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Dlaprés la remarque qui précéde, il y a par suite 3 cas possibles,
3 savoir %f+4+e =1, 24 & =16 et 2t+¢ >34, qui donnent respecti-
vementt =0,e =1eta =1, oubient =1,¢= —leta = Fy;—1 = 28
ou bien t =8, ¢ = 0 et @ = 8F;, ou bien ¢ > 17, ¢ 2 0 et a > F,F,
ou enfin ¢ > 18 et @ > 18F,— 1. Done, (2) entraine pour @ > 1 que

3)

-

=1, ou bien & = 2%, ou bien a = 8F,, ou bien a4 > F,F,.

Ceei 6tabli, examinons les @ > 1 naturels assujettis & (1). On a a =
= Fi+c(oit =1ebte=0o0ue= +£1)et vu que F, = 2 (mod F',F,F),
on conclut que F,F,F,|(2t+¢)[(21+¢)2—1T.

Daprés (3), on a iei 2+ =1, ou bien 2¢-4& =28 ou bien

St+e = 8F,, ou enfin 2t+e > F,F;, ce qui donne 5 cas possibles
suivants:
Lit=1,¢e=—104=F—1=a;

2.t =127, 8 =0, 6 = 2F, = a;

3.t =4F;, ¢ =0, a = 4FF, = a;;

4ot = J(FF3—1), e =1, a = I (FoFy—1)+1 = a,

5.t > HFF+1), a > 3P, (FF41)—1 = a;.

Or ai+1 =20F,, 13|ai+1, 37|a-+1, 2]ai+1 et a; = 8(2*+1)X
X (2841)(224+1), ce qui achéve la démonstration.

Démonstration du théordme 2. Soient a et m des nombres
naturels quelconques dont a >1. Il existe par hypothése un nombre
premier de Fermat F, tel que F; { a(a?—1). On a F;|a™ '—1 en vertu
du théoréme d’Euler et comme

2t

=1 = (@"—1) [] (a¥+1),

j=m
on a Fyla¥+1 pour un j = m.
Si a¥ 41 =F,;, il vient a = 22/, ce qui est incompatible avee
I’hypothése. On a dome a? -1 # F; et le nombre a? 41 (olt j = m) est
composé.
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REMARK ON RATIONAL TRANSFORMATIONS
BY

W. NARKIEWICZ (WROCLAW)

In [1] and [2] it was proved that if a field K is finitely generated
over the rationals, and X is an infinite subset of K, then every polyno-
mial mapping X onto itself must be linear. It seems to be true that every
rational funetion mapping an infinite subset X of such a field onto itself
must be & homography. The purpose of this note is to prove this in the
case of the field R of rational numbers.

Let R,, be the set obtained by adjoining an ideal element co to R.
For every rational function F(t) we put F(occ) = tlimlF (t)| and if 2 is

|tl->00

a pole of F (%), then we put F(2) = co. We shall prove the following

TeEEOREM. If X 48 an infinite subsel of R, and F () a rational func-
tion, such that X C F(X), then F(t) = (at-+D)/(ct+d) with suitable ra-
tional a, b, ¢, d.

A. Schinzel posed the following problem (see [3]):

Let f(z, y) be & polynomial with rational coefficients, and X an in-
finite set of rational numbers with the property that for every z in X
there exists such an y in X that f(z,y) = 0. Prove that f(z,y) must
have a factor which is linear in % or symmetrical in =, y.

Ag a corollary of our theorem we obtain a positive solution of that
problem in the case of f(»,y) = P(y)—@Q(y)=.

LeMMA 1. Suppose that X is a .set and T a transformation mapping
a subset X, of X onto X. Suppose moreover that there exists a function s(x)
defined on X with values in the set of natural numbers subject to conditions:

(i) For every constant ¢ the equation s(z) = ¢ has only a finite number
of soluttons.

(ii) There ewists a constant C such that from s(w) = C follows s(Tx)
> g(x).

Then the set X s finite.

Proof of the lemma. If X = X, then the finiteness of X follows
from lemma 1 in [1] if we put there f(z) = s(z), g(z) = 1 for all » and
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B(M) =2 for every M. Suppose now that X\X, is non- -void. Let us
agsociate with every @ in X\X, an infinite sequence y®, @, ..., and
adjoin these sequences to the set X to obta.m a. get Y. Let us define for
every # in X\X, and m=1,2, ss(y®) =s(@)+m; Te =y,
Ty = y%h

Conditions (i) and (ii) are obviously satisfied by the set Y and the
extended transformation 7' and funetion s(); moreover I(Y) =
Hence, 28 in the case X = X,, we can apply lemma 1 of [1] to obtain
the finiteness of ¥, which is clearly a contradiction.

For any polynomial W (t) let us write W(p, ¢) = ¢ "W(p/q), where r
is the degree of W (t).

Lmmma 2. If P(t), Q(1), are relatively prime polynomials with integral
coefficients, then the greatest common divisor:

=(P(p, 9,9, 9)

is, for all relatively prime integers p, ¢, bounded by a consiant depending
on P and Q only, but not on p, .

This lemma is woll-known, but I was not able to find a source to
quote, and so I give a proof for the convenience of the roader.

Proof. There exist an integer A and polynomials G(t), H(t) with
intogral cocfficients such that P(1)G(1)+Q(#)H (1) = 4. Let m,n, 1, s be
the degrecs of P, @, @, H, respectively. Then, W1th k = max(m-+r, n+s),
j="k—m—r,j =k—n—s, we have

Ad" = ¢P(p, )G(p, 0)+d @, DH®, 0);

thus u(p, q) divides Ag". Let »(p, q) = (u(p, 9), q). It follows immedia-
tely that »(p, ¢) divides the coefficient of ™ in P(¢) and so is bounded
by a constant independent of p, g.

Let us put w(p,q) =d&®, Q) »®,9), ¢=da(p,q)»(p,q). Then
d,(p, q) divides 4-»(p, q)*', whenee it is also bounded by a constant
independent of p,g. Consequently the same may be said about wip, @)

Proof of the theorem. Let X be an infinite subset of E, and
F(i) = P(1)/Q(t) a rational funetion such that X C F(X). (P(t) and Q(?)
are relatively prime polynomials with integral coefficients, of degree
m, n respectively).

Tet us define: T(x) = F(x), s(co)=1 and s(plg) = |p|+q if
(p,q) =1 and ¢ > 0; then put in lemma 1 the set X for X, and F(X)
for X. Condition (i) is thus obviously satistied. Now it is sufficient to
prove that if F(t) is not a homography then condition (ii) is also satisfied,
for in this case lemma 1 would lead to contradiction with the assumption
that X is infinite.

(o, 9)
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Let wy(p, q) = (¢"™, P(p, @)y walp,9) = ("™, @(p, 9) It can
be easily seen that w, and w, are bounded by a constant independent

of p, q.
Let F(plg) =A/B #0 ((p,¢9) =1,(4,B)=1). If »n >m, then
A= q""P(p, 0)/e@, )w(p,q) and B=Q(p, q)/n(p, Pw.(p; g). Thus

in this case
s(F(plg) = {4 ™P (@, DI+ 1Q @, O} ulp, Dwi(p; 9).
Similarly if # < m, then
s(F(p/o) = (P, 0

Lemma 2 leads us to

[+ 1@, O1g""}u(p, 9w, 9)-

—[P(p, )l+1Q(p, lg" ™1 i m >n,

1 s{Fple) =

" HIQ . i1 i

-EHP(p,q)l m <N
with some constant M; > 0.
Lot now m > n. Then s(F(p/q)) > ¢"{IP(p/9)|+1Q(®/9)1}/ ;-
Suppose that for an infinite Sequence p;/g; we have s(F (pr/ax))
8 (Pu/qw)-
We must prove that under this assumption F(¢) is a homography.
We shall distinguish two cascs: (g) for infinitely many k: |pxl < W
with some constant W, and (b) the sequence |pifgx| tends to infinity.
In the casc (a) we can freely assume thatb |p,| < Wy, holds for every k,
and then s(py/gr) < (1+W)qr. Consequently

@) P (px/g) |+ 1Q (Dr]a0)]) <

As the polynomials P () and @() have no ecommon zeros, there
exists a positive constant M, such that |P(t)|+1Q ()] = M, holds for
every t, and so from (2) we infer ¢! < (1+W)M,/M,, which is possible
for m = 0, 1 only (since g, tends to infinity) and a fortiori for n =0, 1,
but this means that F(f) is a homography.

In the case (b) we obtain

1+W)M,

@
(3) l—‘(lP (Pr/e) +1Q (Br/a)l) < My(14|gw/pe))-
At least one of the polynomials P(t), Q(¢) is not constant, and as
n <m, it is P(t) which is not constant. Consequently for sufficiently
)
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great |p/qx| we have |P(p;/qx)| = M s |Pr/gr™ With a suitable positive M,.
It follows that the left side of (3) is at least

k(3 m

T

lpk‘ k
but the right side of (3) is bounded, and so we infer that m =0, 1 and
a fortiori » = 0, 1, which means that F(¢) is a homography. In the case
n > m the proof is almost the same, as can be easily seen from. the sym-
metry of (1). We proved thus that if # # oo, F(z) # 0, co and s(z) is
sufficiently great, then s(F(m)) > s(z). But in all remaining cases s(x)
is bounded by a constant. Consequently if F(t) is not a homography the
condition (ii) of lemma 1 is verified, which completes the proof of the

theorem.
REFERENCES
[1] W. Narkiewicz, On polynomial transformations, Acta Arithmetica 7 (1962),
. 241-249,

[2] — On polynomial transformations LI, Acta Arithmetica 8 (1962), p. 11-19.
[8] A. Schinzel, P 417, this volume, p. 187.

Regu par la Rédaction le 19. 5. 1962

. iom®

COLLOQUIUM MATHEMATICUM

VOL. X 1965

FASC. 1

ON THE DERIVATIVE OF CLOSE-TO-CONVEYX FUNCTIONS
BY

J. KRZYZ (LUBLIN)

Let D be a simply connected domain of hyperboliec type, i. e. a do-
main conformally equivalent to an open eircle. Then the following de-
tinitions of close-to-convexity of D may be considered.

(B): D is said to be close-to-convex, or accessible from outside along
rays [1], if the complement of D can be represented as a union of closed
rays which do not cross each other.

(K): D is said to be close-to-conver, if for the function f(z) mapping D
conformally onto the unit circle K = {2: |2| < 1} a univalent and convex
function @(z), zeK, can be chosen so that R{f (2)/P'(2)} >0 for any
zeK (see [2]).

As pointed out by Lewandowski [3], both definitions of close-to-
-eonvexity are equivalent.

For a domain D bounded by a Jordan curve I" with a continuously
changing tangent another equivalent definition of close-to-convexity
was given in [2].

(X,): D is said to be close-to-convex, if the maximal angle of a clock-
wise rotation of the outward normal along any subare of I' deseribed
in the positive (counter-clockwise) direction does not surpass =. There-
fore we can also consider close-to-convex curves. .

In particular, the clags (L) of univalent funections f(z) = z+ 6,2%24-...
mapping K onto close-to-convex domains, i. e. the class of ¢lose-to-con-
vex functions (introduced independently by Biernacki [1] and Kaplan
[2]), may be considered. The class (L) contains functions such as convex,
starlike, convex in one direetion [5], starlike with respect to symmetric
points [6], functions with the derivative of positive real part ete.

In [1], which does not seem to be universally known, Biernacki
determined the region of variability of the funetionals {z/f(2)}, {2f’ (2)/f(2)},
for a fixed z¢K and f ranging over (). In this article we solve an analog-
ous problem for logf’(2) (Theorem 1), and hence we deduce the precise
estimates of argf’(z) for fe(L) (Theorem 2). In spite -of the fact that the
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