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This paper is a continuation of my paper [2]. The terminology and
notation are the same as in [2] and the knowledge of this paper is supposed.
Lo§ [1] has recently introduced & very useful notion of products
of realizations and models modulo a prime filter. In metamathematical
investigations concerning formalized languages of the first order all

. Boolean homomorphisms and prime filters have usually to satisfy some

additional hypothesis, viz. they have to preserve infinite Boolean oper-
ations corresponding to logical quantifiers. Therefore it may seem
strange that no sueh hypotheses appear in the construetion of the pro-
duet of realizations or models modulo a prime filter which can be comple-
tely arbitrary. This paper eontains an explanation of this fact. In § 3,1°
and 2° a general definition of product R of realizations of a formalized
language of the first order is formulated. In § 5, 1°, 2° the original defi-
nition of the product R, of semantic realizations R, modulo a prime filter
(in the set N of all indexes ) is quoted. It is shown in § 5 (1) that R, is
a homomorphic image of R
By = IR,

in the sense defined in [2], § 8 (11). The homomorphism % in question
has to preserve some infinite operations, in general. But in the case of
semantic realizations those infinite operations reduce to trivial identities
and therefore they are always preserved by h (see theorem 4.2). The
notion of the produet of generalized abstract algebras (i-e. algebras
with infinite operations, which are not always feasible — see [2], § 4)
introduced in § 2 is the basis for an examination of products of realiza-
tions. T'wo notions of products of generalized algebras suggest themselves
in a natural way: the first is called product, the other is called complete

product. The complete product seems, fro oint a view, to be a more
natural notion. For instance, the co 8 V£, t of complete Boolean
algebras iy a complete algebra in ¢ %gseﬁeﬁgé’d‘g [2], § 4. The produet
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has not this property (see p.10). However, from the point of view of
applications to products of realizations the notion of produet is more
important than the notion of complete product.

§ 1. Product of abstract algebras. Let

1) {An’ {Om}qzsm} (nelN) '
be an indexed set of similar abstract algebras. The Cartesian product
@ 4= P4,

neN

will be considered as an abstract algebra

(3) {4, {04}geal

similar to algebras (1), with the following definition of operations o,:

(’1') O«;w ({al,qb}n eNy == {a‘m, n}n sN) = {Om(“l, LIRS a‘nL, n)}neN’;

where {@; ntnen; --+) {@m niney are any points in 4, and m is the number
of arguments of o,. Roughly speaking, we perform the operation o, on
elements in 4 by performing this operation on coordinates of these ele-
ments.

The algebra (3) just defined will be called the product of algebras (1).

11, If A is the product of similar algebras A, (neN) and, for every
e, hy, 15 a homomorphism from a similar algebra A’ into A, then the
equation

(5) Ma) = {hy(@)}ner  for
defines a homomorphism from A’ into A.
The proof is by an easy verification.

wed’

§ 2. Product of generalized abstract algebras. Tet
(1) {A-ny {Oq)}fpsfba {Ow}wpe'ﬂ} (‘I’LGN)

be an indexed set of similar generalized algebras (see [2], p.11). The
Cartesian product

@) A4=-P4,
. neN

will be considered as a generalized algebra

(3) {-Ay {Oqz}rpsﬂ’: {OW}VIEW}

similar to algebras (1), with the following definition of operations.

The finite operations o, are defined as in §1 (4). In other words,
{4, {0,}pc0} is the product of algebras {44, {0p}pc0), Where neXN, in
the sense defined in § 1.
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It D, is the domain of the operation O, in the generalized algebra
4,,, then the class of all sets

(4) 8= P 8,

neN

where 8,69, for nelN,

is the domain of the operation O, in the generalized algebra A. If § is
the set (4), then

(3) 0,8 ={0,8}ncn-

The generalized algebra (3) just defined will be called the product
of generalized algebras (1). Note that, by definition, sets (4) only are
admissible for the operation 0, in the product 4.

Since admissible sets in' generalized algebras are often given in
the form of indexed sets, we shall repeat the definition (4)-(3) in terms
of indexed sets.

Let O be one of the generalized operations O,. Suppose that, for
every nelN, the indexed set {4, .}z, is admissible for O in the algebra
A4,. Let
(6) I= P Tn

neN
and, for every ¢t = {f,}n.nveT, let

(7) Oy = {“tn‘n}nszA-
The indexed set

(8) {@dier

just defined is admissible for O in 4, and
(9) OisTal = {OtﬂeTnatn, n}nsN'

24, If A s the product of similar generalized algebras A, (neXN)
and, for every meN, h, is a homomorphism from a similar generalized
algebra A' into A,, then the equation
(10) h(a‘) = {hn(a')}nsN
defines a homomorphism from A’ into A.

The proof is obtained by an easy verification.

Since only sets (4) (i. e. sets (8)) are admisgible for infinite operations
in the produet A of the generalized algebras A,, the algebra A is not
complete, in general, even in the case where all factors 4, are complete
algebras (in the sense defined in [2], § 4). However, it is possible to in-
troduce another kind of produect of generalized algebras, called complete
produet, which is a complete algebra if all factors are complete.

The complete product of the generalized algebras (1) is an algebra (3)
with the same set (2) of elements and with the same definition §1 (4)

for  aed’
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of finite operations but with a differcnt definition of infinite operations.
We give this definition in terms of indexed sets.

Let O be one of the operations 0, and let {@},.» be an indexed set
of elements ;.= {t}n.v in 4. The indexed set {a};.r is said to be
admissible for the operation O in the eomplcte product, if and only if,
for every neN, the indexed set {a; ,};.r of elements of 4, is admissible
for the operation O in the algebra 4,. Then, by definition,

(11) . Ots.Ta’l = {()IET“(, ‘zh}nu\"

The complete product of gencralized algebras 4, is, of course, an
extension (in the sense defined in [2], p. 13) of the product of the gener-
alized algebras 4,,. ‘

§ 3. Products of realizations. Consider a fixed alphabet of the
first order (see [2], p.13) :

= {Vy {®m}nl.s My {Hm}me Ma’{om}m,c My Q ? v} ?

I denoting the set of all non-negative integers. Similarly as in [2], p. 14,
the letter € will denote the set of all connectives,i.e. 0 =Cy v O, w0y u ...
Connectives will be denoted by o, and quantifiers (i. ¢. elements of Q)
will be denoted by O.
Let -
L =, T, F}

be a formalized language of the first order, based on the alphabet .o/
(see [2], p. 15). We recall that 7 is the set of all terms, and # is the set
of all formulas in %.

Suppose that, for every neN (N # 0), R, is a realization of the lan-
guage .Z in a set Xn # 0 and in a complete generalized algebra

(1) {Ana {()}ne(h {0}(:‘60}
(see [2], p. 21). Let
(2) {4, {0} o, {mr()a(,)}
be the produet of the generalized algebras (1) (soe § 2, (1)-(9)). Tet
(3) X=Px,
neN
and let
('-l) &y = {mlvn}nsNy tees

Ly, = {mm,n}nsN
_be any points in X. '

The reahzatmns R, determine uniquely a mapping B (defined on
the union of the sbt & —= Dyw By o Py o ... of all functors and the set
D=1I,0II, oI, ... of all predicates) sueh that

icm
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1° E assigns to every m-argument functor 0<®,, (m = 0,1,2,...)
the function o0z: X™ — X, defined by the equality

(5) OR(‘Z’U LR xm)

= {ORn(wl, ny cevy Dy, n)}nsN§

2° R assigns, to every m~a1‘gumenf predicate well, (m =0,1,2,...)
the mapping mp: X" - A, defined by the equality
(6) TR (®1y <oy Tm)

= {751? (wl, ny ey mm,n)}nsN-
n

The mapping R just defined is said to be the product of the realiza-
tions R, (neN).

We recall that by a valuation in a set X, we understand any point
9 = {o,},.r of the Cartesian product X), i.e. any mapping from the
set 7 of all free individual variables into X,.

In particular, valuations v = {9}, in the set X defined by (3)
are mappings which, to every free individual variable vV, assign a point
9, = {0, w}neveX. By definition, 9,,¢X,. Thus, for every fixed ne¥,
b" {0, ntoer e X} iy a valuation in X,,. Conversely, if for every neN,

= {0y n}ver I8 any valuation in X,, then setting v, = {v,, ,,,}m N we
defmo a valuation b = {v,},.y in X.
Under the above notation, the following theorem. holds:

3.1. The product R of realization R, of & in the sets X, and the com-
plete generalized algebras A, is o realization of £ in the product X of the
sets X, and in the product A of the generalized algebras A,. Moreover, for
every term v

(7) () = {75, (0")}nens
and for every formula o
(8) ag(v) = {or, ©Vuew,

v being any valuation in X.

TRy Tr, and ag, op, denote here mappings defined in [2], p. 22,
p. 8-9, and p. 22-23.

Aceording to the remark in [2], p. 26, it is convenient to replace,
for a moment, the incomplete algebra A by its complete extension A’
defined in [2], p. 13 (7), in order to avoid the difficulties caused by the
incompleteness of 4. In other words, R will be conceived as a realization
of # in X and 4. .

Let Zy, = {«/x,, T x,,Fx,} be the extended language obtained
from the language & ={s/,7,%} by the method deseribed in [2],
§7, p. 17-18. We recall that the alphabet <7y of #y is obtained from
the alphabet 4 of % by adding a set X, of individual constants (i.e,
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zero-argument funectors). There is a fixed one-to-one correspondence

’
Ly, > Ty,
between clements z,¢X, and elements <X, .
Consequently we have a one-to-one correspondence
! ’
& = {wn}neN = = {'nn}neN
between elements zeX = P X, and elements X' = P X,. Adding
neN welN

the set X’ just defined to the set of all individual eonstants in %, we have
obtained the extended language ZLx = {#x, 7 x,Fx}, according to
[21, §7, p. 17-18.
Let -
fur X - X,
be the projection of X onto the »™ axis X, i.e.

Fal{#unen) = o0
By [2], § 7 (9), (11) and 7.3, the mapping f, induces a homomorphism

ol
o T x> »7_\',,,
from the algebra.

(9) {7 x, {0}, c )

of all terms in Ly (where @' = @ U X' is the set of all functors in Zx)
onto the algebra

(10) (x5 00car}

of all terms in Ly, (where @, = @ U X, is the set of all functors in Ly

such that
(11) fe =17 for all terms 7 in &.

. By [2], § 7, (10)-(12), (14), and 7.4, the mapping fu induces o map-
ping

i Fy = F
b
such that the equation

(o) = 1f*a|  for

defines a homomorphism

neF

it Py - F.\',,
of the X-algebra

(12) {Fx) {0}, {0300}
of the language % (see [2], p. 18-19) onto the X,-algebra
(13) {FX”, {0}oco, {O}OeQ}

icm
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of the language #. Moreover
(1) ffa=a and f*(l¢]) = |a| for 21l formulas ¢ in &.

According to [2], §8, p.22-23, we extend the rcalizations K and
R, of Z to realizations R’ and R, (in X and 4’, or in X,, and 4, respecti-
vely) of Lx or Ly, by assuming

o =ax  for all xeX’,
op =05 forall 0@,
ap = np for all  wmell,
and similarly
@p, = o, for all  weXy,
Op, = Op, for all o0e®,
TR, = TR, for all well.

The realization R’ is the product of the realization R,,.
Proof of 3.1. First we shall prove the following generalizations
of (7) and (8):

~

(15) T (V) = {75, (V") ey for every term v in Fy,
(16) ap (0) = {f* g, (M }weny for every formula o in Zx.
Consider the sets X and X, (neN) as abstract algebras
(17) {X, {ontoca)

and
(18) {X,,, {01651‘}054'} .

respectively (see [2], p.21). It follows from 1° that the algebra (17) is
the product of the algebras (18), neN, in the gense defined in § 1. For
every fixed v, the left side of (16) considered as a function of v is a homo-
morphism from the algebra (9) of terms (see [2], p. 15 and p. 9) into the
algebra (17). Similarly, f'zr; (0") interpreted as a function of v is a homo-
morphism from the algebra (9) into the algebra (18). By 1.1 the right
side of (15) iz a homomorphism from the algebra (9) of terms into the
algebra (17). The both homomorphisms (on the left and right side of
(15)) eoincide on. the set V which generates the algebra (9). Thus they
are equal, i. e. (15) holds for all terms v.

For every fixed v the left side of (16), considered as & function of
la| e Fx is & homomorphism. from. the algebra (12) into 4’ (see [2], p. 23).
Similarly, f*eg;, (v") considered as a function of |a| ¢ Fx is a homomorphism
from the algebra (12) into 4,. Hence it follows that the right side of (16),
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considered as a function of [a|eFx, is a homomorphism from the algebra
(12) into 4, by 2.1 and in virtue of the fact that the identity mapping
from the generalized algebra A into A4’ is a homomorphism. Tt follows
from 2° and (15) that the homomorphisms on the left and right side 0f(16)
assume the same values if o is an elementary formula. Since elementary
formulas generate Fx, the both homomorphisms ave equal, i.e. (16)
holds for all formulas a in Zy.

If v is & term in &, then (15) coineides with (7) on account of (11).
If ¢ is & formula in &, then (16) coincides with (8), by (14). This proves
(7) and (8).

Since the right side of (8) always belongs to the produet A, so does
the left side. This proves that R is a realization of R in X and 4 (sinee A
is incomplete, in general, we understand the word ““realization in 47
in the extended sense defined in [2], p. 26).

Let now

(19) {-By {O}Dsc,’y {()}() rs(,)}

be another complete gencralized algebra similar to the algebras (1), and
let  be a homomorphism, from the produet 4 (see (2)) of all A4,, into the
algebra (19). Let R denote, as previously, the product of realizations R,
of &Z in sets X, and algebras 4, rospectively. By 3.1 R is a realization
of & in X and 4.

According to [2], p. 24, the symbol AR will denote the following
realization in J and B:

Oyp = Op for every functor o<®,
i = hmp  for every predicate mell.
Under the above hypotheses, the following theorem holds:

3.2, For every formula o in &, and every valuation v in X,
ur(0) = h{up(v).

This is an immediate consequence of [2], 8.1, p. 24, The only differ-
ence is that [2], 8.1 was proved under the hypothesis that the domain 4
of 1 is complete. However in [2], p. 26, we have observed that all theovems
proved in [2], § 8, in particular theorem 8.1, remain true for realizations
in incomplete algebras provided that all infinite operations appearing
in the induective definition of azp(v) arve feasible. On account of 3.1, this
hypothesis is satisfied in the case examined in 3.2.

All remarks and theorems proved in § 3 remain true if the product
of all algebras 4, is replaced ewerywhere by the complete product of
all 4,. The proof of 3.1 and 3.2 is then simpler because the complete
product of complete algebras is a complete algebra (it it not necessary to
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introduce the extension A'). However, the case of the product of all
generalized algebras A, is more important in view of its applications
than the case of the complete product of all 4, (see 4.2 and 5.1).

§ 4. Products of Boolean algebras. If an abstract algebra 4 or
a generalized abstract algebra 4 has only a finite number of operations,
then instead of

{*‘1 ’ {’)l,}nps r[:} or {A ) {orp}(ps 3] {01/'}'/”-' '1’}
we shall write

{dyon, 0l or {d,00, .00, 00,0, ..., 05}

regpectively. The last notation, in partieular will be applied in the case
of Boolean algebras to be examined below.

From the point of view of applications to Mathematical Logie it i3
convenient to conceive any Boolean algebra A as an abstract algebra

(1) {A7Uaf\7f)7“}7

where o i8 the join, ~ is the meet, — is the complementation, and =
iy defined as follows:

b= (—a)yob for a,bed.
The oporations o, ~, :> are Dinary, the operation — is unary.
Let
(2) {dny vy 2, —} (nelN)

be an indexed set of Boolean algebras. By the general definition from
§1, the product of all Boolean algebras (2) is an abstract algebra (1),
where A = P 4, and the operations in (1) are defined as follows:

neN

{Mn}n eN {b‘n,}’n,eN = {“n‘ ~ bn}nc N3 {(lf'n }w.eN ~ {bn}neN = {am ~ bn}n eNy
(3)

{“n}‘n eN P {bn }-:LEN = {(Z,,, B bn}w»ch “{“n}waN = {"an}ncNa

where a,,, b, ave any elements in A,. Tt is cany to verify that produet (1)
of Boolean algebras (2) iy also a Boolean algebra,

Often it v nocessary to eonsider Boolean algebras as generalized
algebras

('l') {A’V:’“‘r}:"'vU:ﬂ}

with two infinite operations: the infinite join | and the infinite meet n.
It we writie (1), we agsume by definition that the domain of the operation
U i the clags of all non-empty sets & C A such that the infinite join
U8 exists in 4, and the domain of the operation () is the class of all
non-empty sets 8 C A such that the infinite meet () 8 exists in .A. Thus
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(4) is a complete algebra in the sense defined in [2], §4 if and only if
the Boolean algebra 4 is complete in the ordinary sepso from Lattice
Theory.

Sometimes it is useful to restrict the domains of [ and (1) to smaller
classes D, and D, of sets S C 4, respectively. Then we write

(5) {A Uy, Dy 7U|~1,ﬂ|@2}
ingtead of (3).

Let
(6) {Am Uy Ty T U \Ql,m m \@2,“‘} (neN)

be an indexed set of Boolean algebras coneeived as generalized algebras.
It is not difficult to verify that
4.1. The product of all the Boolean algebras (8) is the Boolean algebra

(5), where A = P A, D, is the class of all sets S = P S, where 8, Dy u,
neN

and D, is the class of all the sets § = P 8n, where Sne@gﬂb Moreover,
if 8§ = P Sy, then

neN .

Q) S US = {USdwews N8 = {0 S
Obgerve that the Boolean algebra

(8) {P 4 vsms= = U O

is not the product of Boolean algebras

(9) {An, uyny=y, — Uy M} (ned).

The algebra (8) is the complete product of all algebras (9), in the
sense defined in § 2. If all Boolean algebras (9) are complete, then their
complete product (8) is also complete, but their product is, in general,
not any complete algebra. In fact, the product of all the complete Boolean
A, i the generalized algebra (with operations defined by (3) and (7))

(10)‘ { PNAM oy My T U 1937 ﬂ |§D},
where the common domain ® for the both infinite operations is the class
of all sets § = P 8,, where 0 % 8, C 4, for every neN. The Boolean

neN

algebra A = P A, is then a complete Boolean algebra in the sense of the
neN

Lattice Theory, but (10) is not any complete generalized algebra in
the sense of §2 since the domains of infinite operations are artificially
restricted to a proper sub-class of the. class of all non-open subsets
of 4. .
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4.2. If A, s a two-element Boolean algebra for every neN, 4 = P 4,,

neN
and B is & complete Boolean algebra, then every homomorphism I from the

product (1) of all the algebras (2) into the algebra {B, <, ~,=, -}
is @ homomorphism from the product (10) of all the generalized algebras
(9) imto {B,u, ~, >, — U, N}

Tn other words, if a mapping h: A — B preserves all finite Boolean
operations, then il preserves also infinite joins and meels US and M8
where SeD, 4. e.

(11) MU S) =

URS) and H(NS) =
provided )

MA(S),

S = PSM

neN

0+£8,C4, for every meN.

Let U8 = a = {@,}nex- By (7), U S, = a,. Since 4, has only two
elements, we have a,eS,. Thus @ = {a,}nxeS. Consequently h(a) <

< |UR(S). The converse inequa.lity is true for every mapping A preserving

o and ~. This proves that k(e) = | h(S). Similarly we prove the second
of the equalities (11).

Let B(N) denote the Boolean algebra of all subsets of the set N,
the Boolean operations heing set-theoretical.

4.3. Suppose that all A, are two-element Boolewn algebras. For every

element & = {ty}ncn 0 the product A = P A, let ho(a) be the set of all
neN

neN such that a, is the unit element of A,. The mapping hq is an isomor-
phism from the Boolean algebra {4, o, ~,=, —} onto the Boolean algebra
{BN), vy >y — )

The proof is by an eagy verification.

§ 5. Product of semantic realizations modulo a prime filter. In
thiy section .# is a language (of the first order) deseribed in [2], §5,
Example 4, We recall that £ is 2 language such that: the sets V and 7
of free and bound individual variables are infinite, there is only one unary
conneetive N in ¢, and three connectives D, C, Lin €, all the sets 0,
(4, Oy, ... being empty. The set @ of quantifiers contains only two signs
E and U. Thus Boolean algebras {4, u, ~,>, —, U, M} are similar
to the Q-algebra {F",D,C,I,N, E, U} of &£, and we can examine reali-
zations of % in any set X 3 0 and any Boolean algebra A.

By a semantic realization of & we shall understand any realization
of 2 in a set X5 0 and in a two-element Boolean algebra.

The zero clement and the unit element of a two-element Boolean
algebra will be always denoted by A and V respectively.

For every neN, let R, be a semantic realization of & in a set X, = 0
and a two-element Boolean algebra A,. Let p be a prime filter in the
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Boolean algebra B(N). By the product of realizations R, (neN) modulo
the prime filier 7 we shall understand the semantic realization R, of %

in the set X = P X, and a two-element Boolean algebra A, defined
neN

as follows: for any points &y = {@1 nlnexny -ov) T = {@m, neny i X,

1° if o is an m-argument functor (m =0,1,2,...), then
0130("7/'.11 ey Ty) = {OR,,,(wl,n; cevy T, w,)}n,eN;
20 if 7 is an m-argument predicate (m = 0,1,2,...), then

Voot Na eV
Byyoery i) = e
Ty (Bry ooy n) A if N:v],.u,i“m,'“/’

where Ny, =, Is the set of all neN such that

Fm
an(wl,ﬂd veey -z'm,n) =Y.

Sinee all two-clement Boolean algebras are isomorphic, we may
assume that 4, = B(N)/p. Denote by h, the natural homomorphism
from {%(N), Uy Dy —} onto {AD, Uy Ny Ty —-}

Let R be the product of the realizations R,. It follows directly from
1°, 2°, and from §3 1°, 2°, that

w) R, = hR,

where h is the superposition b = ki, hg, b, being the isomorphism defined
in 4.2. By definition, % is a homomorphism from the product {4, o,
~,=, —} of the two-element Boolean algebras §4 (2) into the Boolean
algebra {4,, u, ~, >, —}. By 4.2, I is a homomorphism from the pro-
duet § 4 (10) of generalized algebras § 4 (9) into {Aq, w, A, >, —, U, M}
Thus we can apply theorem 3.2. Thus, in view of 3.1, we have using the
notation from § 3, p. b,

(2) ' az,(0) = B{{az, (0" )nen)-
Hence it follows that

5.4. For every formula o in £ and for every valuation v in X = P x,,
neN

ap,(v) =V if and only if N(a,v)ep,

where N (a, v) is the set of all neN such that ap, (V") = V.

A semantic realization R’ is said to be a model for a formula o pro-
vided ap (v) =V for every valuation b.

The following theorem follows immediately from 5.1:
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5.2. The product R, of semantic realizations B, (neN) modulo a prime

filter 7 is a model for a formula a if and. only if for every valunation
" the set of all meN such that ag, (V") = V' belongs to p.

In particular, if the set of all neN such that B, is o model for « belongs
to 7, then R, is also a model for a. ’
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