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rems ave modified to allow T to be a o-ideal. The following example pro-
vides the negative answer.

Let X consist of points (2, y) of the closed unit square in the Bueli-
dean plane with (0, 0) as the lower left-hand vertex. Define the metric
o on X by

fwo—w| Ly =1,
e{(@s, y1)y (@2 ¥2)} 9 ity # 7

The reader can verify that X is a non-separable metric space. Let R
be the set of all points whose abscissae are rational and let f be the cha-
racteristic function of R. Further, let I be the class of all countable sets
and put o = 1. The reader can verify that the modified conditions of
theorems I and II are satisfied. Yet the conclusions of these theorems
do not hold.

2. The question arises whether the conclusion of theorem IXI holds

if the hypotheses of that theorem are modified to make X 1-geparable,

and 9 a o;-ideal. The following example shows that it does not.

Let X be the Cartesian product of the closed unit interval and the
set of all countable ordinals. Thus, the points of X are of the form (z, §)
where 0 <2 <1 and 0 < B < w,. Define the following metric ¢ on X:

[o—a| i By = B,
2 it By # B

Let Y be the real line and let 9 consist of & alone.
Now for each countable ordinal number # choose a real function
fy of Baire class # defined on [0,1]. Then, define f on X by

f(@, 8) = fola).

Since o consists of & alone, (a.e.) meang everywhere, and 9 is a
o,-ideal. The reader will verify further that X is 1-separable, that f has
the property 4 and that f is not a Borel-meagurable function on X.

o{(@y, Bu), (%s, Ba)} =
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I dedicate this little note to Professor Waclaw Sierpinski since I
use in it methods which he used very successfully on so many occasions.
Throughout this paper a,f,y,... will denote ordinal numbers,
gy Ngy - .- integers, 74, ... rational numbers, 7§, ... non-negative rationals
and @, @q, b, ... real numbers. H will denote a Hamel basis of the real
numbers, H* the set of all numbers of the form >'n.a, (@.<H) (the sum

is finite) and H+ the set of all numbers of the form Jria, (a.cH):

Measure will always be the Lebesgue measure, and (a, bd) will denote
the set of numbers a < 2 < b.

Sierpinski showed [1] that there are Hamel bases of measure 0 and
algo Hamel bases which are not measurable.

We are going to prove the following theorems:

TEEoREM 1. H* is always mon-measurable. In fact H* has inner
measure 0 and for every (a,b) the outer measure of H*~(a, b) is b—a.

THEOREM 2. Assume ¢ = 8,. Then there is an H for which H+ has
measure 0.

Proof of Theorem 1. The sets H*+1/n, 2 < n < oo, are pair-
wise disjoint. Thus a simple argument shows that H* has inner measure 0.

For every x there exists an n, so that n, 2 is in H*, or the sets 1/nH*,
2 < m < oo, cover the whole interval (—oo, -}-co). Hence H* cannot have
outer measure 0, and thus by the Lebesgue density theorem it has a point,
say x,, of outer density 1. But then (since H* is an additive group) every
point of z,+H* is a point of outer density 1 of H*. Finally, it is easy to
see that H* i everywhere dense (since, if @ and b are rationally indepen-
dent, the numbers n,a-n,b are everywhere dense).

Now it is easy to deduce that the outer measure of H*~(a, b) is b—a.
To see this observe that since H* has outer density 1 at x,, for every
& >0 there exist arbitrarily small values of #, such that the outer mea-
sure of H*~(2— 7,2+ 1) is greater than 2(1—e)n; but consequently
the same holds for H*~(z,+1—7,x,+t-+7), where ¢ is an arbitrary
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element of H*. Since H* is everywhere dense, a simple argument shows
that the outer measure of H*~(a,b) is greater than (1—e)(b—a)— 34,
Sinee this holds for every e and 7, the outer measure is - a, which com-
pletes the proof of Theorem 1.

Now we prove Theorem 2. In fact we shall prove & somewhat stron-
ger theorem:

THEOREM 2'. Assume ¢ = ¥;.
a TLusin set (see [2], p.36-37),
perfectset in a set of power < Ry,

It is well known (and easy to see) that such a set has the property
that if &, 1 <k < oo, is any sequence of numbers, it can be covered by
intervals I, of length &, (1 <% <o) (see [3] and also [2], p. 37-39).

We shall construct our H by transfinite induction. Let {F,}, 1 <
< a < 2y, be the set of all nowhere dense perfect sets (as is well known,
there are ¢ = N, perfect sets) and let #,, 1 < a < £, be a well-ordering
of the get of all real numbers. Put

FO = (J F,.
l<y<a

F is a set of the first category and for a >y we have F® —» I,

We shall denote by {a.}, 1 < a < £,, the elements of H. Assume
that for a < f# the a; have already been constructed. We choose a; and
ag,, 98 follows: Let z, be the x, of smallest index which is not of the
form }re e, o <. Pub
{1)
where % and v have the following properties:

L {u,v, a}, 1 < a<p, are rationally independent.

II. The numbers

LU+ 704 ZM%H
7

Then there i an H such that H+ is
4. 6. 1t intersects every mowhere dense

By = U—70,

) o < p,
are never in B, unless 7, = —r, # 0.

Then put a; =v and azy; = 4. First we show that such values u
and v exist.

Put 4 = v+ ;. Then II is equivalent to the relation

((ry4-raYo 7y Xy ;) ¢ FO

for every choice of 7+, % 0 and arbitrary Yagy Gy @ << fo Thus o is
in noné of the sets

3) (B0 — 304 00, —7180) [ (r1475).

Clearly all sets (3) are sets of the first category and there are only ¥,
of them. Thus their union is also of the first category and hence -there
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exists & set of v’s of second category which is not contained in their union
and which thus satisfies II. It is easy to see that there exists at most a
countable number of choices of » and u = v+x; which do not satisty
I; hence there exist  and v satisfying both I and IT.

This construction can clearly be carried out for all ordinal numbers
8 < ., and, since ¢ = Ry, it gives a Hamel-base H. Clearly H+ is a
Lusin-set. To see this it is sufficient to show that H+~F® has for every

a < 2, a power not exceeding 8,. Let i’r;: ag, (6, <...< &) be an ele-
ment of H+, Since ¢ = ¥,, there are :)?Jlly denumera.bly many elements
of H+ with & < a. If & > a, then by our construetion 2"‘51 @ 18 not in
P since, by II, if & > a, then Z"‘s a, can be in FE only ifE +1=

= & and Ty, =
of Theorem II.
We have really proved the following stronger statement:

There ewists a Hmmel base H with a well-ordering {a,} such that the

— 7y, but it is ‘ohen not in H+. This completes the proof

set of real numbers Zr 0o, for which

B

Gy Fou—1  or vyt | =T Are 1 F0

is a Lusin set.

Kuczma asked in [4] the following question: Let f(X+¥) = f(X)-+
+(Y) and assume that f(Z) < ¢ for every Z <P, where P is such a set that
every real number can be written in the form Z,—Z,, Z,, Z,eP. Does
it follow then that f(X) = ¢X? The answer is negative. To see this let
flas) < 0 for every a,cH, let f(a,) be non-linear and. let us extend f(X)
for every real X by f(u+v) = f(u)+f(v). Clearly f(Z) <0 for every
ZeH+, every real number is of the form Z,—Zy, 7, Z,eHt, and f(X)
# cX.
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= f(z)+ f(y), ibidem
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