icm®

VOL. X

COLLOQUIUM MATHEMATICUM

1963

FASC, 1

But p>2, and consequently q<2< p. Hence $L^q(G)\subset L^p(G)$, and consequently $L^p(G)=L^2(G)=L^q(G)$. Therefore $L^2(G)$ is an algebra under convolution.

Hence G is finite.

Note. The author has proved after submitting this paper that for any locally compact group G the space $L^p(G)$ is closed for convolution for some p>2 if G is compact.

REFERENCES

[1] P. Halmos, Measure theory, New York 1959.

[2] L. H. Loomis, Abstract harmonic analysis, New York 1953.

[3] L. Pontrjagin, Topological groups, Princeton 1939.

[4] M. Rajagopalan, Classification of algebras, Journal of Indian Mathematical Society (N. S.) 22 (1958), p. 109-116.

[5] W. Zelazko, On the algebras L^p of a locally compact group, Colloquium Mathematicum 8 (1961), p. 115-120.

Reçu par la Rédaction le 24.11.1961

A NOTE ON L_n-ALGEBRAS

BY

W. ŻELAZKO (WARSAW)

In [3] it was shown that if G is a locally compact Abelian group, then $L_p(G)$ for p>1 is a Banach algebra under convolution if and only if G is compact. Further, Rajagopalan [2] extended this result to the case when G is discrete but not Abelian and $p\geqslant 2$. In this paper we prove this result for an arbitrary locally compact group under the assumption that p>2.

Let G be a locally compact group. Its elements will be denoted by $t,\tau;$ group operation will be written multiplicatively. Unit element will be de noted by e. If A, B are subsets of G, then AB is a set of all elements of G written in the form $t \cdot \tau$, where $t \in A$, $\tau \in B$, and A^{-1} is defined as the set of all t^{-1} , such that $t \in A$. U, V will stand for compact neighbourhoods of the unit e. It is known that for every neighbourhood U, there exists a symmetric neighbourhood $V \subset U$ (i. e. such that $V = V^{-1}$) for which $V^2 \subset U$. μ will denote the left invariant Haar measure on G. We recall that if A is open and B compact, then $\mu(A) > 0$, and $\mu(B) < \infty$. Generally speaking the left invariant measure is not the right invariant one, but there exists such a continuous function $\Delta(t)$, called modular function, that $\mu(At) = \mu(A) \Delta(t)$ for every measurable A, and $t \in G$. We have $\Delta(t) > 0$ for every $t \in G$, $\Delta(e) = 1$, and

(1)
$$\Delta(t\tau) = \Delta(t)\Delta(\tau).$$

In the case when $\Delta(t) \equiv 1$ the group G is called *unimodular*. In this case we have

(2)
$$\int f(t\tau)\mu(d\tau) = \int f(\tau t)\mu(d\tau) = \int f(\tau^{-1})\mu(d\tau) = \int f(\tau)\mu(d\tau)$$

for every integrable function f defined on G and $t \in G$. $L_p(G)$ will denote the space of all complex functions (or more exactly of equivalence classes) such that

$$||x||_p = \left(\int |x(t)|^p \mu(dt)\right)^{1/p} < \infty.$$

Ln-ALGEBRAS

55

The convolution is defined as

$$x * y(t) = \int x(t\tau^{-1})y(\tau)\mu(d\tau).$$

The following lemma reduces our problem to the case when G is a unimodular group.

LEMMA 1. If G is not unimodular locally compact group, then $L_p(G)$ is not an algebra under the convolution for any p > 1.

Proof. By our assumption there exists in G such a t_0 that $\Delta(t_0) \neq 1$. Let $G(t_0)$ be a subgroup of G generated by t_0 . It is the intersection of all closed subgroups of G containing t_0 . We have either $\Delta(t_0) > 1$, or $\Delta(t_0^{-1}) > 1$, so $G(t_0)$ is not compact, since the continuous modular function is unbounded on the sequence (t_0^n) , $n = 0, \pm 1, \pm 2, \ldots$, contained in $G(t_0)$. Consequently $G(t_0)$ is discrete and consists exactly of all positive and negative powers of t_0 (cf. [4], lemma 3, or [1]). But in this case the proof of our conclusion given in [3] holds; so does the proof of the theorem 2, section 2^o , pp. 117 and 118, q. e. d.

LEMMA 2. If the group G is not compact then for every compact subset $A \subseteq G$ there exists a sequence of elements $t_n \in G$, n = 1, 2, ..., such that

$$(3) t_n A \cap t_k A = \emptyset for n \neq k.$$

Proof. Take an arbitrary element as t_1 , choose t_2 in such a way that $t_1A \cap t_2A = \emptyset$, t_3 in such a way that $t_3A \cap t_2A = \emptyset$ and $t_3A \cap t_1A = \emptyset$, and so on. If the *n*-th step is impossible, then for any $t \in G$ there exists a t_k , k < n, such that $t_kA \cap tA \neq \emptyset$, which is equivalent to $t \in t_kAA^{-1}$. But in this case G would be covered by the finite family of compact sets, which is impossible, q. e. d.

LEMMA 3. If $L_p(G)$ is a Banach algebra under the convolution, and if p > 2, then G is compact.

Proof. By lemma 1 we may assume that G is a unimodular group. It is to be proved that $\mu(G)<\infty$ which is equivalent to its compactness. Suppose then that $\mu(G)=\infty$ and the proof will be given if we get a contradiction. Let $x(t) \in L_p(G)$; so, by (2), $\tilde{x}(t)=x(t^{-1}) \in L_p(G)$. Let $z(t) \in L_q(G)$, where 1/p+1/q=1, and consider the functional $(z,\tilde{x}*y)$ generated on $L_p(G)$ by the function z, taken at the point $\tilde{x}*y$, $y \in L_p(G)$. For fixed $z \in L_q$, and $x \in L_p$ it is a continuous linear functional defined on L_p . So there exists a $w \in L_q$ such that $(z,\tilde{x}*y)=(w,y)$ for every $y \in L_p$. In the same way as in [2] we shall show that w=x*z. In fact,

$$\begin{split} (z, \tilde{x} * y) &= \int z(t) \int \tilde{x}(t\tau^{-1}) y(\tau) \mu(d\tau) \mu(dt) \\ &= \int y(\tau) \ x(\tau t^{-1}) z(t) \mu(dt) \mu(d\tau) = (x * z, y). \end{split}$$

So for every $x \in L_p(G)$, $z \in L_q(G)$ we have $x * z \in L_q(G)$. To prove our lemma it is sufficient to construct such an $x \in L_p$, and $z \in L_q$, that x * z is not in L_q . Let U be a compact symmetric neighbourhood of the unit $e \in G$. U^2 is also compact, so by our assumption and by lemma 2 we can choose such sequence $\{t_n\}$ of elements of G that (3) holds with U^2 instead of G. It is clear that for this sequence (3) also holds if we take G instead of G. We put now

$$x(t) = \sum_{n=1}^{\infty} a_n \chi_{t_n U^2}(t),$$
 $y(t) = \sum_n a_n \chi_{t_n U}(t),$ $z(t) = \gamma_{U}(t),$

where a_n is a sequence of positive reals such that

$$\sum_{n=1}^{\infty} a_n^p = a^p < \infty \quad \text{ and } \quad \sum_{n=1}^{\infty} a_n^q = \infty.$$

This is possible because q < p for p > 2; $\chi_A(t)$ denotes the characteristic function of the set A, i.e.

$$\chi_A(t) = egin{cases} 1 & ext{if} & t \in A\,, \ 0 & ext{if} & t \notin A\,. \end{cases}$$

It is clear that $x, y \in L_p$, $z \in L_q$, and x and y are not members of L_q . We shall see that $x * z \notin L_q$. In fact, consider the convolution

$$\chi_{t_nU^2} * \chi_U(t) = \int\limits_U \chi_{t_nu^2}(t\tau^{-1}) d\tau.$$

Let $t \in t_n U$. If $\tau \in U$, then $t\tau^{-1} \in t_n U^2$ and

$$\chi_{t_n U^2} * \chi_U(t) = \mu(U^2)$$
 if $t \in t_n U$.

Consequently

$$\chi_{t_n U^2} * \chi_U(t) \geqslant \mu(U^2) \chi_{t_n U}(t)$$

for every $t \in G$, and so $x * z(t) \geqslant \mu(U^2)y(t) \geqslant 0$. But $\|y\|_q = \infty$, and $\mu(U^2) > 0$, so $\|x * z\|_q = \infty$ and x * z is not in L_q , q. e. d.

LEMMA 4. Let f be a positive function defined on the group G such that $f * x \in L_r(G)$ for every $x \in L_p(G)$, $r, p \ge 1$; then the mapping $x \to f * x$ is a continuous linear mapping of L_p into L_r .

Proof. Suppose that the mapping $x \to f * x$ is not continuous. Then there exists a sequence $\{x_n\}$ of elements of L_n , and a positive constant C

such that $\lim \|x_n\|_p = 0$, and $\|f * x_n\|_r \ge C$, $n = 1, 2, \ldots$ Taking $|x_n(t)|$ instead of $x_n(t)$ we have also $\lim \|x_n(t)\|_p = 0$ and $\|f * |x_n\|_r \ge C$, so we may assume that $x_n(t) \ge 0$. Taking a suitable sequence of positive scalars a_n we obtain $\lim \|a_n x_n\|_p = 0$, and $\lim \|f * a_n x_n\|_r = \infty$, so by passing, if necessary, to a subsequence we may assume that

$$||x_n||_p \leqslant 1/2^n$$
 and $||f * x_n||_r \geqslant n$

for n=1,2,... Now let $y=\sum_{n=1}^{\infty}x_n$; we have $y \in L_n$, so $||f*y||_r < \infty$. On the other hand, $y \ge x_n$, and so $f*y \ge f*x_n \ge 0$. Consequently $||f*y||_r \ge ||f*x_n||_r \ge n$ which is the contradiction mentioned above, q.e.d.

COROLLARY. If $L_p(G)$, $p \ge 1$, is an algebra under the convolution, then it is a Banach algebra (i. e. there exists a submultiplicative norm equivalent to the norm $||x||_p$).

We may formulate now our main result

THEOREM 1. Let G be a locally compact group and p>2; then the space $L_p(G)$ is an algebra under the convolution if and only if the group G is compact.

We may rewrite also the main result of [3] in the following form:

THEOREM 2. Let G be a locally compact Abelian group and p > 1; then the space $L_p(G)$ is an algebra under the convolution if and only if the group G is compact.

The following problem is open:

P 392. Is the conclusion of theorem 1 true for 1 ?

REFERENCES

- [1] B. Eckmann, Über monothetische Gruppen, Commentarii Mathematici Helvetici 16 (1943/44), p. 249-263.
- [2] M. Rajagopalan, On the L^p -space of a locally compact group, this volume, p. 49-52.
- [3] W. Żelazko, On the algebras L_p of locally compact groups, ibidem 8 (1961), p. 115-120.
- [4] On the divisors of zero of the group algebra, Fundamenta Mathematicae 45 (1957), p. 99-102.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 20.12.1961

OLLOQUIUM MATHEMATICUM

VOL. X

1963

FASC. 1

ON DECOMPOSITION OF A COMMUTATIVE p-NORMED ALGEBRA INTO A DIRECT SUM OF IDEALS

P.Y

W. ZELAZKO (WARSAW)

1. In the theory of commutative complex Banach algebras it is known that a Banach algebra A is decomposable into a direct sum of its two non-trivial ideals

$$(1.1) A = I_1 \oplus I_2,$$

if and only if the compact space $\mathfrak M$ of all multiplicative linear functionals of A may be written in the form

$$\mathfrak{M} = \mathfrak{M}_1 \cup \mathfrak{M}_2,$$

where M, and M, are disjoint closed subsets of M.

The decompositions (1.1) and (1.2) are equivalent to the decomposition of the unit $e \in A$ into a sum of two non-zero idempotents

$$(1.3) e = e_1 + e_2,$$

where

(1.4)
$$e_1^2 = e_1, \quad e_2^2 = e_2, \quad e_1 e_2 = 0.$$

When we have the decomposition (1.3) with (1.4) the decompositions (1.1) and (1.2) may be written by means of the formulas

$$(1.5) I_1 = e_1 A, I_2 = e_2 A,$$

and

$$\mathfrak{M}_{1} = \{ f \in \mathfrak{M} : f(e_{1}) = 1 \}, \quad \mathfrak{M}_{2} = \{ f \in \mathfrak{M} : f(e_{2}) = 1 \}.$$

This result was obtained by Šilov [4], who used analytic functions of several variables of elements of A. Here is presented a similar result for the class of p-normed algebras.

2. A *p-normed algebra* A is a metric algebra complete in the norm $\|x\|$ satisfying

$$||xy|| \le ||x|| ||y||, \quad ||ax|| = |a|^p ||x||,$$