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]

But p >2, and consequently ¢ <2 <p. Hence L*(@) CL"(4), and
consequently IP(G) = L*(G) = LY(@). Thercfore I2(G) is an  algebra
under convolution.

Hence @ is finite.

Note. The author has proved after submitting this paper that for
any loeally compact group G the space I"(@) is closed for convolution
for some p > 2 if G is compact.

REFERENCES

[1] P. Halmos, Measure Lheory, New York 1959,

[2] L. H. Loomis, Abstract harmonic analysis, New Yok 1053,

[8] I.. Pontrjagin, Topological groups, Princeton 1930.

[4] M. Rajagopalan, Classification of algebras, Journal of Indian Mathematical
Society (N. §.) 22 (1958), p. 109-116.

[5] W. Zelazko, On the algebras LV of a locally compact group, Colloguium
Mathematicum 8 (1961), p. 115-120.

Regu par la Rédaction le 24. 11. 1961

e ©
IBM 01LL0QUIUM MATHEMATICUM

VOL. X 1963 FASC. 1

A NOTE ON L, ALGEBRAS
BY

W. ZELAZKO (WARSAW)

In [3] it was shown that if @ is a locally compact Abelian group,
then L,(G) for p >1 is a Banach algebra under convolution if and only
if @ is compact. Further, Rajagopalan [2] extended this result to the cage
when @ is diserete but not Abelian and p > 2. In this paper we prove
this result for an arbitrary locally compact group under the assumption
that p > 2.

Let G be a locally compact group. Its elements will be denoted by
t, r; group operation will be written multiplicatively. Unit element will
be de noted by ¢. If .4, B are subsets of ¢, then 4B is a set of all elements
of G written in the form t-7, where ted, 7B, and A7 is defined as the
set of all 17, such that ted. U, V will stand for compact neighbourhoods
of the unit ¢. It is known that for every neighbourhood U, there exists
a symmetric neighbourhood ¥V C U (i.e. such that ¥ = V') for which
72C U. p will denote the left invariant Haar measure on G. We recall
that if A is open and B compact, then u(4) >0, and u(B) < co. Gen-
erally speaking the left invariant measure is not the right invariant one,
but there exists such a continuous function 4(¢), called modular func-
tion, that p(At) = u(A)4(t) for every measurable 4, and t<G. We have
A(t) >0 for every te@, 4(¢) =1, and

(1) Aftz) = A A (7).

In the case when A(f) =1 the group G is called unimodular. In
this case we have

2) [ft)u(an) = [ft)yu(@n) = [fxul@) = [f(x)p(d)

for every integrable funection f defined on G and te@. IL,(G) will denote
the space of all complex functions (or more exactly of equivalence
classes) such that

lelly = ([lo@Pu(@n)™ < oo.
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The convolution is defined as
wxy(t) = [2(tz™)y () pldr).

The following lemma reduces our problem to the case when @ ig
a unimodular group.

LeMMA 1. If G is not unimodular locally compact group, then L, (@)
is not an algebra wnder the convolution for any p > 1.

Proof. By our assumption there exists in @ such a ¢, that 4 (4y) = 1.
Let G(t,) be a subgroup of G generated by ¢,. It is the intersection of all
closed subgroups of @ containing t,. We have either 4 (f) > 1, 0r 4 (¢;7) > 1,
50 G(tg) is not compact, since the continuous modular funetion is wun-
bounded on the sequence (), » = 0, +1, -2, ..., contained in G (3,)).
Consequently G(f,) is discrete and consists exactly of all positive and
negative powers of t, (cf. [4], lemma 3, or [1]). But in this case the proof
of our conclusion given in [3] holds; so does the proof of the theorem 2,
gection 2° pp.117 and 118, q.e.d.

LEMMA 2. If the group @ is not compact then for every compact subset
A.C@G there ewisis a sequence of elements t,eG, n =1,2,..., such that

(3) ‘ A ~3A =60 for n k.

Proof. Take an arbitrary element as f,, choose {, in such a way
that t,4 ~ 1,4 = 0, t;in such a way that 1,4 ~ {4 = Oand ;4 ~ 1,4 = 0,
and so on. If the n-th step is impossible, then for any teG there exists
a B, &k < m, such that 44 ~14 # @, which is equivalent to tef, 447"
But in this case ¢ would be covered by the finite family of compaet sets,
which is impossible, q.e. d.

Levmua 3. If L,y(Q) is & Banach algebra under the convolution, and if
P >2, then @ s compact.

Proof. By lemma 1 we may assume that @ is a unimodular group.
It is to be proved that u(G) < oo which is equivalent to its compactness.
Suppose then that u (@) = co and the proof will be given if we get a ¢on-
tradiction. Let o (1) e Ly (G); 80, by (2), #(2) = @(t™") e L, (@). Lt 2 () e L, (G),
where 1/p--1/¢ =1, and consider the functional (¢, % *y) generated
on L,(G) by the function z, taken at the point & * y, y eL,(G). For fixed
zely, and wel, it i3 a continuous linear functional defined on I,. So
there exists a wel, such that (2, & xy) = (w, y) for every y el . Tn. tho
same way as in [21 we shall show that w = @ x2. In fact,

(2 & xg) = [2(t) [#(1)y (v) (A1) (@)

= [y(2) a(w™)e())u(@)u(dr) = @ x2,y).

icm
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So for every meL,(G), z¢L,(G) we have & xzeLy(G). To prove our
lemma it is sufficient to construct such an xeL,, and zeL,, that o x2
is not in IL,. Let U be a compact symmetric neighbourhood of the unit
ee@. U? ig also compact, so by our assumption and by lemma 2 we can
choose such sequence {t,} of elements of ¢ that (3) holds with U? instead
of A. It is elear that for this sequence (3) also holds if we take U instead
of A. We put now

z(t) = Za'n Xt U2 (t),
N=1

RICEDYSREGP

#(t) = yu(t),
where a, is a sequence of positive reals such that
oo o0
\
A\_Jaﬁ =0’ < oo and Eaﬁ = oco.
n=1 Ne=1

This is possible because ¢ <p for p >2; y,(t) denotes the cha-
racteristic function of the set 4, i.e.

1 it
0 if

ted,
t¢4.

Tt is clear that @, yeL,, zeL,, and # and y are not members of L,.
We shall see that »*z¢L,. In fact, consider the convolution

ZA(t) =

K * Xu(t) = thnuﬂ(tT_l)dT-
T

Let tet,U. Tf veU, then tv'et,U? and

thU‘*XU(t) = H(Ua) if ietnU,

Consequently
Ko * 2v(8) = w(U) 24,0 (8)
for every te@, and so @#*2(f) = u(Uy(E) = 0. But [y, = oo, and
w(U2) >0, so |z * 2|, = co and & * 2 is not in IL,, q.e. d.
LemmA 4. Let f be o positive function defined on the group G such
that * xeL, (@) for every zel,(G), r,p > 1; then the mapping x —f*w
i @ continuous linear mapping of L, imto L,.

Proof. Suppose that the mapping # — f * # is not continuous. Then
there exists a sequence {@,} of elements of L,, and a positive constant ¢
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such that lim|z,[, = 0, and [|f * @l >C n=1,2,.. Taking [|u,(?)]
instead of x,(f) we have also lim ||z, (?)ll, =0 an{l Hf* [yl = C, 80
we may assume that z,(3) = 0. Taking a suitable sequence of positive
sealars ¢, we obtain lim|a,,l, = 0, and lim ||f * @, @)l, = oo, 80 Dby
passing, if necessary, to a subsequence We Iay asSume that

lwall, <1/2"  and  [If %l 22

for n =1,2,... Now let y = g‘w,,; we have yeLy, 80 [|f * y|l, << co. On
V=1

the other hand, ¥ = #,, and s70 fry = rw, = 0. Consequently ||f*yl,
= |If * 2l =0 whlch is the contradietion menuoned above, q.o.d.

COROLLARY. If L,(@), p =1, is an algebra wnder the convolution,
then it is o Banach algebra (i. e. there exists a submultiplicative norm equi-
valent to the norm ||zli,)-

We may formulate now our main result

TaEoREM 1. Let G be a locally compact group end p > 2; then the space
L, (@) is an algebra under the convolution if and only if the group G is
compact.

We may rewrite also the main result of [3] in the following form.:

THEOREM 2. Let G be a locally compact Abelian group aend p >1;
then the space Ly(G) is an algebra under the convolution if and only if the
group @ 13 compact.

The following problem. is open:

P 392. Is the conclusion of theorem 1 true for 1 < p = 27
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ON DECOMPOSITION OF A COMMUTATIVE p-NORMED
ALGEBRA INTO A DIRECT SUM OF IDEALS
BY

W. ZELAZKO (WARSAW)

1. In the theory of commutative complex Banach algebras it is
known that a Banach algebra 4 is decomposa,ble into a direct sum of
its two non-trivial ideals

(1.1) A =105,

if and only if the compact space I of all multiplicative lincar funetionals
of 4 may be written in the form

(1.2) M = M, wM,,

where M, and M, are disjoint closed subsets of M.
The decompositions (1.1) and (1.2) are equivalent to the decomposi-
tion of the unit eeA into a sum of two non-zero idempotents

(1.3) 6 = 61+ 6y,
where
(1.4) & =6, € =6y €6 =0

When we have the decomposition (1.3) with (1.4) the decompositions
(1.1) and (1.2) may be written by means of the formulas

(1.5) I, =64, I,=¢A,
and
(1.6) M, = {feM: fle)) =1}, My = {feM: fle,) =1}.
This result was obtained by Silov [4], who used analytic functions

of several variables of elements of A. Here is presented a similar result
for the class of p-normed algebras.

2. A p-normed algebra A is a metric algebra complete in the norm

lwll satistying

eyl < lleltliyll, ol = [afll),
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