction
hypothesis, (5.5) holds, and in view of (5.2), (5.3), (5.4), (5.1) and ap-
plying formula (3.2) to the numbers #;,, and h we have

(5.8) ‘P(’”’z+1+h) = (h)+ni+l‘_h < 'ﬂ(h)+g(7l'i+l_1)
< P — 1)+ gy —1) < p(2(na—1)—
< 1P(7zz+1+ ;) < W(”Hl“‘h)

Since (5.6), (3.7), and (5.8), imply (5.5) for 2n; < n < 2n;y,;, We
get (5.5) for m, < n < 2ny,;; hence (5.5) holds for n = n,.

COROLLARY 7. There ewist an a <1 and an N such that for n >N
we have

(5.9)

9y —1))

p(n) <bi+d.

Let n; = 2(p;+1), where p; is the -th prime number. Then, accord-
ing (1.4), (a), (¢), and (d), we have p(n;) = 0, and thus (5.1).
According to the theorem of Ingham [6], we have

38/61+7
b

Pip1—Ps <P
where p; and p;,, are two consecutive prime numbers, ¢ is a constant,

and % is an arbitrary positive number. If we substibute n; = 2(p;-+1)
in this inequality, we get

g — M < 2(m3/2—1 for n; > 2(M+1) =

Let g(n) = an®, where a = 38/61+4 and o = 2'~% Then, for each
n > N there exists such an ¢ that

(n]2—1)¥H 1 < an® = g(n),

and thus (5.2) holds. The function y(n) = dn”+ d satisties (5.3) and (5.4) if

)38161-!-!1

0<n—n; <2

b(2n— an®)® = bn® 1 an’,
i.e. for b =a: {(2—aN*)*—1} > a: {{2— an® ")"—1}. Choosing & d
guch that (5.9) holds for N <n < 2N-+2¢(¥N), we have, in view of
Theorem 4, formula (5.9) for » > N.
COROLLARY 8. If we assume the hypothesis of Riemann about the di-
stances of consecutive prime numbers, we have

(5.10) o(n) < bnMtlog (—72”—) +d for m>N.

According to Riemann’s hypothesis [2] we have, for the ¢-th prime

number p; > N, —1,
12

logp;.

Pip1— D < 0P;
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Taking n; = 2(p;-+1) we have (5.1) and
g vz Ny
Ny — 1y < 20 (?1 ~—1) log (—5 —1);
thercfore for » > N, we have (5.2) with
gi{n) = ﬁ'c-l/%log—q‘;.

The function y(n) = bn'’log(n/2)+d satistios (5.3) and (5.4) if
V2-e

= — = )

V2 —V2-clog(N,/2): VN,—1

> N = max(N,, N,),

which we verify by substituting y(n) in (5.4). Choosing a d such that (5.10)
holds for ¥ < n < 2N-1-2g(N) we obtain (5.10) for » > V.

COROLLARY 9. If we assume the hypothesis of H. Cramér, then for
nz= N we get

(5.11) pn) < bloga( )—HZ
According to Cramér’s hypothesis [2], we have

=1,

Pip—Ps < elogip;  for  py = 3

which gives (5.2), for n; = 2(p;+1) and
n
g(n) = 2¢log? (-2—) for =#>=N,.
The function v(n) = blogd(n/2)-+d satisfies (5.3) and (5.4) if

2
b > ¢

W > N = max(N,, N,)
310g(2——j7—1 og? ”)

which is to be verified by substituting y(n) in (5.4). Choosing a d such
that (5.11) holds for ¥ <n < 2N+ 2¢(N) we obtain (5.11) for » > N.

It is interesting to compare Corollary 9 with Corollary 2, which,
if Sylvester’s hypothesis is assumed, gives the following evaluation:

p(n) < d+2logynflog2,

where ¢ is a positive constant.
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6. The evaluation of the maximal value of the determinant of
matrix (1.1) may be used for the evaluation of the maximal value of
the determinant of a matrix of a more general form owing to the fol-
lowing

THROREM b. If the matriz (i) is of the n-th degree, such that
(6.1) abple—1) <y < abple+1), 1<i,k<n

ai>07 bi>05 020,

and X, is the maximal value of the determinant of matriz (zy), then

(6.2) na, ]7 b, (3"
nee

Proof. By intercha.nging columns and rows and multiplying by
-1 matrix (1.1) of the determinant M, can be reduced to a matrix (€ix)
such that |eg)s = M,, and the minor W,_, of the element ey, is the absol-
utely least one and that

G—I—l)

an»—

(6:3) n+1

(6.4) e =1 for 1<k <n, eyp=—1 forl<i<g<n—1,

whieh is possible for # > 3, for we can change the s:gn of the determinant
by permuting the first two columng; for m = 2 wé have (6.4) since

6.5 = |t
(6.5) P
Tn view of (1.11) we have 0 < el = Wp1 < My/n and, since

>0, we get

= ¢(3|egln— 4 l6iln—1) + Gixln,

Further, according to Lemmsa 1 we get (2.1), where n = 7, a4y = €y
fri<i,k<nanda=1,4d=0,>b=c¢c=—1, and the eorrespondmg
ay, for the last column and for the last row, we have

-1

)Mn < o(3M,— AW, )+ M,y

4 . :
(3o+1——c)Mn<o Cad 21+ leadn:
- _
L.l Ol
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Multiplying the n-th column by —1 and permuting the first two
rows (which is possible for » > 2) we obtain the matrix (1) and

-1
{ 40 ; : ,
(6.6) (30+ 1~~"—) i, <o &) il e
1.1 Ol

i -1 0 -1 1
. (eir) : (9£k) : _ (e;k) : _ | (@) : .
= T 1 e 0 = 1 = 1 = ’dmk]ny

6...6 Ofpyr [€..c0lipyy ¢...¢ Lliny, ¢...¢ iy

where dy, = 6+ ¢
Choosing @y = a;b,dy we see that (6.1) holds and get

n
> [pagly = [] @ ﬂ b |kl
=1,

After substituting |dy| in (6.7) we obtain, for » > 2, formula (6.2), and
for m =1 we have X, = a;b;(¢+1); hence (6.2) holds for all integers n.

Permuting columns and rows and multiplying by —1, respectively,
we reduce matrix (1.1) of the determinant M,., to a form in which

(6.8)

(6.7)

bippr = —1for 1 <4 <n, euup=1forl <k <ntl,

and the minor |e;l, > 0 of the element 6,,;,,, is the greatest ome if
1—¢ > 0 and absolutely the least one if 1—¢ << 0. This is possible for

> 2 since the sign of the determinant M, ., may remain unchanged
when the first two columns are permuted respectively. Formula (6.8)
ean be obtained also for n—1 in view of (6.5). Applying (1.10) to |epl|a,
if 1—e >0, and (1.11), if 1—¢ < 0, we get the following relation:

(6.9)

-1
(o275 s < Bt —leatn = @) E ] 1o
11
-1 -1 - 9
_ | (ew) _1 ) _:1 _ | (o) -:1 | (da) 0 = |diglmy
¢...¢  Jpp1 |0...0 (1—0)|upa ¢...6 1l |00 1luy

where d;; = e;+e¢. Choosing wy, = a;byd;;, we see that (6.1) holds and
we get (6.7); then, substltutmg (6.9) into (6.7) we obtain (6.3) for in-
tegers m.
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Table I. For 1 < ¢ < 568 the numbers 4¢, contained in column H,
either have one of the forms (1.4) or are in column §. If ¢, is expressed in
one of the forms (1.4) and ¢, = 2%¢, (k = 1, 2, ...), then in Table I there
are no numbers g,, as they obviously are integers of the form (1.4) ac-
cording to (1.4), (a) and (d).

Table II. Table II contains numbers 1 < ¢ < 544 for which 11:
is not known whether the matrices H of degree 4¢ exist.

In column & (g) are presented the values of the function @ (q) defined
in the following manner:

(a) @(g) = 0 if 4¢ satisties one of the conditions (1.4);

(b) If the value of @(q) is known for g < ¢,—1, then

D(go) = min {D(g;)+D(ge)+ g2~ @}

Q=01+

In column Z are given the components g, = ¢,+ ¢, for which the
minimum value is reached.

The function &(g) can be used for determmmg f appearing in theo-
rem 3.

TABLE I
g B | s|q| =m | s | q is s
1] 341 41 biss | o1 | 2(181+1)
3| 2(5+1) 9| 2097+1) 92 | 367+1
5] 1941 51| 2(101+1) 93 372
7 2(13+1) 53 21141 94 376
9 | 2(17+1) 55 | 2(109+1) 95 | 379+1
11| 4341 57 | 2(113+1) o7 | 2(193+1)
13| 2(s2+1) 58 232 | 99 | 2(197+1)
15 | 2(29+1) 59 236 | 101 404
17 | e7+1 61 | 2(11241) 103 412
19 | 2(37+1) 83 | 251+1 105 | 41041
21 | 2(41+1) 65 260 | 107 428
23 92 | o7 268 | 109 436
25 | 2(241) 69 | 2(137-+1) 11 | 44341
27 | 2(53+1) 71| 28341 113 452
29 136 | 73 202 | 115 | 2(229+1)
31| 2(61+1) 75 | 2(149+1) 116 | 463+1
33 | 131+1 7 30741 17 | 2(233+1)
35 | 13941 78 | 31141 118 472
37 | 2(13+1) 79 | 2(157+1) 119 476
39 156 | 81| (17+1p 121 | 2(241+1)
4| 16341 83 | 331+1 122 | 48741
3| 172 85 | 2182+1) 123 | 49141
45 | 2(89+1) 87 | 2(173+1) 125 | 49941
48 184 | 89 356 | 127 508
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TABLE I (continued)

p 2 | 8|4 " 5] 4 g | s
129 2(237-+1) 206 82341 281 112341
130 20(52+1) 207 82741 283 1132
131 52341 209 836 | 285 2(56941)
133 532 | 211 2(42141) 287 1148
134 536 | 213 852 | 289 2(877+1)
135 | 2(269+1) 214 856 | 291 | 11631
137 54741 216 8591 292 1167
139 | 2(277+1) 217 | 2(433+1) 203 | 117141
141 2(281+1) 218 872 | 296 1180
143 57141 219 876 | 297 2(593--1)
145 2(172+1) 221 88341 298 1192
146 584 |- 223 892 | 299 1196
147 | 2(208+1) 925 | 2(449+1) 301 | 2(601--1)
149 596 | 226 904 | 302 1208
151 604 | 227 90741 303 1212
163 612 | 229 2(45741) 305 1220
155 61941 231 2(46141) 306 122341
157 | 2(318-+1) 233 932 | 807 | 2(61341)
159 2(817-+1) 235 940 | 309 2(61741)
161 64341 236 944 | 311 1244
163 652 | 237 | 94741 313 | 2(5%+1)
165 65941 238 (184+1)17-4 316 125941
167 668 | 239 956 | 317 1268
169 | 2(3374+1) 241 964 | 819 1276
170 | (94+1)4-17 243 | 97141 321 | 2(641+41)
171 86341 245 980 | 323 129141
173 69141 247 988 | 325 1300
175 2(34941) 249 996 | 326 13031
177 | 2(353-+1) 251 1004 | 327 | 2(653-4-1)
178 712 | 253 1012 | 329 1316
179 716 | 254 1016 | 331 2(661+41)
181 2(19241) 255 2(50941) 333 1134-1
183 732 | 257 1028 | 334 1336
185 73941 2569 1086 | 335 1340
186 743+1 260 103941 337 2(673-+41)
187 | 2(373+1) 261 | 2(521+1) 339 | 2(677+1)
188 75141 263 105141 341 1364
189 3%(3%+1) 265 2(28241) 343 1372
191 764 | 266 106341 345 1380
193 772 | 267 1068 | 347 1388
195 | 2(389+1) 268 1072 | 349 1396
197 78741 269 1076 | 351 2(70141)
199 2(3974+1) 271 2(6414+1) 353 1412
201 2(401+1) 273 1091 +1 355 2(709--1) .
202 808 | 275 1100 | 356 142341
203 81141 277 1108 | 387 142741
205 2(409+1) 279 2(55741) 358 1432
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TABLE I (continued)
q l H S q ; H I s q H S |
I
359 1436 | 433 1732 | 501 | 2008+1 i
361 1444 | 435 1740 | 502 2008
362 | 144741 436 1744 | 503 | 2011+1
363 | 1451+1 437 | 1747+1 505 | 2(1009+41)
365 | 145941 438 1752 | 506 2024
366 1464 | 439 | 2(877+1) 507 | 2(101841)
367 | 2(733+1) 441 | 2(881-+1) 508 2032
369 1476 | 443 1772 | 509 2036
371 | 1483+1 445 1780 | 511 | 2(1021+1)
373 1492 | 446 | 1783+1 518 2052
375 | 149941 447 | 178741 514 2056
377 1508 | 449 1796 | 515 2060
378 | 151141 451 1804 | 517 | 2(1033+1)
379 | 2(757+1) 452 1808 | 518 | (13-4-1)37-4
381 | 2(761+1) 453 | 181141 519 2076
382 1528 | 455 1820 | 521 | 208341
383 | 1531+1 457 1828 | 523 12092
385 | 2(769+1) 459 1836 | 525 | 2(1049+1) |
386 | 154341 461 1844 | 527 j2108
387 | 2(7T73+1) 463 1852 | 529 2116 |
389 1556 | 465 | 2(920+1) 531 | 2(1061+1)
301 1564 | 466 1864 | 533 | 213141 )
393 | 157141 467 | 186741 534 2136
395 | 1579+1 469 | 2(937+1) 535 | 2(1069+1)
397 1588 | 470 | 187941 536 | 2148-+1
399 | 2(791+41) 471 | 2(941+41) 537 2148
401 1604 | 472 1888 | 538 2152
403 1612 | 473 | 44(44—1) 539 2156
404 1616 | 475 1900 | 541 2164
405 | 2(809+41) 477 | 2(953+1) 543 2171
407 | 1627+1 478 1912 | 545 2180
409 1636 | 479 1916 | 547 | 2(1093+1)
411 | 2(821+1) 481 | 2(31241) 549 | 2(1097+1)
413 1652 | 482 1928 | 550 | (4941)11-4
415 | 2(829-+1) 483 | 1931+1 551 | 2208+1
417 | 1667+1 485 1940 | 553 2212
418 | (37+1)44 487 1948 | 554 2216
419 1676 | 489 | 2(977+1) 555 | 2(1109+1)
421 1684 | 400 | (9-+1)40-4 557 2228
423 1692 | 491 1964 | 559 | 2(111741)
425 | 169941 493 1972 | 561 | 224341
426 | (5+1)4-71 494 | (25+1)4-19 563 | 22511
427 | 2(853+1) 495 | 197941 565 | 2{1120+1)
428 1721 | 497 | 198741 566 2264
429 | 2(857+1) 498 | (5+1)83-4 567 | 226741
431 | 1723+1 499 | 2(997+1)

Colloquium Mathematicum X.
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TABLE II
T 1 | P i i
a7 bwel 2wl z Ppeld] 2 pe
23| 11412 1 |21 1064107 2 |325 162+ 16:\3 2 439 Z;i—«-;ig ;
29| 14415 1 | 214 1074+107| 2 | 329} 164+165 } Lh:; 227—}—925 s
39 19420 1 |218]109+109, 2 |[3834| 167+167 2 4:}“ 28—1—;07 _1,
46| 23423 9 |219] 1094+110| 2 }335] 187+168 2 | 455 229—}-;;8 :
47| 23424 2 1223] 111+4+112 | 1 | 341 170—1—17} 1 | 457 z:)g—l_;,:;o :
58| 29429 2 1226 113+113| 2 | 843 17,1+17:2 1 | 459 ;.40-1—;.31 :
59| 30429 2 1233 116+117| 1 |345 1724173 i 1 46} 231—}—;29 :
65! 32433 1 |o235| 1174118 | 3 | 3471734174 1 463 9.‘;‘ {»:%; .
67 33434 1 |236! 116+120] 4 |349| 1744+175 | 1 466 ‘;33»1—;:3;5 2
73] 36437 1 |239) 1194120 4 |[353| 1764177 | 1 472 §:+233 :
89| 44443 1 |241] 1204121 1 |358 17‘9+179 4 |475) 23 +240 !
93| 454-48 3 |245| 122+123 | 1 [359] 1794180 | 3 478 2338—}—24] Z
94| 47447 4 |247| 1284124 | 1 | 361 1804181 | 1 | 479 23?—}941 ‘)
101 50452 1 {240} 124+125: 1 |366| 1834183 | 2 482 §i2+;43 I
103| 51458 1 |251] 1254126 | 1 |369| 1844185 1 485 243—',—944 :
107| 53454 1 |253] 1264+127| 2 | 873} 1864187 1 487 E +.2,46 !
109| 54455 1 |254| 1274+127| 2 |877| 1884189 | 1 491 242+247 ; i
118{ 57456 1 |257] 1284129 1 | 3821914191 2 49.:3 24 —';«051 : |
118| 59459 4 {259| 1204130 1 |389) 1944195 1 502 §g§+;r3 : |
119| 59460 3 267 132+135| 3 391 195-+4+196 | 1 506 Ar;+2;4 :
1271 63464 1 |268| 1344134 | 4 {397| 1984199 1 508 2.: -}-2;35 s
133| 66467 2 |269| 1344+135| 3 |401| 2004201 1 509 3244—2;:7 :)
134| 67467 2 |o751 1874188 | 1 |403| 2014202 3 513 d.:3+2.:7 ;
146 73473 2 {277| 1384139 | 1 |404| 2014203 | 2 514 2,)7—}-0.:8 ;
149 '74+75 1 |283| 1414142 | 1 |409| 2044205 1 515 25 -l—;.éo ;
151} 75476 1 |287] 148+144 | 1 |413| 2064207 | 1 519 259—(—260 2
158| 76477 1 |202| 145+147| 2 |419| 2094210 | 2 523 2(%}-}-26; .
163, 81482 1 |205] 1474-148 | 1 [421] 2104211} 1 |527 ‘263+26r .
167| 83484 1 |208] 1494149 | 2 |423] 21142121 1 529 264—1»26; p
178] 8989 2 |209| 1494150, 2 |428| 2144214 | 4 534 | 267+ o
179! 89490 2 |802| 1514151 | 2 | 433 216-+217 ‘1 537 266-|—269 ;
183 91492 1 |308| 1514+152 | 2 |435|2174-218| 3 538 269+§70 .
191 954-96 1 |805] 1524153 | 2 |436| 2184218 4 §39 269-\—..71 !
1931 964-97 1 |311]185+4+156| 1 [438| 2194219 4 .)4} 370»1-‘272 .
202| 1014101 2 |817] 1584-159 | 1 443 221»}-~22? 1 .243 ~71-\—;73 !
209| 104+105| 1 |319] 1504160 | 1 |445 22942231 2 | 5451 272
i I |
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