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Friedman [1] has proved that if there exists a constant K, >0
such that

f {exp — K, |o|2) |u(z, t)|dtde < |00

0 pm
and if the initial condition (5) is satisfied, then w(wz, 1) = . (under the
assumptions 1° and 2° of theorem I concerning the coefficients). Write
w(w,t), if w(®,t) >0,

ut =
wHe, ) 0, it w(x,t)<0.

There exists a supposition that the condition
»
[ [exp(—E,lz|hu (a,
o gm
ig sufficient in order to make the solution u(x,t) of equation (1), satis-
fying (5), vanish identically in D”.

t)dtdw << 400
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EVALUATIONS OF SOLUTIONS OF A SECOND ORDER
PARABOLIC EQUATION

BY

P. BESALA (GDAXNSK)

Let us consider the equation
au N m 2
(1) A-u«—ﬁ +e(x,t)u =0, where A= 25—;, T = (Dyy.eryLon)-
1 i

The following theorem has been established by Krzyzanski [4]:

TumorEM K. Assume the coefficient ¢(z,t) to be defined and contin-
wous when x varies in the m-dimensional Buclidean space E™, t >0, and
to satisfy the Lipschitz’s condition with respect to x. Suppose there exist
constants a, f, A, B; a >0, 4 >0, B >0, suoh that o?|z|2+8 < c(z, 1)

< A[#2+B for z<E™, 1 >0, where |z = (21‘)1’". If a solution w(w,t)

of equation (1) satisfies the condition w(z, 0 =N >0 for zeE" and be-

longs to the so-called class E,, then
w(w,t) > Mexp (K |z|*tan2at) for weB™, te(O, -I—),
a

M, K, being positive constants.

In the proof the author mentioned above has applied a fundamental
solution, constructed in [7], which requires certain assumptions concerning
a regularity of coefficients.

In this note we prove similar theorems for a more general equation
of the form

“ 0% - ou
2 = (2 , — —
@) Pu zan(w,t) aml.awﬁgbi‘“”’” 5, o@D

by means of a method which does not use the fundamental golution.
A quasi-linear equation will also be discussed.

The author is indebted to Professor M. Krzyzaniski for valuable
remarks concerning this paper.

w
*dz‘zf(myt)
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1. Let D(h) be the topological product of m-dimensional Hueclidean
space B, of the variables ;, ..., &, with the interval (0, ), 0 <<} < -}-co.
We introduce the following assumptionsy

(H,) The coefficients a;(x, 1), b;(x,1), ¢(z, t) and the free term f(w, 1)
are defined in the domain D(h);

(H,) There exist positive constants A,,..., 4, such that

|a’ij(w1t)| <A05 ij(m7t)] <A1|$|—[—A2, C‘(ﬂ"’,'/;) <A3IW|2+A4 in. ])(7&),

where || = (3 «f)'"
=

m

(H;) 2 a (@, )& = 0 for (x,t)eD(h).

i,f=1

By a solution of (2) is meant a funetion w(x, {) which is continuous
in the set E™x <0, k) and which has the derivative du /0! and continuous
derivatives du[0x;, 0%u/dw;0x; in. D(h) satisfying (2).

THEOREM 1. If the following conditions hold:

1° the assumptions (H,)-(Hg) are satisfied in D(h) (b < +-00),

2° there ewist a positive function M (1) continuous in the interval {0, h)
and a posttive constant K such that a solution wu(x,1) of (2) satisfies the
inequality

u(e,t) = —M@)exp(K |22 (o w(x,t) < M(¢)exp (I |x]?))

for (z,t)eD(h) (M(t) may be unbounded in {0, h)),

3° f(z, 1) <O (f(z,t) = 0 respectively) in D(h),

4° w(z, 0) = 0 (u(w, 0) <0 respectively), weF™,
then u(z,t) =0 (u(z,t) <0 respectively) in D(h).

The proof of this theorem is similar to the proof of theorem 1 of
[2] (cf. also [1]), as for every domain .D(h,), k, < h, there exists a constant
My, >0 such that the inequality u(z,t) > — M exp (K|»|?) is satisfied
in D(h,).

TuROREM 2. If the following conditions hold:

° (Hy)-(Hs) are satisfied in D(h),

2° there ewist & positive function M (¢) o(mtimmus i {0, h) and o po-
sitive constant K such that a solution w(a,t) of (2) satisfies the inequality
w(®,t) = —M(t)exp(K|x®) (or u(z,?t) < ]lf(f)exp(l( le®) dn D),

3° fla,t) <0 (respectively f(x,t) = 0),

4° u(z, 0) = N (respectively u(z,0) < —N); N Dbeing a positive
constam, .
0w
k)

t) =20 (w’ t)eD(h),
then u(w t N

H
) = N (respectively u(x,t) < —N) for (w,t)eD(h).
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Proof. Putting (for the case f(r,?) <0) %(z,t) = u(x,t)—N we
have F& = —¢(x,t) N+ f(2,%) <0 and #%(z, 0) = 0. Therefore, for the
function %(w, 1), all the assumptions of theorem 1 are fulfilled, whence
(@, t)—N = 0.

We shall prove

THEOREM 3.° If the assumptions 1°-4° of theorem 2 are fulfilled and
if there is a constant y such that ¢(x,t) =y in D(h), then

wu(w,t) > Nexp(yi) (u(x,t) < —Nexp(yt) respectively)

for (z,1)eD(h).
Proof. The substitution

w(r, 1) = v(x, t)exp(yi)
transforms (2) into

n "

b o 02 e 10— 2 — e e (—

2, e ,xmax]fng,u,n 5 Helr o= Zo = fln, Dexp(—y1)
i i= ’ .

with €(z, t) = [e(x, 1) — yJexp(—yt) > 0. Furthermore, the function v(z, 1)

satisfies the inequality v(z,0) > N in the case u(2, 0) > N. Now, for

v(z, t) all the assumptions of theorem 2 erc fulfilled. Hence v(x,t) > N

or u(z,1) = N-exp(yt). In the case u(x,0) <N the proof is similar,

THEOREM 4 (). If the following conditions hold:

1° there ewist constants a and f, a > 0, such that the inequality ¢(x,t)
= oo B holds in the domain D(h,), where hy, < w[4aL, L being a po-
sitive constant (see assumption 3°),

2° the hypotheses (H;)-(H,) are satisfied in D(hy), o® < 45, f < 44,

m n

3% ay(x, t)ow; = L2l 3 bi(w, Doy = 0(2) for (%, 1) eD(hy),
1,7=1 i=1 :

49 f(x,1) <0 (or f(z,1) 2 0),

5% u(w,t) = —M(@)-exp(K|z|?) (u(z,t) < M(t)exp(K |z|2) respecti-
vely) in the domain D(h,), M(t) being & positive function continuous in
0, ko), K >0,

(1) I have learned that a similar theorem has been proved by Krzyzanski [6].
His theorem requires weaker assumptions than theorem 4 but constitutes a less pre-
cise estimate.
m
(3) This inequality may be 1'eplace& by the following one: 3 bj(m,t)w; >
m i=1

> — ¥ aii(x,t), which is a shghtly weaker condition.

1_
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6° u(z,0) = N >0 (u(x, 0) < —N <0 respectively),
then the inequality

a
(3) u(x,t) = N-exp (Ef |22 tan 2a L+ ﬂt)

(u(ae,t) < —N-exp (—ZEL— |&|2- fan2a Lt -+ ﬂt) respectively) is satisfied in the

domain D{hgy).
Proof. Put

(4) H = exp (-——— || 2tan 2a Lt - ﬂt).

The substitution
(i, 8) e.D{hy)

(5) u(w,t) = v(x,t)-H,
transforms (2) into the equation
n m .
. 0% Vs v do 1 .

(©) 3 (o) o+ 3, 0 8o, = Go = fle, 1),

Ty )= j=1
where

FH 1. x oH
t(z, 1) = N bi(w, t) = T (2 Z a2, t) ~0_:r; 4 by, 1) 11).

i=1
We shall prove that for v(»,¢) the assumptions of theorem. 2 are
satisfied. First we shall show that &(x, 1) > 0 in D(h,). Indeed,

m

FH

2
c(x,1) = a :%ta,nWaLt @i 2y r,-}-—ta,n aLtZu,,~|

=1
m

+ %tan%Lt 2 by ¢(x, 1) — «®|w|2eos=22ali — f.
=1

By the assumption that
n

D) ayl@, 1) &8 >0

1,7=1
we have a; > 0 (4 =1, ..., m). Taking, moreover, into account 19 and 39,
we derive ¢(z,1) > 0. From our assumptions it also follows that there
exist positive constants A,, 4, such that t(w, 1) < Aylo|2-A, in the zone
D (hy), ho < wf/4al. It can eaﬁuly be shown that |b;(m,1)| < A, |»| 4,
(=1,...,m) in D(hy), 4,, 4, being certain positive (soust;a,nts Notice

icm
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that for the function v(z, 1) the remaining assumptions of theorem 2 are
tulfilled too. In particular, we have o(z, 0) > N. Consequently we get
v(z,1) = N for (»,t)eD(h,). Hence and from 5° we obtain the first part
of thesis (3).

Remark. We will give an example which shows that if the assunp-

m

tlon 3 b;(x, t)r; > 0 is not satisfied, then the assertion of theorem 4 is
j=1

false. Namely, it i3 easy to verify that the funetion u(w, t) = exp (x)
satisfies the equation

! r
gy — Artg - (12— 2y u— uy = 0,

(e, 0) =1, and does not satisfy (3) in the whole domain D(hy) if B,
m
is sufficiently near =/4. We have 2 be, t)a; = —22% < 0 when 2 = 0,
j=1
t > 0. The remaining assumptions of theorem 4 are fulfilled.
2. Let us now consider the quasilinear equation

ne

7) 2 " ; o du 02%u
7 gl by, — —|-
AU day T Oy O dir;

s
m . » -
- vb(.r 1y ~d£ L“— —(Lu— cle,t,u Oi O )u———a}l
F];_;{ T G, a)‘r,.Jr YU By T By, at
du o
=fle,t, 4y —, ..., ——
f( 3 by Mty Bml’ 98‘%”’)’

where the coefficients and the function f contain the unknown function
u(x, t) and its partial derivatives du/dz;, (k = 1, ..., m) of the first order.
Similarly as in section 1 the following conditions are introduced :

(H,) The coefficients (@, 1y Uy By ey Zn)y by (m, 8, U, 2y, .00, 2), o,
byity &1, ..y @), and the funetion f(w,t, u,2;,...,2,) to be defined in
the domain I7(h): (x, )eD(h) (see sec.l), u, 2,,...,4, arbitrary,

(H,) There are positive constants 44,..., 4, such that

iy by, 2y, ooy 20)| < 4,y [0 (@, %y 21,0y 2m)| < Ayl +A4,,

C(®, 0y 1y 2,00, ) < Aglo|®+4, In II(R),

0

(Ea) _jé? aij(w: ty Uy &y -~'7zm) figf = 0 in H(h)
4,7=1

Similar changes in formulating the assumptions of theorems 1-4
of the previous section permit to conclude that those theorems hold if
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u(x, t) is the solution of equation (7). Indeed, leb u(x, 't)‘ be an arbitrary
solution of equation (7) defined on the domain D(h). If we pub

du (@, 1) )
ao )

aiP (o, 1) = ay (m, Bu(@, 1)y .uy

(l;-l)(d“», t) =1 ('X’y by u(w, t), ...y

e, t) = ¢ (w,-f, W(Ey 1)y onry =

e, t) = f(.r, (e, t)y .oy L}“—d(bif), ),

L

then u(z, ¢) may be considered as a solution of a linear equation of the
form (2). For instance the following two theorems hold true:
THEOREM 1'. If u (2, t) 4s a solution of equation (7) satisfying the assump-

tions 2° and 4° of theorem 1 (see. 1) and if the conditions (H;)-(TL,) are
satisfied in II(h) as well as f(@,t, 14,20, ..y 280) <O (fl@, 1, u, 2, ...,2,)
= 0 respectively), then w(x,t) =0 (u(x,?) <0 respectively) wn D(h).

THEOREM 4'. Suppose there exist constants « >0 and [ such that
(L, 1, Uy Byyonny @)= a2+ B i II(hy), hy<m/duLl, L >0. Let the
conditions (H,)-(H,) be satisfied and let the assumptions 5°, 6° of theorem 4
hold true in IT{h,). Suppose, furthermore, that

m N
\ ~. F ™ -~
2} W@y by Wy By oy 2n) @ity = D22, ij(m, by Uy Ry ooy )ity 320,
Prme) =
and

flo, by w, 0y iy 2m) <O (flm, 8, 1,2, ..., %) =0 respectively)

in II(hy). Then the solution w(w,t) of (7) satisfies the inequalities (3) in
D(ho).
Likewise we deduce that the theorem given by Krzyzaiiski in seotion 4
of [4] may be formulated for the solution u(x, t) of equation (7) as follows:
TeBOREM 5. If the following conditions hold:
1° the conditions (H,)-(H;) are satisfied and f(x, 1, %, 81y a0y fy) = 0
in II(h), b < oo,
2° there are positive constants N, K, and « positive function M (t)
contimuous in (0, h) such that ju(z, 1)] < M @) oxp(K |2|?) in D(h)
and w(x,0) = N for weB",
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3" there exist o > 0 and § such that ¢(z, t, u, 24, ..
for (z,t)eD(h),
then the imequality

L] zm) < _azj‘l}la'}'ﬂ

(2, 1)] < N-exp(—A2Ax]? tanhut-}-t)
kolds for (z, ?) e D (h), where the number u is arbitrarily chosen and A (> 0), »,

depend on the coefficients ay;, the numbers A, 4,, appearing in (IL,), and
on the constants a, B.

Theorems similar to theorems 1, 2 and 3 may also be obtained for
the second and third Fourier’s problems in the domains considered in [3].
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