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Hence
t n

(8) w(t) = exp f[@z —oj0(

il

)+ 0( ]dr}& (0)-

[ t )
-|_fR(7] oxp{f[zz(—a,a, () }«b(r)J 'dv;.
0 7 i
Onﬂwoﬂwrhmmﬂm)\OamlRw)<0ﬁmdﬂmfmwmm1ﬂhn;@
= exp{f[z (-cr, a;(v))+ b(v)|dv} is a multiplier in Z for fixed ¢ and .
Hence, by our lemma, £(4,7;0)%(0) <0 and £(Z,n;0)R(n) <0 for
i
n < 3. Obviously ff(t, n; o) B ( ydn < 0. Hence both parts of the right-
0

hand member of (8) are negative, q. e. d.
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SOME REMARKS ON A CERTAIN METHOD OF SUCCESSIVE
APPROXIMATIONS 1IN DIFFERENTIAL BEQUATIONS
BY
M. KWAPISZ (GDANSK)

In papers [1] and [2] a method of successive approximations in dif-
ferential equations was discussed. Some sufficient conditions for the con-
vergence of iteration process were given. These conditions were obtained
by reducing the problem to the solving of a system of Volterra’s equa-
tions by successive approximations method. In the present paper we
shall give some remarks which allow to weaken the assumption of theo-
rems formulated in [1] and [2].

1. Let us consider Volterra’s integral equation of the form
(1) r(t) = A

+fB(t £)x(£)dE+£(1),

where matrices 4 (¢), B(t, &) are continuous for ¢ > 0, and ¢t > 0, 0
respectively; vector function f(f) is continunous for t > 0.

Definition 1. Let ||| be an arbitrary norm of the vector

<E<CY

&,

mﬂ/;
i. e. a non-negative number satisfying conditions:
a) [lz]| >0, for & = 0 and |0 = 0,
b) llex|| = e|-llzll, ¢ — an arbitrary real mumber,

) N+l < ol -yl -
Definition 2. Let ||4]| = max|ldx| be the norm. of matrix 4 (see
llzfj =1

3], p.124-127).
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This norm. is consistent with the given norm of vectors @ and it
fulfils the following conditions:
a) [|4]] >0 for 4 #0, 0] =0,
Db) lled] = le|- |4l (¢ — real number),
) [A+B| < ll4[+ 1Bl
a) [l 4al < IIAHH%H;

i
o) [[A(£)ag| <0fHA(E)IIdE-

’ .
Let us construct a sequence {w,}, m =0,1,2,..., assuming

@y (t) = f(1),
t

) Fuga (8) = A2 () + [ B, o (£)dE,

mo==0,1,2,...,

(3) w(t) = > wn(t).

THEOREM 1. If there exists a non-singular diagonal matriz P (1), con-
tinwous for t = 0, and such that for each real number a = 0 we have
max [Py A@) P < 1,
ige
then the series (3) is quasi-uniformly convergent to the wwique solution of
equation (1), continuous for ¢t > 0.
Proof. Let P(t) be a non-singular diagonal matrix, and let us define
a gequence of vector functions z,(¢) by

(4) Zu(t) = P—l(z)wm(t)7

Then the relation (2) will take the form

m=0,1,..

[1
(8) Zmga(8) = [P0 AP Oz (0)+ [ [P () B, &P (E)]2(8) dé.

Owing to the given properties of veetor and matrix norm we obtain
the estimation

W " ) ]]16 Gl )
(6) el < b[z (’”)K"’/-* & ~-,f’—J, 0,1,

o 8 3

s!
for 0 <t < a, where
F = max |P-1(1)f ()|,

Isii<a

K = max [P~ (1) A ()P )|,
Osgleg

M = max |P-(t) B(t, &P (&).
<l
::5<z

icm
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If K <1, then the series

) Deut

M=0

is uniformly eonvergent in the interval <0, a, since under this agsumption
a series with terms equal to the right hand side of the inequality (6) is
convergent (see [1]). In view of the relation (4) a wuniform con-
vergence of series (7) implies uniform convergence of series (3) in the
interval <0, a).

In view of the theorem on integration of uniformly .convergent
series, we can state that the sum of series (3) is the solution of equation
(1). In the same way we can easily state (proceeding as usually in the
case of suceessive approximations) that this solution is unique (see [1]).
Thus theorem 1 is proved.

Theorem 1 is more general than theorem 3 in [1], which is due
to the general definition of the vector and matrix norm, and to the
weaker condition.

Let us now consider three most frequently encountered definitions
of the norm of vector

m71«_

as well as the corresponding definitions of the norm of matrix.
Definition 3.

a) floll, = max |u;], 4l = max kZ; il 5

D) bl = Slad, 4l = max 3 jagl;
o) llwlls = (2 ') 4l =V,

where 2, is the greatest eigenvalue of the matrix 474 (47 — matrix
transposed to the matrix 4).

We know that [l4f, <( 3 |aul’)"™
Ie=1

the form ol
(7% Pt) = {ps(t), p(2), ..., pu (D)}

Then, from theorem 1, we get the following

Let us congider matrices of
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COROLLARY 1. If there exists a non-singular diagonal matric of the
Form (7%, continuous for t > 0, and such that at least one of the conditions
given below s satisfied

u (2 (1)]
@) IMNax max ()] <1
) oxlca i zc_l (1 |p:(8)] ’
u [P (?)]
b) max max ¥ |a;(t)]: <1
) max 2Oy < b
& lm(i)lf‘)l/2
¢) max| 3 |ag ()2 -] <1
) ;zgn(;k‘ll i ()] IO )
d) max Vi (f) <1,
oI

where 1,(1) is the grealest eigenvalue of the matriw P (t) A" ()P~ (1) x
X A(H)P(t), and a is an arbitrary real number, then series (3) is quasi-
uniformly convergent for ¢ > 0.

Remark 1. Theorem 3 in [1] is equivalent to the mentioned corol-
lary when condition a) is satisfied, and P(f) is unit matrix.

Remark 2. If matrix A(t) is symmetric, then the condition d) is
equivalent to the condition

max |4, ()] <1,

0=
‘where A,(t) is eigenmlue of the matrix A (#) with the greatest absolute
value.

To justify covollary 1 it suffices to see that conditions a) and b)
follow immediately from theorem 1 and from. definitions of the norm
(D£. 3, a), b)); that condition ¢) results from theorem 1 and from the
well-known estimation of the norm of matrix (see Df. 3, ¢)) by the left
hand side of the condition ¢); finally, that condition d) results from
theorem 1, from definition of the norm of matrix (Df. 3, ¢)), and from
the equality

[P AMPWOI" [P ) AWMP )] = P A" (1) (P (A (D) P(1).

Remark 2 results from the fact that for symmetric matrices the
equality

[P A ()P () [P (1) A (1) P(1)] = A™(1)

holds. :
Since for ¢ =0 integral equation (1) is reduced to the algebrade
system of equations the following remark holds.

Remark 3. In order that series (3) be convergent it is necessary
that eigenvalues of the matrix A4 (0) fultil inequality [A£(0)] < 1 (see [3],
. 208).

icm
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2. The preceding considerations enable us to formulate -sufficient

condition for the applicability of an iteration method of solving differ-
ential equations.

Let us consider equation

(8) Ya

)" =(1) = (1),
1= 0 .
where functions a;(t),
and a,(2) # 0.

Assuming arbitrary functions @(¢), ¢ = 0,1, ,.

1=0,1,...,n, f(t), are continuous for t > 0,

.., 0 (in particular

. they may be constant), @,(t) # 0, @,(f) = ay(t), let a,(t) = @;(4)— a;(t).

Let us construet a sequence of functions ., (), m = 0,1,..., where
®y(?) iz the solution of the equation

n

(9) D @) ()

=0

fulfilling initial conditions #?(0) = ¢, k= 0,1, ..
is the solution of the equation

= 1)
S n—1, and @, (1)

"

n
(10) Zm(t)w"‘ M) = a0
i=0 7=20
satisfying initial conditions .rﬁ,l’ 10) =0, k=0,1,...,n—1.
Put
(11) = Y,
M=0

In the sequel we shall denote by L, I and T, respectively, differential
operators oceuring on the left hand side of equations (8), (9) and on the
right hand side of equation (10).

THEOREM 2. In order that series (11) be quasi-uniformly convergent
in the interval (0, +oo) to the solution of equation (8) fulfilling initial
conditions xM(0) = ¢;, k=0,1,...,n—1, i is sufficient that for each
real number o the inequality -

180 (t) =T (1)

max — <1

I<i<a @y (t)]
holds.
Proof. Let us denote by K(¢, &) the solution of the equation
Ltya(t) =0 depending on parameter & and satisfying initial conditions

k=0,1,...,n—2,

7 _Jo  for
B 8 k=n—1.

1 for
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the function ,,(f):
t

"I’nl+l(t) = fK(t7 E)

0

L(&)wn(£) i
—ain

Gy

Differentiating the relation (12) » times we get the following system
of relations

= (&om (£)
,J B, 5 0(5") a&, k=0,1,...,n—1,
(13) @)
lr,,. f Rt ___)i(zzg)(f) aE, b =n.
Ly
Using notations
ay (1) 0 for b = 0,1,.. oy
" = 0,1,...,n—1
14 Y (1) = P (1) al) =1 _ ? ydy ey
(14) g (?) . ap(t) Guilt) for k=0,1,..,n
»r-‘;t’(t) (1) i=n
) y, ,I(S) . N
bi(t, &) = EP(t, E)W’ ik =0,1,...,n,

we state that relations (13) are of form (2).
Thus in order to prove the quasi-uniform convergence of the series

2 Unl)

M=0

for +>=0

and thus the quasi-uniform convergence of series (11), it is sufficient to
show that there exists & non-singular diagonal matrix P(t) such that

«(t)

(15) ', — )l l ‘
“0 _pn t

max max {
0l k=0,1,.,.,m

To prove this it is sufficient to take a matrix

s Pu(B)}

n—1, and

‘Lk(t)‘]-[l—ma.x 2
AURRN oiga | @

1) = {py(t), p. (1),
with p;(f) =1 for i =0,1,...,

Palt) = {[max max
oi<a k=12

TR
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Hence we get inequality

| @t aqlt
max max | k( 3 wa( ) l <1,
o<t<a k:l,z,,_,,n' [ }]9,1 osct<a| Og(t)
and henee inequality
@it (t
max max {_11_;»()7!. Pi(t) 1}<1,
ot<a k=0,1,..,n @o(t) | Pult)

which was to be shown.

According to corollary 1, series (11) is quasi-uniformly eonvergent.
By the theorem. on differentiation of series, we can easily state that series
(11) is_quasi-uniformly convergent, for ¢ > 0, to the solution of equation
(8), satisfying initial eonditions #™(0) = ¢, k=0,1,...,n—1. Theorem
2 is completely proved.

Theorem 2 is a generalization of theorems 1 and 2 in [1], this being
possible owing to the presence of the matrix P(t) in the formulation of
theorein 1.

Remark 4. Without using matrix P(t) in theorem 1 we eould only
deduce a theorem weaker than theorem 2, where sufficient condition
(depending on the assumed definition of the norm) should have been
replaced by one of the following stronger conditions:

max | gﬁ:} <1,
ost<a 1:04 @g (1) |
b) max {ma.x ili(t) H <1,
octca Ui | @(t)
C a(t) *
K ’2;?{_2 || <
Let us consider equation
(16) (1) = A@)a(t)-+B@)a (1) + (1),

where matrices A (),
t2=0.

Agsuming an arbitrary matrix A(#) (in particular the matrix A (z)
may be constant), let

B(t) and vector function f(¢) are continuous for

Afty = At)—A@),

and let us construet a sequence {®, (1)}, m = 0,1, ..., where w,(t) is

the solution of the equation

@an @' () = A@)@(t)+1(8),


GUEST


158 M, KWAPISZ

satisfying the initial eondition »,(0) = ¢, and B (t), mo= 0,1,
is the solution of the equation

(18) @' (1) = AW (@)+A (), (1)+B o),
satisfying the initial condition ,,.,(0) = 0.
Let
+ oo
(19) ORIPIACE
n=

TurorEM 3. If for any real number a >0

1° matriz B(t) has, in the interval {0, ad, & bounded derivative,

9° there exists o non-singular diagonal matriz P(t), continuous for
t =0, and such that

max [P () BO)PE)| < 1,

ogi<a )
then series (19) 'is quasi-uniformly convergent, in the interval {0, 4 o0),
to the solution. of equation (16), satisfying initial condition (0) = c.
Proof. We denote by X(i, £) a matrix being the solution of the
differential equation.
X'() = A1) X (1),
depending on parameter & and satisfying the initial condition
X(t,t) =1, I — unit matrix.

We find the following relation between the functions a,,(f) and
mm-g-l(t)

t i
= [X(t, ) A(&)ma(&) s+ [ X (1, &) B{Ea(€)dE,
0 [

(20) By (1
mo=0,1
Integrating by parts we obtain
{
(1, &) B ()48 = Blt)a, (1 f(,g [X(t, &) B(&) L (6)d2
[
f(Jr e :ml 2,
Relation (20) will take the form
1
(21) wnHrl() —B()-Lm()JF“_JD(t’ E)a, (£)AE, we==1, 2, .,

0

o [/ .
where  D(t, &) = X(¢, §) A (&) — i [X(, &)B(E)].
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In view of theorem 1 we get the conclusion of the present theorem;
thus the proof is complete.

Theorem 3 is a generalization of theorem 9 in [21.

Remark 5. It is evident that by theorem 3 & corollary analogous
to corollary 1 can be obtained.

4. Finally let us consider the differential equation

t

L)' (O)+R() i) +8(t) [i(r)de = f()

0

(22)

oceurrlng in studies on parametric linear electric systems, where matrices

R(), 8(¢) are continuous for ¢ > 0. Assuming arbitrary matrices

) R(t), S(t) (in particular these matuces may be constant), det L (t) # 0,

given L(t) = L(t)—L(t), E(t) = R(t)—R(1), S(t) = S(t)—8(t), let wus

construct a sequence {i,(t)}, m = 0,1,..., where 7,(t) is the solution
of the equation

t

L@i' 0+ R @i +58) [

0

i(x)dr = f(1),

satistying the initial condition #(0) = ¢; and iy, (f) is the solution of
the cquation
13 i

S@i ) +R@it+L) [i(x)dr = T)i 6+ RO 6.0+ lzm 7)dz,
0
satisfying the initial condition 4, +1(0) = 0.

Let

(23) i) = Dint).

In view of theorem 3. we can easily get the following theorem

THEOREM 4. If for any real number a > 0

1° matm’oes L(t), L(t) have bounded derivatives in the interval <0, a),

2° det L(t) # 0 for 10, a),

3° there emsts o non-singular diagonal wmatriz P(t) continuous for
t >0, and such that

max [P
<t

LWL —LWIP@) <1,

then series (23) is quasi-uniformly convergent in the interval {0, +o0),
to the solution of equation (22) which satisfies initial condition i(0) = c.
Theorem 4 is a generalization of theorem "1 in [27].
Remark 6. Corollary, analogous to Corollary 1, can he obtained.
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A REMARK ON A PROBLEM OF M. KRZYZANSKI CONCERNING
SECOND ORDER PARABOLIC BEQUATIONS

BY

P. BESALA (GDANSK)

Congider the linear second order equation of parabolic type

m
= V. o —— _ v _
(1) Fu ——iﬁ a;;(w, 1) St }‘g;b](m,t) o, +e(x, t)u 5 0,

where # = (@, ..., x,) varies in the whole m-dimensional Euelidean
space B™ and 0 <t < 7. Denote by D7 the topological product of E™
with the interval (0, 7).

By a solution of (1) is meant a function u(x,t), which is continuouns
in the closure DT of DT and which has continuous partial derivatives
Ouf0x;, 0% [dx;0m;, Ou/dt in DT satistying (1).

Let u(x,1) be a solution of (1) satisfying the initial condition

(2) w(a, 0) = @(x) for weE™,

@(x) being a given continuous function. Assume that there exist positive
constants M, K such that the solution fulfils the inequality

(3) w(x,t) = —Mexp (K |x?) for

where || = (Z’m‘i)I *. Krzyzanski’s problem is whether the condition (3)
=1

is sufficient for equation (1) to have at most one solution satisfying (2).
It is known that, for instance, the condition

(4) [ (2, 2)] < Mexp (K |z|?),

(x,t)eD”,

(z,t)eD” ,
is sufficient if certain growth conditions conecerning the coefficients are
fulfilled (see [2]).

In the case when @(#) =0 a positive answer can be obtained from
the below mentioned theorems. Using the fundamental solution constructed
by Dressel, Friedman [1] has proved the following
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