

COLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC, 1

TO THE MEMORY
OF WITOLD WOLIBNER

ON THE EVALUATION FROM BELOW OF EXTREMAL DETERMINANTS

BY

K. FLOREK (WROCŁAW)

1. Let M_n be the maximal value of the determinant of the n-th degree.

$$M_n = \max_{|x_{ik}| \le 1} |x_{ik}|_n,$$

of a matrix composed of elements x_{ik} which are real and absolutely nogreater than 1. Paley [7] has remarked that, since a determinant is a lt near expression in all x_{ik} , the maximum value of a determinant is attained for a matrix

$$(1.1) (e_{ik}), \text{where} e_{ik} = \pm 1 (1 \leqslant i, k \leqslant n).$$

In the sequel we shall generally denote by (e_{ik}) such a matrix and by W_n its determinant, n being its degree.

According to the theorem of Hadamard [5] we have

$$M_n \leqslant n^{n/2}.$$

If matrix (1.1) is orthogonal, then

$$(1.3) M_n = n^{n/2}.$$

The inverse theorem is also true.

Matrices (1.1) for which (1.3) holds are called matrices of Hadamard. The degress n, for which there exist Hadamard matrices, will be called Hadamard numbers. The set of Hadamard numbers will be denoted by H.

Sylvester has proved in [9] that $2^q \, \epsilon H$ for $q = 1, 2, \ldots$, and that the necessary condition for $n \, \epsilon H$ is n = 1, 2, or n = 4q, where $q = 1, 2, \ldots$, making at once a very interesting supposition that $4q \, \epsilon H$.

The hypotesis of Sylvester raised interest of many authors: Scarpis [8], Gilman [4], Paley [7], Williamson [13], [15] and Brauer [1] have found some classes of Hadamard's numbers. Here we list sufficient con-

ditions for $2 \le n \epsilon H$, which are due to the above mentioned authors; in this list p denotes an odd prime number, while n_1 and n_2 are two arbitrary Hadamard numbers not less that 2:

(a)
$$n = 2$$
;

(b)
$$n = p^h + 1 \equiv 0 \pmod{4}$$
;

(e)
$$n = n_1(p^h + 1)$$
;

(d)
$$n = n_1 n_2$$
;

(e)
$$n = (p+1)^2$$
, where $p+2$ is also a prime number;

(1.4) (f)
$$n = q(q-1)$$
, where q is the product of numbers (a) and (b);

(g)
$$n = n_1 n_2 (p^h + 1) p^h$$
;

(h)
$$n = r(r+3)$$
, where r and $r+4$ are products of numbers (a) and (b);

(i)
$$n = n_1 n_2 s(s+3)$$
, where s and $s+4$ are both of the form $p^h + 1$;

(j)
$$n = 172$$
.

Williamson [14] has determined the extremal determinants for some $n \neq 0 \pmod{4}$, namely he has shown that

$$(1.5) M_3 = 2^2, M_5 = 2^4 \cdot 3, M_6 = 2^5 \cdot 5, M_7 = 2^6 \cdot 9.$$

He has also proved that if $4q \in H$, then there exists a matrix (e_{ik}) of degree 4q+1 with

$$(1.6) W_{4q+1} = |e_{ik}|_{4q+1} = (5-3/q)(4q)^{2q},$$

and a matrix (e_{ik}) of degree 4q-1 which is a submatrix of a matrix of Hadamard, with

$$(1.7) W_{4q-1} = |e_{ik}|_{4q-1} = (4q)^{2q-1}.$$

He also remarked that there exists a matrix (e_{ik}) of degree 21 with $|e_{ik}|_{21}=2^{20}\cdot 5^{11}$ which is greater than W_{21} in (1.6), and a matrix (e_{ik}) of degree 7 with $|e_{ik}|_{7}=2^{6}\cdot 9$ which is greater than W_{7} in (1.7). In view of (1.6) it is possible to form a matrix (e_{ik}) of degree 2(4q+1), namely the direct product [13] of the matrix in (1.6) and the matrix $\binom{1}{1}-\frac{1}{1}$, to the effect of

$$|e_{ik}|_{8q+2} = 2(8q)^{4q}(5-3/q)^2.$$

Similarly, forming the direct product of a matrix in (1.7) and matrix $\binom{1}{1} - \binom{1}{1}$ we get a matrix (e_{ik}) of degree 8q-2 with

$$|e_{ik}|_{8q-2} = 2(8q)^{4q-2}.$$

As M_m is the sum of m minors, a minor not less than M_m/m exists among them; hence

$$(1.10) M_{m-k} \geqslant M_m(m-k)!/m!.$$

The signs of minors and of their elements are, of course, the same, since otherwise we could obtain a greater determinant by changing the signs of elements. This also implies the existence of minors $|e_{ik}|_{m-1}$ of the determinant M_m with

$$(1.11) |e_{ik}|_{m-1} \leq M_m/m.$$

The easy construction of a determinant for proving

$$(1.12) M_{m+k} \geqslant 2^k M_m$$

is well-known.

Szekeres and Turán [10], and Turán [11], [12], give the evaluation from below of M_n for all n by considering the expression

$$M_n^{2q} = \left\{ \frac{1}{2^{n^2}} \cdot \sum_{(e_{ik})} |e_{ik}|_n^{2q} \right\}^{1/2q} < M_n,$$

where the summation is taken upon all different matrices (e_{ik}) of the n-th degree. For (1.13) we have

$$\lim_{q\to\infty} M_n^{(2q)} = M_n.$$

They compute (see [10]) $M_n^{(2q)}$ for q=1, and q=2 (see [11], [12]), and obtain

where \approx denotes that the ratio of the two sides tends to 1 when $n \to \infty$. Turán [12] supposes that it is possible, by making some longer calculations, to obtain $M_n^{(2q)}$ for q=3 and better evaluations than (1.14).

Let $\varphi(n)$ be determined for natural n by

$$(1.15) M_n = n^{n/2} 2^{-\varphi(n)/2}.$$

In virtue of (1.2) we have $\varphi(n) \ge 0$ and, according to (1.3), $\varphi(n) = 0$ if and only if the matrix of the extremal determinant is orthogonal. The aim of the present paper is to estimate from below the determinant M_n by estimating from above the expression $\varphi(n)$.

We prove that, for a sufficiently great n, we have $\varphi(n) \leq bn^a + d$ with a suitable a < 1 (Corollary 7), and, by assuming Riemanns concolloquium Mathematicum x.

jecture, we prove that, for a sufficiently large n, we have $\varphi(n) \le \delta n^{1/2} \log(n/2) + d$ (Corollary 8). (From the result quoted in [3], p. 242, follows only $\varphi(n) = o(n)$).

2. LEMMA 1. Let (a_{ik}) be a square matrix of degree r+1 with $a_{r,r}=a$, $a_{r,r+1}=b$, $a_{r+1,r}=c$, $a_{r+1,r+1}=d$, and such that the remaining parts of its two last columns as well as of its two last rows, are identical.

If $|a_{ik}|_r$ is the determinant of degree r of a matrix (a_{ik}) deprived of the last column and the last row, and $|a_{ik}|_{r-1}$ is the determinant of degree r-1 of a matrix (a_{ik}) without last two columns and rows, then the determinant $|a_{ik}|_{r+1}$ of the degree r+1 of a matrix (a_{ik}) is expressed by

$$(2.1) |a_{ik}|_{r+1} = (a+d-b-c)|a_{ik}|_r - (b-a)(c-a)|a_{ik}|_{r-1}.$$

In order to verify (2.1) we subtract, in the matrix (a_{ik}) , the r-th row from the (r+1)-th row and then the r-th column from the (r+1)-th column and so we get the matrix (b_{ik}) , in other words, we have

We get (2.1) by developing $|b_{ik}|_{r+1}$ with respect to its last column and row.

THEOREM 1. If W_m denotes the determinant of a matrix (e_{ik}) with $e_{m,m}=1$, and W_{m-1} denotes the minor of the element $e_{m,m}$, then there exists a determinant W_{m+1} satisfying the relation

$$(2.2) W_{m+1} = 4(W_m - W_{m-1}),$$

and thus we have

$$(2.3) M_{m+1} \geqslant 4(1-1/m)M_m.$$

Proof. If we take, in Lemma 1, r = m, $a_{ik} = e_{ik}$, a = d = 1, b = c = -1, and two last columns and rows according to this Lemma, we get $W_{m+1} = |a_{ik}|_{m+1} = 4(W_m - W_{m-1})$, or (2.2).

Consider a matrix (e_{ik}) of the extremal determinant M_m . According to (1.11) there exists a minor $W_{m-1} < M_m/m$. Without loss of generality we can assume that W_{m-1} is a minor corresponding to the element $e_{m,m}$. We get now (2.3) by substituting (e_{ik}) into (2.2).

COROLLARY 1. If $4q \in H$, then there exists a determinant W_{4q+2} of degree 4q+2 with

$$(2.4) W_{4q+2} = 2(10-7/q)(4q)^{2q}.$$

According to (1.6), we have $W_{4q+1} = (5-\frac{3}{q})(4q)^{2q}$ and, after Williamson [13], there exists a minor of this determinant, $W_{4q} = 2(4q)^{2q-1}$, to which we apply Theorem 1 and thus get

$$W_{4q+2}\,=\,4\,(5\,-3/q\,-2/4q)(4q)^{2q}\,=\,2\,(10\,-7/q)(4q)^{2q},$$
 i. e. (2.4).

COROLLARY 2. If $\varphi(4q-4) \leqslant c+2,25$, and $\varphi(4q) \leqslant c$, then, for $4q-4 \leqslant n \leqslant 4q$ and $q \geqslant 8$,

$$\varphi(n) \leqslant c + 1.25 + 2\log_2 q$$

According to (2.3), and to (1.15), we have

$$M_{n+1} = (n+1)^{(n+1)/2} \cdot 2^{-q(n+1)/2} \geqslant 4 M_n \left(1 - \frac{1}{n}\right) = 4 \frac{n-1}{n} \cdot n^{n/2} \cdot 2^{-q(n)/2},$$
 which implies, for $n \geqslant 8$,

$$(2.6) \qquad \varphi(n+1) \leqslant \varphi(n) + \log_2 \frac{en^2(n+1)}{4^2(n-1)^2} < \varphi(n) + 2\log(n+4) - 5\,,$$

in view of the inequalities

$$\log_2 e/4^2 = -2,55,$$
 $\log_2 (n/(n-1))^2 \le 0,4,$ $(n+1)/(n+4) \le 1,$ $\log_2 1/(n+4) \le -3,55.$

Since

$$2\log_2 \frac{n+1}{n-1} \leqslant 0,1, \quad \frac{(n+1)(n+2)}{(n+4)^2} \leqslant 1 \quad \text{ for } n \geqslant 60,$$

$$2\log_2 \frac{n+1}{n-1} \leqslant 0,214, \quad \log_2 \frac{(n+1)(n+2)}{(n+4)^2} \leqslant -0,114 \quad \text{ for } 60 \geqslant n \geqslant 27,$$

we get from (2.6), for $n \ge 28$,

$$(2.7) \qquad \varphi(n+2) \leqslant \varphi(n) + \log_2 \frac{e^2(n+1)^3(n+2)}{4^4(n-1)^2} \leqslant \varphi(n) + 2\log_2(n+4) - 5.$$

In view of (1.10) we have

$$M_{n-1}\geqslant rac{M_n}{n}=2^{-arphi(n)/2}(n-1)^{(n-1)/2}\cdot\left(1+rac{1}{n-1}
ight)^{n/2}rac{(n-1)^{1/2}}{n};$$

hence, for $n \geqslant 3$,

(2.8)
$$\varphi(n-1) \leqslant \varphi(n) + 2\log_2 n - \log_2 e(n-1) \leqslant \varphi(n) + 2\log_2 n - 2.75$$
.
From (2.8) we get

$$(2.9) \varphi(n-2) \leqslant \varphi(n) + 2\log_2(n) + \log_2\frac{n-1}{e^2(n-2)} \leqslant \varphi(n) + 2\log_2 n - 2,75.$$

EVALUATION OF EXTREMAL DETERMINANTS

117

Assuming, in (2.6) and (2.7), n=4q-4, and, in (2.8) and (2.9), n=4q, and taking into consideration the assumed inequalities involving c, we get (2.5).

3. LEMMA 2. Let (a_{ik}) be a matrix of degree r and (b_{ik}) a matrix of degree $s \leq r$. Define a matrix (c_{ik}) of degree r+s by

$$c_{ik} = \begin{cases} a_{ik} & for \quad i \leq r, \ k \leq r, \\ a_{i,k-r} & for \quad i \leq r, \ k > r, \\ b_{i-r,k-r} & for \quad i > r, \ k > r, \\ -b_{i-r,k} & for \quad i > r, \ k \leq s, \\ arbitrary & for \quad i > r, \ s < k \leq r. \end{cases}$$

Then we have

$$|c_{ik}|_{r+s} = |a_{ik}|_r \cdot |b_{ik}|_s \cdot 2^s.$$

To verify this, define a matrix (d_{ik}) by

$$d_{ik} = egin{cases} a_{ik} & ext{for} & i \leqslant r, \ k \leqslant r, \ 0 & ext{for} & i \leqslant r, \ k > r, \ 2b_{i-r,k-r} & ext{for} & i > r, \ k > r, \ c_{ik} & ext{for} & i > r, \ k \leqslant r. \end{cases}$$

Thus we see that (d_{ik}) is obtained from (e_{ik}) by subtracting, for $k \leq s$, a column with index k from a column with index r+k.

Developing the determinant $|d_{ik}|_{r+s}$ after the first r rows and taking into consideration the zero-elements in (d_{ik}) we get

$$|a_{ik}|_{r=s} = |d_{ik}|_{r=s} = |a_{ik}|_{r} \cdot |2b_{ik}|_{s} = |a_{ik}|_{r} |b_{ik}|_{s} 2^{s}$$

and thus (3.1).

THEOREM 2. If $\varphi(n)$ is determined by (1.15), then for every integer m and n

(3.2)
$$\varphi(m+n) \leqslant \varphi(m) + \varphi(n) + |m-n|;$$

if $m \neq n$ in (3.2) we have the sharp inequality.

Proof. Let (a_{ik}) be a matrix of the determinant M_m , (b_{ik}) a matrix of the determinant M_n , (c_{ik}) a matrix formed from (a_{ik}) and (b_{ik}) in a way described in Lemma 2, and $M'_{m+n} = |c_{ik}|_{m+n}$. Owing to (1.15) and (3.1) we get

$$M_{m+n} \geqslant M'_{m+n} = M_m \cdot M_n 2^{\min(m,n)}$$

and, since $2 \min(m, n) = m + n - |m - n|$, we have

$$(3.3) (m+n)^{(m+n)/2} \cdot 2^{-\varphi(m+n)/2} \geqslant M'_{m+n} = m^{m/2} \cdot n^{n/2} \cdot 2^{-[\varphi(m)+\varphi(n)-m-n+\lfloor m-n\rfloor]/2}$$

$$= (m+n)^{(m+n)/2} \left(1 + \frac{m-n}{m+n}\right)^{m/2} \left(1 + \frac{n-m}{m+n}\right)^{n/2} \cdot 2^{-[\varphi(m)+\varphi(n)+\lfloor m-n\rfloor]/2}.$$

Consider the inequality

(3.4)
$$e^{-x/r} \geqslant 1 - \frac{x}{r} > 0$$
 for $x < r, \ 0 < r$

which is sharp for $x \neq 0$. If we raise it to power -r < 0,

$$e^x \leqslant \left(\frac{r}{r-x}\right)^r$$

and substitute r = s + x > 0, s > 0, we get

$$(3.5) e^x \leqslant \left(1 + \frac{x}{s}\right)^{s+x}.$$

After substituting s = (m+n)/4 > 0 and x = (m-n)/4, and once more x = (n-m)/4, we obtain from (3.5) the following inequalities:

$$\left(1+rac{m-n}{m+n}
ight)^{m/2}\geqslant e^{(m-n)/4}; \quad \left(1+rac{n-m}{m+n}
ight)^{n/2}\geqslant e^{(n-m)/4}.$$

In view of this, inequality (3.3) implies

$$(3.6) (m+n)^{(m+n)/2} \cdot 2^{-\varphi(m+n)/2} \geqslant (m+n)^{(m+n)/2} \cdot 2^{-[\varphi(m)+\varphi(n)+|m-n|]/2}.$$

Hence (3.2) follows. In virtue of the sharpness of (3.4) for $x \neq 0$ we see that inequality (3.6), and therefore also inequality (3.2), is sharp for $m-n \neq 0$.

COROLLARY 3. We have

(3.7)
$$\varphi(4q) \leqslant \frac{4q}{11} - 4 \quad \text{for} \quad q = 11, 12, 13, \dots$$

According to Table I of this paper, for q=1,2,...,22 we have $\varphi(4q)=0$; therefore, for s=0, we have (3.7) in the interval

$$(3.8) 11 \cdot 2^s \leqslant q \leqslant 11 \cdot 2^{s+1}.$$

Assuming that (3.7) holds for q in (3.8) with s=k, we see, according to (3.2), for $m=4\lfloor q/2\rfloor$, $n=4(q-\lfloor q/2\rfloor)$ that (3.7) holds for q in (3.8) with s=k+1; namely,

$$\varphi(4q) \leqslant \frac{4[q/2]}{11} + \frac{4(q - [q/2])}{11} - 8 + 4(q - 2[q/2]) \leqslant \frac{4q}{11} - 4,$$

for $\lceil q/2 \rceil$ and $q - \lceil q/2 \rceil$ belong to the interval (3.8) if s = k. Thus we see, by induction, that (3.7) holds for $q \ge 11$.

4. LEMMA 3. If

$$\varphi(p) = \varphi(q) = 0, \quad q > p \geqslant 4,$$

then, for $k = 0, 1, 2, \ldots$, we have

$$(4.3) \varphi(n) < c + \frac{2}{3} (q-p) 2^k - \frac{1}{3} (q-p) - 1 for 2^k p \leqslant n \leqslant 2^k q.$$

Proof. Condition (4.1), according to (1.4) (a) and (d), implies

(4.4)
$$\varphi(2^k \cdot p) = \varphi(2^k \cdot q) = 0 \quad \text{for} \quad k = 0, 1, 2, \dots$$

Instead of (4.3) we prove by induction (4.5) and (4.6):

$$(4.5) \varphi(n) \leqslant c(k),$$

$$(4.6) \quad \varphi(n) \leqslant c(k), \qquad \text{for} \quad 2^k \cdot p \leqslant n \leqslant 2^k \cdot q,$$

where

$$(4.7) c(k) = c + \frac{2}{3} (q-p)(2^k-1) + \frac{1-(-1)^k}{6} (q-p-3),$$

$$(4.8) d(k) = \frac{q-p}{3} 2^{k-1} + \frac{(-1)^k}{3} (q-p-3).$$

Let us remark that

$$(4.9) c(k) = c(k-1) - d(k) + (q-p)2^{k-1}.$$

$$(4.10) c(k) = c(k-1) + d(k-1) + (q-p)2^{k-2}.$$

We verify equalities (4.9) and (4.10) substituting (4.7) and (4.8) into (4.9) and (4.10). Inequalities (4.5) and (4.6) hold for k=0 in virtue of (4.1) and (4.2).

Supposing that (4.5) holds for k=l we shall verify that (4.6) will be valid for k=l+1.

In order to do this, divide the interval $2^{l+1}p\leqslant n\leqslant 2^{l+1}q$ into two subintervals:

(i)
$$2^{l+1}p \leqslant n = 2^{l}p + h \leqslant 2^{l}(p+q)$$

and

(ii)
$$2^l(p+q)\leqslant n=2^lq+h\leqslant 2^{l+1}\cdot q\,.$$

(Notice that in both cases $2^{l}p \leqslant h \leqslant 2^{l}q$).

Now, applying formula (3.2) to the numbers $2^l p$ and h in the case of the first subinterval, and then to the numbers $2^l q$ and h, and since $\varphi(2^l p) = \varphi(2^l q) = 0$ in virtue of (4.4), we get

$$\varphi(n) = \varphi(2^{l} \cdot p + h) \le c(l) + h - 2^{l} \cdot p = c(l) + n' - 2^{l+1} \cdot p$$

in subinterval (i) and

$$\varphi(n) = \varphi(2^{l} \cdot q + h) \leqslant c(l) + 2^{l} \cdot q - h = c(l) + 2^{l+1} \cdot q - n$$

in subinterval (ii). Further, according to (4.9), where k = l+1, we have

$$\begin{split} \varphi(n) &\leqslant c\,(l+1) + d\,(l+1) + n - (q-p)\cdot 2^l - 2^{l+1}\cdot p \\ &= c\,(l+1) + d\,(l+1) + n - (p+q)2^l, \end{split}$$

for $2^{l+1}p \leqslant n \leqslant 2^{l}(p+q)$ and

$$\begin{aligned} \varphi(n) & \leq c(l+1) + d(l+1) - n - (q-p) \cdot 2^{l} + 2^{l+1} \cdot q \\ & = c(l+1) + d(l+1) - n + (q+p) \cdot 2^{l} \end{aligned}$$

for $2^{l}(p+q) \leq n \leq 2^{l+1}q$; hence we obtain (4.6) for k=l+1.

Let us remark that in (4.6) the inequality continues to hold if we substitute a plus sign for the minus sign before the absolute value. Therefore we may write

$$(4.11) \quad \varphi(n) \leqslant c(k) + d(k) \mp (n - (p+q)2^{k-1}) \quad \text{for} \quad 2^k p \leqslant n \leqslant 2^k q.$$

Assuming that (4.6) holds for k=l (which means that (4.11) holds too), we shall see that (4.5) is valid for k=l+1.

Consider again the subintervals (i) and (ii). Applying formula (3.2) in the same way as before we get

$$\varphi(n) = \varphi(2^{l}p + h) \le e(l) + d(l) - (h - (p+q)2^{l-1}) - 2^{l}p + h$$

= $e(l) + d(l) + (q-p)2^{l-1}$,

for n in (i), and

$$\varphi(n) = \varphi(2^{l}q + h) \leqslant c(l) + d(l) + (h - (p+q)2^{l+1}) + 2^{l}q - h$$

= $c(l) + d(l) + (q-p)2^{l-1}$,

for n in (ii). Moreover, according to (4.10), where k = l+1, we write

$$\varphi(n) \leqslant c(l+1)$$
 for $2^{l+1}p \leqslant n \leqslant 2^{l+1}q$,

which implies (4.5) for k = l+1. Since (4.5) and (4.6) hold for k = 0, and it was shown that if they hold for k = l, then they hold for k = l+1, so they hold for $k = 0, 1, 2, \ldots$

According to theorem 2, in all cases where $2^l p \neq h$ or $2^l q \neq h$ the inequality (4.5) is sharp. But if $2^l p = h$ or $2^l q = h$, then, according to (4.4), the inequality (4.5) is sharp as well. Hence the inequality (4.3) is sharp in all cases for $k = 1, 2, \ldots$ Therefore, according to (4.5) and (4.7), we have

$$\varphi(n) < o + \frac{2}{3} (q - p)(2^k - 1) + \frac{1 - (-1)^k}{6} (q - p - 3)$$

for k = 1, 2, ... and $2^k p \leqslant n \leqslant 2^k q$.

Since, according to the theorem of Sylvester for $q > p \ge 4$, we have $q-p \ge 4$ or $q-p-3 \ge 1$, we see that for $k=1,2,\ldots$

$$arphi(n) < c + rac{2}{3}(q-p)2^k - rac{q-p}{3} - 1 \quad ext{ for } \quad 2^k p \leqslant n \leqslant 2^k q,$$

or (4.3) for k = 1, 2, ...; but (4.3) holds also for k = 0 which is immediately verified in view of (4.2) and of the fact that $(q-p)/3 \ge 4/3$.

THEOREM 3. If

$$\varphi(n_i) = 0 \quad \text{for} \quad i = 0, 1, 2, ..., m,$$

where $n_{i+1} > n_i$ and $8 \leq 2n_0 = n_m$,

$$\alpha \geqslant \max_{i=0,1,2...m-1} \left(\frac{n_{i+1} - n_i}{n_i} \right),$$

$$(4.14) \quad \beta \geqslant \max_{i=0,1,2,\dots,m-1} \max_{n_i \leqslant n \leqslant n_{i+1}} \bigg(\varphi(n) - \frac{n_{i+1} - n_i}{3} \,, \, 1 - \frac{n_{i+1} - n_i}{3} \bigg),$$

then for $n \ge n_0$ we have

$$(4.15) \varphi(n) < \frac{2}{3} an + \beta - 1.$$

Proof. Substitute $p=n_i$, $q=n_{i+1}$, in Lemma 3. Then, in virtue of (4.12), we have (4.1). Because of (4.14) we have (4.2) with $c_i=\beta+(n_{i+1}-n_i)/3$. Therefore, according to (4.3) we have, for every $k=0,1,2,\ldots$, and $i=0,1,2,\ldots,m-1$

$$\varphi(n) < \beta + \frac{n_{i+1} - n_i}{3} + \frac{2}{3} (n_{i+1} - n_i) 2^k - \frac{1}{3} (n_{i+1} - n_i) - 1$$

$$=\beta-1+\frac{2}{3}\;(n_{i+1}-n_i)2^k\leqslant\beta-1+\frac{2}{3}\;\frac{n_{i+1}-n_i}{n_i}\cdot 2^k\cdot n_i$$

for $2^k \cdot n_i \leqslant n \leqslant 2^k n_{i+1}$.

Replacing, in this inequality, $(n_{i+1}-n_i)/n_i$ by a and $2^k n_i$ by n we get, according to (4.13), the inequality (4.15) for $2^k n_i \leq n \leq 2^k n_{i+1}$, $k=0,1,2,\ldots,i=0,1,2,\ldots,m-1$.

Since, by assumption, $2n_0 = n_m$, we see that for $n \ge n_0$ (4.15) holds.

Corollary 4. For $n \ge 4$, we have

(4.16)
$$\varphi(n) < \frac{2}{3}n - 0.996.$$

In view of Table I we have $\varphi(4)=\varphi(8)=0,$ and, according to (1.5), we have

$$\varphi(5) = 5\log_2 5 - 8 - 2\log_2 3 \leq 11,7 - 8 - 3,16 = 0,54$$

$$\varphi(6) = 6 + 6\log_2 3 - 2\log_2 5 - 10 \le 6 + 9.5 - 4.63 - 10 = 0.87,$$

$$\varphi(7) = 7\log_2 7 - 4\log_2 3 - 12 \le 19,7 - 6,33 - 12 = 1,37,$$

i.e. we have
$$\varphi(5)\leqslant \varphi(6)\leqslant \varphi(7)\leqslant 1{,}37\leqslant 0{,}04+\frac{4}{3}.$$

Hence, if we put $n_0 = 4$, $n_1 = 8$, m = 1, in theorem 3, then a = 1 fulfils (4.13) and, according to the above estimation, $\beta = 0.04$ fulfils (4.14), which proves (4.16).

COROLLARY 5. For $n \ge 48$ we have

(4.17)
$$\varphi(n) < \frac{2}{33} n + 10,65.$$

In view of (4.13) and of Table I we have $a = \frac{2}{22} = \frac{1}{11}$ for $48 \le n \le 96$, and according to (2.5), we have

$$\varphi(n)\leqslant 2\log_2 22+1,25\leqslant 2\cdot 4,47+1,25\leqslant 10,2\quad \text{ for }\quad 48\leqslant n\leqslant 88;$$
 according to (2.5) and in view of Table II we have

$$\varphi(n) \leq 2\log_2 23 + 5.25 \leq 2.453 + 5.25 \leq 14.31$$
 for $88 \leq n \leq 96$.

Both eases imply, in view of (4.14),

$$14,31-\frac{8}{3}=\beta=11,65,$$

whence follows (4.17) by Theorem 3.

COROLLARY 6. For $n \ge 1080$, we have

$$\varphi(n) < \frac{n}{192} + 37.7.$$

In view of (4.13) and of Table I we find that $\alpha = \frac{4}{512} = \frac{1}{128}$ for $270 \leq n/4 \leq 540$. Looking through Table II, according to (2.5) and in view of (4.14) we find that

$$2\log_2(535) + 23 - \frac{8}{3} \leqslant \beta = 38,7.$$

Having α and β we obtain (4.18) by (4.15).

5. THEOREM 4. If

(5.1)
$$\varphi(n_i) = 0, \quad n_{i+1} > n_i \quad \text{for} \quad i = 0, 1, 2, \dots,$$

and if g(n) is a function defined for integers $n \ge n_0$ in such a manner that

(5.2)
$$g(n) \geqslant \min_{n_i \leqslant n} (n - n_i),$$

and $\psi(x)$ is a function defined for real values $x\geqslant n_0,$ non-decreasing and such that

$$(5.3) 1 \leqslant \psi(x),$$

$$(5.4) \psi(2n-g(n)) \geqslant \psi(n)+g(n),$$

then from the assumption

(5.5)
$$\varphi(n) \leqslant \psi(n) \quad \text{for} \quad n_0 \leqslant n \leqslant 2n_0$$

it follows that inequality (5.5) holds for every $n \ge n_0$.

Proof. Obviously, according to (1.4) (a) and (d), $\varphi(2n_i) = 0$; hence we may complete the sequence (5.1) so that $n_{i+1} \leq 2n_i$. If for $n_0 \leq n \leq 2n_i$ formula (5.5) holds, which is verified according to the assumption for i = 0, we shall see, by Theorem 2, that (5.5) holds for $n_0 \leq n \leq 2n_{i+1}$.

For $2n_i \leqslant n = n_i + h \leqslant n_i + n_{i+1} - 1$ we have $n_i \leqslant h \leqslant n_{i+1} - 1 < 2n_i$. In view of (5.1), (5.2), (5.3), and (5.4), where n = h and applying formula (3.2) to the numbers n_i and h, we get

(5.6)
$$\varphi(n_i+h) \leqslant \psi(h)+h-n_i \leqslant \psi(h)+g(h) \leqslant \psi(2h-g(h))$$
$$\leqslant \psi(2h-h+n_i) = \psi(n_i+h).$$

For $n = n_i + n_{i+1}$, according to (5.2), (5.3), (5.4), (5.1), and to Theorem 2, we have

$$(5.7) \quad \varphi(n_{i}+n_{i+1}) \leqslant n_{i+1}-n_{i} = 1 + (n_{i+1}-1-n_{i}) \leqslant 1 + g(n_{i+1}-1)$$

$$\leqslant \psi(n_{i+1}-1) + g(n_{i+1}-1) \leqslant \psi(2(n_{i+1}-1) - g(n_{i+1}-1))$$

$$\leqslant \psi(2n_{i+1}-2 + n_{i}-n_{i+1}+1) \leqslant \psi(n_{i+1}-n_{i}).$$

(5.8)
$$\varphi(n_{i+1}+h) \leq \psi(h) + n_{i+1} - h \leq \psi(h) + g(n_{i+1}-1)$$
$$\leq \psi(n_{i+1}-1) + g(n_{i+1}-1) \leq \psi(2(n_{i+1}-1) - g(n_{i+1}-1))$$
$$\leq \psi(n_{i+1}+n_i) \leq \psi(n_{i+1}+h).$$

Since (5.6), (5.7), and (5.8), imply (5.5) for $2n_i \le n < 2n_{i+1}$, we get (5.5) for $n_0 \le n \le 2n_{i+1}$; hence (5.5) holds for $n \ge n_0$.

Corollary 7. There exist an a < 1 and an N such that for n > N we have

$$\varphi(n) \leqslant bn^a + d.$$

Let $n_i=2(p_i+1)$, where p_i is the *i*-th prime number. Then, according (1.4), (a), (c), and (d), we have $\varphi(n_i)=0$, and thus (5.1).

According to the theorem of Ingham [6], we have

$$p_{i+1} - p_i \leqslant p^{38/61+\eta},$$

where p_i and p_{i+1} are two consecutive prime numbers, c is a constant, and η is an arbitrary positive number. If we substitute $n_i = 2(p_i + 1)$ in this inequality, we get

$$n_{i+1} - n_i \leqslant 2(n_i/2 - 1)^{38/61 + \eta}$$
 for $n_i \geqslant 2(c^{1/\eta} + 1) = N$.

Let $g(n) = an^a$, where $a = 38/61 + \eta$ and $a = 2^{1-a}$. Then, for each n > N there exists such an i that

$$0 \leqslant n - n_i \leqslant 2(n/2 - 1)^{38/61 + \eta} - 1 < \alpha n^{\alpha} = g(n),$$

and thus (5.2) holds. The function $\psi(n) = bn^a + d$ satisfies (5.3) and (5.4) if

$$b(2n-\alpha n^a)^a \geqslant bn^a + \alpha n^a$$

i. e. for b=a: $\{(2-\alpha N^{\alpha-1})^a-1\} \geqslant a$: $\{(2-\alpha n^{\alpha-1})^a-1\}$. Choosing a d such that (5.9) holds for $N \leqslant n \leqslant 2N+2g(N)$, we have, in view of Theorem 4, formula (5.9) for $n \geqslant N$.

COROLLARY 8. If we assume the hypothesis of Riemann about the distances of consecutive prime numbers, we have

$$(5.10) \varphi(n) \leqslant b n^{1/2} \log \left(\frac{n}{2}\right) + d for n \geqslant N.$$

According to Riemann's hypothesis [2] we have, for the *i*-th prime number $p_i > \frac{1}{2}N_1 - 1$,

$$p_{i+1} - p_i < c p_i^{1/2} \log p_i$$

Taking $n_i = 2(p_i + 1)$ we have (5.1) and

$$n_{i+1} - n_i < 2c \left(\frac{n_i}{2} - 1\right)^{1/2} \log \left(\frac{n_i}{2} - 1\right);$$

therefore for $n \ge N_1$ we have (5.2) with

$$g(n) = \sqrt{2} \cdot c \cdot \sqrt{n} \cdot \log \frac{n}{2}$$
.

The function $\psi(n) = bn^{1/2}\log(n/2) + d$ satisfies (5.3) and (5.4) if

$$b\geqslant \frac{\sqrt{2\cdot c}}{\sqrt{2-\sqrt{2}\cdot c\log{(N_2/2)}:\sqrt{N_2}-1}}, \quad n\geqslant N=\max(N_1,N_2),$$

which we verify by substituting $\psi(n)$ in (5.4). Choosing a d such that (5.10) holds for $N \leq n \leq 2N + 2g(N)$ we obtain (5.10) for $n \geq N$.

COROLLARY 9. If we assume the hypothesis of H. Cramér, then for $n \geqslant N$ we get

(5.11)
$$\varphi(n) \leqslant b \log^3\left(\frac{n}{2}\right) + d.$$

According to Cramér's hypothesis [2], we have

$$p_{i+1} - p_i \leqslant c \log^2 p_i \quad \text{ for } \quad p_i \geqslant \frac{N_1}{2} - 1,$$

which gives (5.2), for $n_i = 2(p_i + 1)$ and

.
$$g(n) = 2c\log^2\left(\frac{n}{2}\right)$$
 for $n \geqslant N_1$.

The function $\psi(n) = b \log^3(n/2) + d$ satisfies (5.3) and (5.4) if

$$b\geqslant rac{2c}{3\log\left(2-rac{2c}{N_2}\log^2rac{N_2}{2}
ight)}, \qquad n\geqslant N=\max\left(N_1,\,N_2
ight)$$

which is to be verified by substituting $\psi(n)$ in (5.4). Choosing a d such that (5.11) holds for $N \leq n \leq 2N + 2g(N)$ we obtain (5.11) for $n \geq N$.

It is interesting to compare Corollary 9 with Corollary 2, which, if Sylvester's hypothesis is assumed, gives the following evaluation:

$$\varphi(n) \leqslant d + 2\log_2 n/\log 2$$

where d is a positive constant.

6. The evaluation of the maximal value of the determinant of matrix (1.1) may be used for the evaluation of the maximal value of the determinant of a matrix of a more general form owing to the following

THEOREM 5. If the matrix (x_{ik}) is of the n-th degree, such that

$$(6.1) a_ib_k(c-1) \leqslant x_{ik} \leqslant a_ib_k(c+1), 1 \leqslant i, k \leqslant n$$

$$a_i \geqslant 0, b_i \geqslant 0, c \geqslant 0,$$

and X_n is the maximal value of the determinant of matrix (x_{ik}) , then

(6.2)
$$X_n \geqslant \prod_{i=1}^n a_i \prod_{k=1}^n b_k M_n \left(\frac{3n-4}{n} c + 1 \right),$$

(6.3)
$$X_n \geqslant \prod_{i=1}^n a_i \prod_{k=1}^n b_k M_{n+1} \frac{e^{n+1}}{n+1}.$$

Proof. By interchanging columns and rows and multiplying by ± 1 matrix (1.1) of the determinant M_n can be reduced to a matrix (e_{ik}) such that $|e_{ik}|_n = M_n$, and the minor W_{n-1} of the element e_{nn} is the absolutely least one and that

$$(6.4) e_{nk} = 1 ext{ for } 1 \leqslant k \leqslant n, e_{in} = -1 ext{ for } 1 \leqslant i \leqslant n-1,$$

which is possible for $n \ge 3$, for we can change the sign of the determinant by permuting the first two columns; for n = 2 we have (6.4) since

$$M_2 = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}.$$

In view of (1.11) we have $0 \leqslant |e_{ik}|_{n-1} = W_{n-1} \leqslant M_n/n$ and, since $c \geqslant 0$, we get

$$\begin{split} \left(3c+1-\frac{4c}{n}\right)M_n &\leqslant c(3M_n-4W_{n-1})+M_n\\ &= c(3|e_{ik}|_n-4|e_{ik}|_{n-1})+|e_{ik}|_n, \end{split}$$

Further, according to Lemma 1 we get (2.1), where n=r, $a_{ik}=e_{ik}$ for $1 \le i$, $k \le n$ and a=1, d=0, b=c=-1, and the corresponding a_{ik} for the last column and for the last row, we have

$$\left(3c+1-rac{4e}{n}
ight)M_n\leqslant c\left|egin{array}{ccc} -1\ (e_{ik})&dots\ -1\ 1\dots 1&0\ |_{n+1} \end{array}
ight.$$

Multiplying the *n*-th column by -1 and permuting the first two rows (which is possible for $n \ge 2$) we obtain the matrix (e'_{ik}) and

$$(6.6) \quad \left(3c+1-\frac{4c}{n}\right)M_{n} \leqslant c \begin{vmatrix} -1 \\ (e'_{ik}) & \vdots \\ -1 \\ 1\dots 1 & 0 \end{vmatrix}_{n+1} + |e'_{ik}|_{n}$$

$$= \begin{vmatrix} (e'_{ik}) & \vdots \\ -1 \\ 0 & \vdots \\ 0 & -1 \\ 0 \dots c & 0 \end{vmatrix}_{n+1} + \begin{vmatrix} (e'_{ik}) & \vdots \\ 0 \\ 0 \dots c & 1 \\ 0 \dots c & 1 \end{vmatrix}_{n+1} = \begin{vmatrix} (d_{ik}) & 1 \\ 0 & \vdots \\ -1 \\ 0 \dots c & 1 \end{vmatrix}_{n+1} = |d_{ik}|_{n},$$

where $d_{ik} = e'_{ik} + c$.

Choosing $x_{ik} = a_i b_k d_{ik}$ we see that (6.1) holds and get

(6.7)
$$X_n \geqslant |x_{ik}|_n = \prod_{i=1}^n a_i \prod_{k=1}^n b_k |d_{ik}|_n.$$

After substituting $|d_{ik}|$ in (6.7) we obtain, for $n \ge 2$, formula (6.2), and for n = 1 we have $X_1 = a_1b_1(c+1)$; hence (6.2) holds for all integers n.

Permuting columns and rows and multiplying by -1, respectively, we reduce matrix (1.1) of the determinant M_{n+1} to a form in which

(6.8)
$$e_{i,n+1} = -1$$
 for $1 \le i \le n$, $e_{n+1,k} = 1$ for $1 \le k \le n+1$,

and the minor $|e_{ik}|_n \geqslant 0$ of the element $e_{n+1,n+1}$ is the greatest one if $1-c\geqslant 0$ and absolutely the least one if 1-c<0. This is possible for $n\geqslant 2$ since the sign of the determinant M_{n+1} may remain unchanged when the first two columns are permuted respectively. Formula (6.8) can be obtained also for n-1 in view of (6.5). Applying (1.10) to $|e_{ik}|_n$, if $1-c\geqslant 0$, and (1.11), if 1-c<0, we get the following relation:

(6.9)

$$\left(c + \frac{1-c}{n+1}\right) M_{n+1} \leqslant c M_{n+1} + (1-c)|e_{ik}|_n = c \begin{vmatrix} -1 \\ |e_{in}| & \vdots \\ -1 \\ |1...1 \end{vmatrix} + (1-c)|e_{ik}|_n$$

$$= \begin{vmatrix} -1 \\ |e_{ik}| & \vdots \\ -1 \\ |c...c \end{vmatrix} + \begin{vmatrix} -1 \\ |e_{ik}| & \vdots \\ -1 \\ |0...0 & (1-c)| \end{vmatrix} = \begin{vmatrix} -1 \\ |e_{ik}| & \vdots \\ -1 \\ |c...c & 1 \end{vmatrix} = \begin{vmatrix} 0 \\ |d_{ik}| & \vdots \\ 0 \\ |c...c & 1 \end{vmatrix}_{n+1} = |d_{ik}|_n$$

where $d_{ik} = e_{ik} + c$. Choosing $x_{ik} = a_i b_k d_{ik}$ we see that (6.1) holds and we get (6.7); then, substituting (6.9) into (6.7) we obtain (6.3) for integers n.

Table I. For $1 < q \le 568$ the numbers 4q, contained in column H, either have one of the forms (1.4) or are in column S. If q_1 is expressed in one of the forms (1.4) and $q_2 = 2^k q_1$ (k = 1, 2, ...), then in Table I there are no numbers q_2 , as they obviously are integers of the form (1.4) according to (1.4), (a) and (d).

Table II. Table II contains numbers $1 \le q \le 544$ for which it is not known whether the matrices H of degree 4q exist.

In column $\Phi(q)$ are presented the values of the function $\Phi(q)$ defined in the following manner:

- (a) $\Phi(q) = 0$ if 4q satisfies one of the conditions (1.4);
- (b) If the value of $\Phi(q)$ is known for $q \leq q_0 1$, then

$$\Phi(q_0) = \min_{q_0 = q_1 + q_2} \{\Phi(q_1) + \Phi(q_2) + |q_2 - q_1|\}.$$

In column Z are given the components $q_0=q_1+q_2$ for which the minimum value is reached.

The function $\Phi(q)$ can be used for determining β appearing in theorem 3.

TABLE I

q	H	S	q	H	S	q	H	S
1	3+1		47		188	91	2(181+1)	
3	2(5+1)		49	2(97+1)		92	367 + 1	
5	19 + 1		51	2(101+1)		93		372
7	2(13+1)		53	211 + 1		94		376
9	2(17+1)		55	2(109+1)		95	379 + 1	
11	43 + 1		57	2(113+1)		97	2(193+1)	
13	$2(5^2+1)$		58		232	99	2(197+1)	
15	2(29+1)		59		236	101		404
17	67 + 1		61	$2(11^2+1)$		103		412
19	2(37+1)		63	251 + 1		105	419 + 1	
21	2(41+1)		65		260	107		428
23		92	67		268	109		436
25	$2(7^2+1)$		69	2(137+1)		111	443 + 1	
27	2(53+1)		71	283 + 1	İ	113		452
29		116	73		292	115	2(229+1)	
31	2(61+1)		75	2(149+1)		116	463 + 1	
33	131 + 1		77	307 + 1		117	2(233+1)	
35	139 + 1		78	311 + 1		118		472
37	2(73+1)		79	2(157+1)		119		476
39		156	81	$(17+1)^2$	1	121	2(241+1)	
41	163 + 1		83	331 + 1		122	487+1	
43	172		85	$2(13^2+1)$		123	491+1	
45	2(89+1)	1	87	2(173+1)		125	499+1	
46		184	89		356	127		508

128

TABLE I (continued)

	Н	S		H	8	q	Н	s
q			$\frac{q}{}$		~~			_~
129	2(237+1)		206	823 + 1		281	1123 + 1	1100
130	$20(5^2+1)$		207	827 + 1		283	0.000 1 11	1132
131	523 + 1		209		836	285	2(569+1)	1,140
133		532	211	2(421+1)		287	0/555 1 3	1148
134		536	213		852	289	2(577+1)	
135	2(269+1)		214		856	291	1163 + 1	1105
137	547 + 1		215	859 + 1		292	1177 1 7	1167
139	2(277+1)		217	2(433+1)	0.00	293	1171 + 1	1100
141	2(281+1)		218		872	295	0/200 3)	1180
143	571 + 1		219		876	297	2(593+1)	7,100
145	$2(17^2+1)$		221	883 + 1	202	298		1192
146		584	· 223		892	299	0 (001 + 1)	1196
147	2(293+1)		225	2(449+1)		301	2(601+1)	1,000
149		596	226		904	302		1208
151		604	227	907 + 1		303		1212
153		612	229	2(457+1)		305	1000 1	1220
155	619 + 1		231	2(461+1)		306	1223+1	1
157	2(313+1)		233		932	307	2(613+1)	
159	2(317+1)		235		940	309	2(617+1)	1044
161	643 + 1		236		944	311	0 (74 1)	1244
163		652	237	947 + 1		313	$2(5^4+1)$	
165	659 + 1		238	$(13+1)17\cdot 4$	0.50	315	1259 + 1	1000
167		668	239		956	317		1268
169	2(337+1)		241		964	319	0/0/1 1)	1276
170	$(9+1)4\cdot17$		243	971 + 1	000	321	2(641+1)	
171	863 + 1		245		980	323	1291 + 1	1300
173	691 + 1		247		988	325	1909 1	1500
175	2(349+1)		249		996	326	1303+1	
177	2(353+1)		251		1004	327	2(653+1)	1316
178		712	253		1012	329	0/001 + 1\	1310
179		716	254	0.4500 1.10	1016	331 333	$\begin{array}{c} 2 (661+1) \\ 11^3+1 \end{array}$	
181	$2(19^2+1)$		255	2(509+1)	1000	334	110+1	1336
183		732	257		1028			1340
185	739 + 1		259	7,090 7	1036	335 337	2(673+1)	1940
186	743+1		260	1039+1			2(673+1) 2(677+1)	
187	2(373+1)		261	2 (521+1)		339 341	2(0//+1)	1364
188	751+1		263	1051+1		343		1372
189	$3^3(3^3+1)$	701	265	$2(23^2+1)$		345		1380
191		764	266	1063+1	1088	347		1388
193	0 (000 1 7)	772	267		1068 1072	349		1396
195	2(389+1)		268		1072	351	2(701+1)	1330
197	787+1		269	9 (541 1)	1070	353	2(101+1)	1412
199	2(397+1)	1	271	2(541+1)		355	2(709+1)	1412
201	2(401+1)	900	273	1091+1	1100	356	1423+1	
202	011 1 1	808	275		1100	357	$1423+1 \\ 1427+1$	
203	811+1		277	0/557 3	1108	358	1421-11	1432
205	2(409+1)	1	279	2(557+1)	l	1 208	I control of	1452

TABLE I (continued)

q	H	S	q	H	S	q	H	S
359		1436	433	1 - Para Salaman	1732	501	2003+1	
361		1444	435		1740	502	2000 1	2008
362	1447 + 1		436	and the second s	1744	503	2011 + 1	2000
363	1451 + 1		437	1747 + 1		505	2(1009+1)	
365	1459 + 1		438		1752	506	2(1000 1)	2024
366		1464	439	2(877+1)		507	2(1013+1)	
367	2(733+1)		441	2(881+1)		508	-(1010 / 1)	2032
369	,	1476	443		1772	509		2036
371	1483 + 1		445		1780	511	2(1021+1)	
373		1492	446	1783+1		513	= ((-)	2052
375	1499 + 1		447	1787 + 1		514		2056
377	·	1508	449		1796	515		2060
378	1511 + 1		451		1804	517	2(1033+1)	
379	2(757+1)		452		1808	518	$(13+1)37\cdot 4$	
381	2(761+1)		453	1811+1	2000	519	(10 1/0. 1	2076
382	-(/ -)	1528	455	1011 1	1820	521	2083 + 1	20.0
383	1531 + 1		457		1828	523	2000 1	2092
385	2(769+1)		459		1836	525	2(1049+1)	
386	1543 + 1		461		1844	527	2(1010 1)	2108
387	2(773+1)		463		1852	529	,	2116
389	-(, -/	1556	465	2(929+1)	1002	531	2(1061+1)	
391		1564	466	2(020 1)	1864	533	2(1001+1)	
393	1571 + 1		467	1867 + 1	1001	534	2101 1	2136
395	1579 + 1		469	2(937+1)		535	2(1069+1)	
397		1588	470	1879+1		536	2143+1	
399	2(791+1)		471	2(941+1)		537	2220 1	2148
401	-(-/	1604	472	-(1888	538		2152
403		1612	473	44(44-1)		539		2156
404		1616	475	(/	1900	541		2164
405	2(809+1)		477	2(953+1)		543		2171
407	1627 + 1		478	-((-/	1912	545		2180
409		1636	479		1916	547	2(1093+1)	-100
411	2(821+1)		481	$2(31^2+1)$		549	2(1097+1)	1
413	_(=== ; +)	1652	482	=(02 (2)	1928	550	$(49+1)11\cdot 4$	
415	2(829+1)		483	1931 + 1		551	2203+1	1
417	1667 + 1		485		1940	553		2212
418	(37+1)44		487		1948	554		2216
419	(- , - , - ,	1676	489	2(977+1)		555	2(1109+1)	
421		1684	490	$(9+1)49\cdot 4$		557	_(1100 1)	2228
423		1692	491	(2 -) -0 1	1964	559	2(1117+1)	
425	1699 + 1		493		1972	561	2243+1	1
426	$(5+1)4\cdot71$	1	494	$(25+1)4\cdot 19$	~~	563	2251+1	
427	2(853+1)	1	495	1979+1		565	2(1129+1)	
428	-(000 1)	1721	497	1987+1	1	566	2(1120 + 1)	226
429	2(857+1)		498	$(5+1)83\cdot 4$		567	2267+1	1220
-20	~ (001 171)	1	499	2(997+1)	1	1 001	220171	1

Colloquium Mathematicum X.

ç

TABLE II

q	Z	$\Phi\left(q\right)$	q	Z	$\Phi\left(q\right)$	q	Z	$\Phi\left(q\right)$	q	Z	$\Phi(q)$
23	11 + 12	1	213	106 + 107	2	325	162 + 163	2	449	224 + 225	1
29	14 + 15	1	214	107 + 107	2	329	164 + 165	1	451	224 + 227	3
39	19 + 20	î	218	109 + 109	2	334	167 + 167	2	452	227 + 225	2
46	23 + 23	2	219	109 + 110	2	335	167 + 168	2	455	228 + 227	1
47	23 + 24	2	223	111 + 112	1	341	170 + 171	1	457	229 + 228	1
58	29 + 29	2	226	113 + 113	2	343	171 + 172	1	459	229 + 230	1
59	30 + 29	2	233	116 + 117	1	345	172 + 173	1	461	230 + 231	1
65	32 + 33	1	235	117 + 118	3	347	173 + 174	1	463	231 + 232	1
67	33 + 34	1	236	116 + 120	4	349	174 + 175	1	466	233 + 233	2
73	36 + 37	1	239	119 + 120	4	353	176 + 177	1	472	234 + 238	4
89	44 + 45	1	241	120 + 121	1	358	179 + 179	4	475	237 + 238	1
93	45 + 48	3	245	122 + 123	1	359	179 + 180	3	478	238 + 240	2
94	47 + 47	4	247	123 + 124	1	361	180 + 181	1	479	238 + 241	4
101	50 + 52	1	249	124 + 125	1	366	183 + 183	2	482	241 + 241	2
103	51 + 58	1	251	125 + 126	1	369	184 + 185	1	485	242 + 243	1
107	53 + 54	1	253	126 + 127	2	373	186 + 187	1	487	243 + 244	1
109	54 + 55	1	254	127 + 127	2	377	188 + 189	1	491	245 + 246	2
113	57 + 56	1	257	128 + 129	1	382	191 + 191	2	493	246 + 247	2
118	59 + 59	4	259	129 + 130	1	389	194 + 195	1	502	251 + 251	2
119	59 + 60	3	267	132 + 135	3	391	195 + 196	1	506	253 + 253	4
127	63 + 64	1	268	134 + 134	4	397	198 + 199	1	508	254 + 254	
133	66 + 67	2	269	134 + 135	3	401	200 + 201	1	509	254 + 255	3
134	67 + 67	2	275	137 + 138	1	403	201 + 202	3	513	256 + 257	2
146	73 + 73	2	277	138 + 139	1	404	201 + 203	2	514	257 + 257	2
149	74 + 75	1	283	141 + 142	1	409	204 + 205	1	515	257 + 258	1
151	75 + 76	1	287	143 + 144	1	413	206 + 207	1	519	259 + 260	
153	76 + 77	1	292	145 + 147	2	419	209 + 210	2	523	261 + 262	
163	81 + 82	1	295	147 + 148	- 1	421	210 + 211	1	527	263 + 264	
167	83 + 84	1	298	149 + 149	2	423	211 + 212	1	529	264 + 265	
178	89 + 89	2	299	149 + 150	2	428	214 + 214	4	534	267 + 267	
179	89 + 90	2	302	151+151	2	433	216 + 217		537	266 + 271	
183	91 + 92	1	303	151 + 152	2	435	217 + 218		538	269 + 269	
191	95 + 96	1	305	152 + 153	2	436	218 + 218	4	539	269 + 270	1
193	96 + 97	1	311	155 + 156	1	438	219 + 219	4	541	270 + 271	1
202	101 + 101	2	317	158 + 159		443	221 + 222		543	1 '	l l
209	104 + 105	1	319	159 + 160	1	445	222 + 223	2	545	272 + 273	1

REFERENCES

[1] A. Brauer, On a new class of Hadamard determinants, Mathematische Zeitschrift 58 (1953), p. 219-225.

[2] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica 2 (1936), p. 23-46.

[3] P. Erdös, Unsolved problems, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 6 (1961), p. 211-254.

- [4] R. E. Gilman, On the Hadamard determinant theorem and orthogonal determinants, Bulletin of the American Mathematical Society 37 (1931), p. 30-31.
- [5] J. Hadamard, Résolution d'une question relative aux déterminants, Bulletin des Sciences Mathematiques ser. 2, vol. 17, Part 1 (1893), p. 240-246.
- [6] A. E. Ingham, On the difference between consecutive primes, The Quarterly Journal of Mathematics, Oxford, 8 (1937), p. 225-266.
- [7] R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics, Massachusets Institute of Technology, 12 (1933), p. 311-320.
- [8] U. Scarpis, Sui determinanti di valore massimo, Rendiconti della Instituto Lombardo di Scienze e Lettere (2), 31 (1898), p. 1441-1446.
- [9] J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tesselated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers, Philosophical Magazine (4), 34 (1867), p. 461-475, or Collected Mathematical Papers 2 (1908), p. 615-628.
- [10] G. Szekeres, P. Turán, On an extremal problem in determinant theory [in Hungarian with German abstract], Matematikai és Természettudományi Értesitő, (1937), p. 796-804.
- [11] P. Turán, On extremal problem concerning determinants [in Hungarian with English abstract], Matematikai és Természettudományi Értesitő, (1940), p. 95-105.
- [12] On a problem in the theory of determinants, Acta Mathematica Sinica 5 (1955), p. 411-423.
- [13] J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Mathematical Journal 11 (1944), p. 65-81.
- [14] Determinants whose elements are 0 and 1. American Mathematical Monthly 53 (1946), p. 427-434.
- [15] Note on Hadamard's determinant theorem, Bulletin of the American Mathematical Society 53 (1947), p. 608-613.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 2.11.1961