icm<sup>©</sup>

THEOREM 3.2. A mapping f of a set  $\Re \subset \mathfrak{A}$  in an  $\mathfrak{m}$ -complete  $\mathfrak{m}$ -distributive Boolean algebra  $\mathfrak{B}$  can be extended to an  $\mathfrak{m}$ -homomorphism h of  $\Re_{\mathfrak{m}}$  in  $\mathfrak{B}$  if and only if for every set  $\{A_t : t \in T, \ \overline{T} \leqslant \mathfrak{m}\} \subset \Re$ 

(i)  $\bigcap_{t \in T} \varepsilon(t) A_t = \wedge implies \bigcap_{t \in T} \varepsilon(t) f(A_t) = \wedge,$  where  $\varepsilon(t) = 1$  or -1 for every  $t \in T$ .

Proof. The necessity is obvious. By lemma 3.1 we must prove the sufficiency of (i) only in the case where the power of  $\Re$  is  $\leqslant m$ .

In this case, however, the power of  $f(\Re)$  is also  $\leq m$ . Hence  $f(\Re)_m$  is isomorphic with an m-complete field of sets, by m-distributivity of  $\Im$ .

Therefore, by (B), the mapping f of  $\Re$  into  $f(\Re)_{\mathfrak{m}}$  can be extended to an  $\mathfrak{m}$ -homomorphism

$$h_{\mathfrak{R}}:\mathfrak{R}_{\mathfrak{m}} \to f(\mathfrak{R})_{\mathfrak{m}},$$

i. e. to an m-homomorphism  $h_{\mathfrak{g}}: \mathfrak{R}_{\mathfrak{m}} \to \mathfrak{B}$ , q. e. d.

4. The proof of theorem 1.1. Let  $\{\mathfrak{A}_t\}_{t\in T}$  be an indexed set of non-degenerate  $\mathfrak{m}$ -complete  $\mathfrak{m}$ -distributive Boolean algebras. Let  $\mathfrak{A}$  be the minimal  $\mathfrak{m}$ -product of these algebras. By 2.3,  $\mathfrak{A}$  is  $\mathfrak{m}$ -distributive.

Let  $\mathfrak C$  be any m-complete m-distributive Boolean algebra. By the definition of free m-distributive product of an indexed set of Boolean algebras (see the introduction) it remains to prove that if, for every  $t \in T$ ,  $h_t$  is an m-homomorphism of  $i_t(\mathfrak U_t)$  into  $\mathfrak C$ , then there exists an m-homomorphism h of  $\mathfrak B$  into  $\mathfrak C$  which is a common extension of all the homomorphisms  $h_t$ .

This follows, however, immediately from 3.2. Condition (i) is satisfied since the subalgebras  $i_l(\mathfrak{A}_l)$  of  $\mathfrak{B}$  are  $\mathfrak{m}$ -independent.

#### REFERENCES

- [1] D. J. Christensen and R. S. Pierce, Free products of a-distributive Boolean algebras, Mathematica Scandinavica 7 (1959), p. 81-105.
- [2] R. Sikorski, On analogy between measures and homomorphisms, Annales de la Société Polonaise de Mathématiques 23 (1950), p. 1-20.
- [3] Products of abstract algebras, Fundamenta Mathematicae 39 (1952), p. 211-228.
  - [4] Boolean algebras, Berlin-Göttingen-Heidelberg 1960.
- [5] Cartesian products of Boolean algebras, Fundamenta Mathematicae 37 (1950), p. 25-54.

Reçu par la Rédaction le 18, 12, 1962

# COLLOQUIUM MATHEMATICUM

VOL. XI

1963

ASC.

### MINIMAL EXTENSIONS OF WEAKLY DISTRIBUTIVE BOOLEAN ALGEBRAS

BY

#### T. TRACZYK (WARSAW)

Introduction. Pierce [2] has proved two important theorems on minimal extensions of m-distributive Boolean algebras. The purpose of the present paper is to generalize those theorems to weakly m-distributive Boolean algebras.

Terminology and notation. The symbol  $\bigcup$  will be used both for the Boolean join and for the set-theoretical union. The symbol  $\bigcap$ , similarly, will be used both for the Boolean meet and for the set-theoretical intersection. The zero element of a Boolean algebra will be denoted by 0 and the unit element by 1.

A Boolean algebra and the set of all its elements will be denoted by the same letter.

A subset A of a Boolean algebra B is said to be a covering of B if  $\bigcup a = 1$ .

A covering A of a Boolean algebra B is said to be m-covering of B if  $\overline{A} \leq m$ , where  $\overline{A}$  denotes the cardinal number of A. A covering or m-covering A is called partition, respectively m-partition if elements of A are disjoint.

If A and C are subsets of a Boolean algebra B, we say that A refines C, if for every  $a \in A$  there exists  $c \in C$  such that a = c; we say that A weakly refines C if for every  $a \in A$  there exists a finite sequence

$$(c_1, c_2, \ldots, c_k) \subset C$$

such that  $a \subset \bigcup_{i=1}^k c_i$ .

A subalgebra  $B_2$  of a Boolean algebra  $B_1$  is said to be an m-regular subalgebra of  $B_1$ , when for every set  $A \subset B_2$ ,  $\overline{A} \leq \mathfrak{m}$ , if the join  $\bigcup_{a \in A} a$  exists in  $B_2$ , it is also the join of this set in  $A \subseteq B_2$ . If  $B_2$  is an m-regular subalgebra colloquium Mathematicum XI

of  $B_1$  for every infinite cardinal  $\mathfrak{m}$ , then  $B_2$  is said to be a regular subalgebra of  $B_1$ .

If  $\mathfrak{m}$  is a cardinal number, then  $\mathfrak{m}^+$  will denote the successor, i. e. the least cardinal number  $> \mathfrak{m}$ .

If B is a Boolean algebra, then  $B^{\mathfrak{m}}$  will denote the minimal  $\mathfrak{m}$ -extension of B, i. e.  $B^{\mathfrak{m}}$  is an  $\mathfrak{m}$ -complete Boolean algebra, B is dense in  $B^{\mathfrak{m}}$  and  $\mathfrak{m}$ -generates  $B^{\mathfrak{m}}$ .

By minimal extension of B we mean a complete Boolean algebra  $\mathfrak{B}^{\infty}$  which contains B as a dense subalgebra.

If S and T are non-empty sets, then the set of all mappings of T into S will be denoted by  $S^T$ , as usually.

1. Weak (m, n)-distributivity. We have

1.1. Definition. A Boolean algebra B is said to be weakly  $(\mathfrak{m},\mathfrak{n})$ -distributive if

$$\bigcap_{t \in T} \bigcup_{s \in S} a_{t,s} = \bigcup_{\varphi \in S} \bigcap_{t \in T} a_{t,\varphi(t)},$$

where S is the class of all finite subsets of S,  $\overline{T} \leqslant \mathfrak{m}$ ,  $\overline{S} \leqslant \mathfrak{m}$ ,  $a_{t,\phi(t)} = \bigcup_{s \in \phi(t)} a_{t,s}$  and as well the join  $\bigcup_{s \in S} a_{t,s}$  as the meets  $\bigcap_{t \in T} \bigcup_{s \in S} a_{t,s}$ ,  $\bigcap_{t \in T} a_{t,\phi(t)}$  exist in B (see, e. g. [3], p. 102).

We note some immediate consequences of 1.1.

**1.2.** If a Boolean algebra B is weakly  $(\mathfrak{m},\mathfrak{n})$ -distributive and  $\mathfrak{m}'<\mathfrak{m},\mathfrak{n}'<\mathfrak{n}$ , then B is weakly  $(\mathfrak{m}',\mathfrak{n}')$ -distributive.

1.3. A regular subalgebra of a weakly (m, n)-distributive Boolean algebra is also weakly (m, n)-distributive.

**1.4.** Every Boolean algebra is weakly (k, n)-distributive and weakly (n, k)-distributive, where k is a finite integer and n is an arbitrary cardinal number.

In the sequel we suppose that  $\mathfrak{m}$  and  $\mathfrak{n}$  are infinite cardinals.

Now the following criterion for a Boolean algebra to be weakly (m, n)-distributive is presented.

1.5. THEOREM. A Boolean algebra B is weakly  $(\mathfrak{m},\mathfrak{n})$ -distributive if and only if for every class

$$\{A_t:t\,\epsilon T\,,\,\overline{T}\leqslant\mathfrak{m}\}$$

of  $\mathfrak n$ -coverings of B there exists a covering A of B which weakly refines every  $A_t.$ 

Proof of necessity. Let

$$A_t = \{a_{t,s} : s \in S, \, \overline{\widetilde{S}} \leqslant \mathfrak{n}\}$$

and let

$$A = \{a \in B : \{a\} \text{ weakly refines every } A_t\}.$$

Obviously A weakly refines every  $A_t$ . Suppose that A is not a covering of B. Then there is some  $b \neq 0$ ,  $b \in B$ , disjoint with every  $a \in A$ .

By the weakly (m, n)-distributivity of B there exists (see [3], p. 103) a mapping  $\Phi \in S^T$  such that

$$b \cap \bigcap_{t \in T} a_{t, \Phi(t)} \neq 0$$
.

This leads to a contradiction because the meet  $\bigcap_{t \in T} a_{t,\phi(t)}$  belongs to A. Proof of sufficiency. Let

$$\{b_{t,s}: t \in T, s \in S, \overline{T} \leqslant \mathfrak{m}, \overline{S} \leqslant \mathfrak{n}\} \subset B.$$

We suppose now the existence of

$$\bigcup_{s \in S} b_{t,s} ext{ for every } t \in T, \qquad \bigcap_{t \in T} \bigcup_{s \in S} b_{t,s} = b,$$

and

$$\bigcap_{t \in T} b_{t, \Phi(t)} \text{ for every } \Phi \in S^T.$$

Let

$$s_0 \notin S$$
,  $S_0 = S \cup \{s_0\}$ ,  $b_{t,s_0} = b'$ 

for every  $t \in T$  and let

$$A_t = \{b_{t,s} : s \in S_0\}.$$

In this way every  $A_t$  becomes a covering of B and then, by the assumption, there exists a covering A which weakly refines every  $A_t$ . Therefore there exists a mapping  $\Phi \in S_0^T$  such that

$$\bigcap_{t\in T}b_{t,\Phi(t)}\neq 0\,,$$

and this means that the algebra B is weakly  $(\mathfrak{m},\mathfrak{n})$ -distributive (see [3], p. 103).

The following two statements will be useful in the sequel.

**1.6.** If a Boolean algebra B satisfies the n-chain condition (i. e. every partition is an n-partition), then the following conditions are equivalent:

(i) B is weakly (m, n)-distributive;

(ii) for every family  $\{A_t: t \in T, \overline{T} \leq m\}$  of n-partitions of B there exists a covering A of B which weakly refines every  $A_t$ .

1.7. If a Boolean algebra B is  $\mathfrak{n}'$ -complete for every  $\mathfrak{n}' < \mathfrak{n}$ , then conditions (i) and (ii) from 1.6 are also equivalent.

Proof of 1.6. Obviously (i)  $\Rightarrow$  (ii). The proof of (ii)  $\Rightarrow$  (i) is based on the well-ordering axiom.

Let A be any  $\mathfrak{n}$ -covering of B. Let

$$a_1, a_2, \ldots, a_a, \ldots \quad (\alpha < \beta)$$

be a transfinite sequence of all elements of A, where  $\beta$  is the least ordinal number of power  $\mathfrak{n}$ . We denote by  $B^{\infty}$  the minimal extension of B. Let us define in  $B^{\infty}$ :

(1) 
$$b_1 = a_1, b_2 = a_2 \cap a'_1, \ldots, b_a = a_a \cap \bigcap_{\gamma < a} a'_{\gamma} \ldots$$

(a' is the complement of a). The set

$$A = \{b_a : a < \beta\}$$

is an  $\mathfrak{n}$ -partition of  $B^{\infty}$  such that  $b_a \subset a_a$  for every  $a < \beta$ .

B being a dense subset of  $B^{\infty}$ , every  $b_a$  is a join of disjoint elements of B. By the  $\mathfrak{n}$ -chain condition the set of all these elements has a cardinal number  $\leqslant \mathfrak{n}$ . Thus there exists in B an  $\mathfrak{n}$ -partition which refines A. Now let

$$\{A_t: t \in T, \ \overline{T} \leq \mathfrak{m}\}$$

be a family of  $\mathfrak{n}$ -coverings of B. Let  $C_t$  be an  $\mathfrak{n}$ -partition which refines  $A_t$ . In view of (ii) there exists a covering A which weakly refines every  $C_t$ ; evidently, it weakly refines every  $A_t$ , too, q. e. d.

Proof of 1.7. The Boolean algebra B being  $\mathfrak{n}'$ -complete for every  $\mathfrak{n}' < \mathfrak{n}$ , the formulas (1) define an  $\mathfrak{n}$ -partition of B which refines A. The remaining part of the proof is the same as in 1.6.

- 1.8. Definition. A Boolean algebra is said to be weakly m-distributive if it is weakly (m, m)-distributive.
- 1.9. THEOREM. A minimal extension of a weakly undistributive Boolean algebra B satisfying the un-chain condition is also weakly undistributive.

Proof. Let  $B^{\infty}$  be the minimal extension of B. Since B is dense in  $B^{\infty}$  and the m-chain condition is fulfilled, it follows that for every family

$$\{ \overline{A}_t : t \in T, \ \overline{T} \leqslant \mathfrak{m} \}$$

of m-partitions of  $B^{\infty}$  there exists a family  $\{A_t : t \in T\}$  of m-partitions of B such that every  $A_t$  refines  $\overline{A}_t$ .

Therefore if a covering of B weakly refines every  $A_t$ , then it weakly refines every  $\overline{A}_t$ , too. Thus  $B^{\infty}$  is weakly m-distributive, by 1.7.

It may be asked whether the m-chain condition is necessary in 1.9 (P 433). I am not able to give an answer.

- 2. Weak m-distributivity of minimal extensions of fields of sets.
- **2.1.** Definition. If A and C are subsets of a Boolean algebra B, then A is said to m-refine C if and only if for every  $a \in A$  there exists a subset of C

$$\{a_t: t \in T, \ \overline{T} \leqslant \mathfrak{m}\} \subset C$$

such that  $a \subset \bigcup_{t \in T} a_t$ .

In this section we suppose that a denotes the least ordinal number of power  $\mathfrak{m}.$ 

**2.2.** LEMMA. If an  $\mathfrak{m}$ -complete Boolean algebra B is weakly  $\mathfrak{m}$ -distributive and for every  $\mathfrak{n}$ -partition A of B there exists a transfinite sequence  $\{A_{\xi}: \xi < a\}$  of  $\mathfrak{m}$ -coverings of B

$$A_{\xi} = \{a_{\xi,\eta} : \eta < a\}$$
 for every  $\xi < a$ 

such that

- (1) every  $a_{\xi,\eta}$  is a join of some elements of A,
- (2) for every transfinite sequence of finite sequences  $\eta_1(\xi)$ ,  $\eta_2(\xi)$ , ...,  $\eta_{k_{\xi}}(\xi)$  of ordinal numbers  $< \alpha$  the meet

$$\bigcap_{\xi < a} \left( a_{\xi, \eta_1(\xi)} \cup a_{\xi, \eta_2(\xi)} \cup \ldots \cup a_{\xi, \eta_{k_{\xi}}(\xi)} \right)$$

is a join of at most  $\mathfrak m$  elements of A, then for every family

$$\{A_t: t \in T, \overline{T} \leqslant \mathfrak{m}\}$$

of n-partitions of B there exists a covering C which m-refines every  $A_t$ . Proof. For every  $t \in T$  let  $\{A_\xi^t : \xi < a\}$  be a sequence of m-coverings of B,

$$A^t_{\xi} = \{a^t_{\xi,\eta} : \eta < \alpha\}$$

such that

- (1') every  $a_{\xi,\eta}^t$  is the join of some elements of  $A_t$ ,
- (2') for every finite sequence  $\eta_1^t(\xi), \eta_2^t(\xi), \dots, \eta_{k_\xi}^t(\xi)$  of ordinal numbers < a the meet

$$\bigcap_{\xi \leq a} (a^t_{\xi,\eta_1(\xi)} \cup a^t_{\xi,\eta_2(\xi)} \cup \ldots \cup a^t_{\xi,\eta_{l_\xi}(\xi)})$$

is a join of at most m elements of  $A_t$ .

22

Since the Boolean algebra B is weakly m-distributive and  $\mathfrak{m}^2 = \mathfrak{m}$ , it follows that there exists a covering C of B which weakly refines every  $A_{\xi}^{t}$ , i. e. for every  $c \in C$ , and for every  $t \in T$ , and every  $\xi < \alpha$ , there exists a finite sequence  $\eta_1^t(\xi),\,\eta_2^t(\xi),\ldots,\,\eta_{k_\ell}^t(\xi)$  of ordinal numbers  $<\alpha$  such that

$$c \subset \bigcap_{\xi < a} (a^t_{\xi,\eta_1(\xi)} \cup a^t_{\xi,\eta_2(\xi)} \cup \ldots \cup a^t_{\xi,\eta_{k_\xi}(\xi)}) \quad \text{ for every } \quad t \, \epsilon \, T \, .$$

It follows from (2') that C m-refines every  $A_t$ , and this completes the proof.

The following lemma belongs to the General Theory of Sets:

2.3. Lemma. If  $\overline{A} = \mathfrak{m}^+ = 2^{\mathfrak{m}}$ , then there exists a double sequence  $\{a_{\xi,\eta}: \xi < \alpha, \ \eta < \alpha\}$  of subsets of A such that

$$\bigcup_{\eta < a} a_{\xi,\eta} = A \quad \text{for every} \quad \xi < a,$$

and condition (2) of lemma 2.2 is satisfied.

This lemma was proved by S. Banach and C. Kuratowski [1] for  $\mathfrak{m} = \aleph_0$ . For  $\mathfrak{m} > \aleph_0$  only slight modifications are necessary.

Proof. Let us consider the set F of mappings of the set of ordinal numbers < a into itself. For  $\varphi, \psi \in F$  we say

$$\varphi \leqslant \psi$$
 if and only if  $\varphi(\xi) \leqslant \psi(\xi)$  for every  $\xi < \alpha$ .

For every subset  $\Phi \subset F$  of power m we can define (by diagonal method) a mapping  $\psi \in F$  such that

 $w \leq \varphi$  does not hold for every  $\varphi \in \Phi$ .

By the assumption,  $\bar{\bar{F}} = \mathfrak{m}^{\mathfrak{m}} = 2^{\mathfrak{m}} = \mathfrak{m}^{+}$ . Let

$$F = \{ \varphi_{\xi} \colon \xi < \beta \}$$

be a transfinite sequence of all elements of F, where  $\beta$  is the least ordinal number of power  $\mathfrak{m}^+$ . Then for every  $\eta < \beta$  there exists  $\varphi_{\nu_n} \in F$  such that

$$\varphi_{r_n} \leqslant \varphi_{\xi}$$
 does not hold for every  $\xi \leqslant \eta$ .

We may suppose that  $\eta \neq \eta'$  implies  $\varphi_{\gamma_n} \neq \varphi_{\gamma_{n'}}$ . Let  $\Phi_0$  be a set of all such mappings  $\varphi_{\gamma_{\eta}}$   $(\eta < \beta)$ . Of course, the set of all mappings  $\psi \in \Phi_0$ , for which  $\psi \leqslant \varphi_{\xi}$ , has a cardinal number  $\leqslant \mathfrak{m}$ .

Since  $\overline{A} = \overline{\Phi}_0 = \mathfrak{m}^+$ , we may index the set A by elements of  $\Phi_0$ :

$$A \,=\, \{a_{\varphi}: \varphi \,\epsilon\, \varPhi_0\}\,.$$

Let  $a_{\xi,\eta}$  be the join of all  $a_{\varphi}$  for which  $\varphi(\xi) = \eta$ . Evidently

$$\bigcup_{\eta < a} a_{\xi,\eta} = 1$$
 for every  $\xi < a$ .

For every  $\xi < a$  let us construct a finite sequence  $\eta_1(\xi), \eta_2(\xi), \ldots$  $\eta_k(\xi)$  of ordinals  $< \alpha$ . We define

$$\varphi_0(\xi) = \max(\eta_1(\xi), \, \eta_2(\xi), \, \ldots, \, \eta_{k_0}(\xi)).$$

Obviously  $\varphi_0 \in F$ . Therefore, if

(i) 
$$a_{\varphi} \subset \bigcap_{\xi < \alpha} (a_{\xi, \eta_1(\xi)} \cup a_{\xi, \eta_2(\xi)} \cup \ldots \cup a_{\xi, \eta_k \xi}(\xi)),$$

then  $\varphi \leqslant \varphi_0$ , and  $\varphi \in \Phi_0$ .

Consequently the set of all elements  $a_{\alpha}$  satisfying (i) is of power ≤ m, q. e. d.

2.4. LEMMA. If an m+-complete Boolean algebra B is weakly m-distributive and  $\mathfrak{m}^+=2^{\mathfrak{m}}$ , then for every class

$$\{A_t : t \in T, \ \overline{T} \leqslant \mathfrak{m}\}$$

of m+-partitions of B there exists a covering C which m-refines every At. Proof. By 2.3, the assumptions of 2.2 are satisfied where  $n = m^+$ , and this completes the proof.

**2.5.** Lemma. If the minimal n-extension  $B^n$  of a Boolean algebra B is weakly m-distributive and if we suppose

$$\mathfrak{n} \geqslant \mathfrak{m}^+ = 2^{\mathfrak{m}},$$

then for every family  $\{A_t: t \in T, \overline{T} \leq \mathfrak{m}\}\$ of  $\mathfrak{m}^+$ -coverings of B there exists a covering C of B which m-refines every At.

**Proof.** The Boolean algebra  $B^n$  satisfies all the assumptions of 2.4. Since  $B^n$  is  $\mathfrak{m}^+$ -complete, it follows that every  $\mathfrak{m}^+$ -covering of  $B^n$  is refined by an  $\mathfrak{m}^+$ -partition of  $B^n$  (see [2], and the proof of 1.7). Obviously every covering of B is a covering of  $B^n$ .

Consequently, by 2.4, for every family  $\{A_t: t \in T, T \leq \mathfrak{m}\}$  of  $\mathfrak{m}^+$ -coverings of B there exists in  $B^n$  a covering  $\overline{C}$  which m-refines every  $A_i$ .

Since B is a dense subalgebra of  $B^n$ , there exists in it a covering C which refines  $\overline{C}$ , and thus m-refines every  $A_t$ . This completes the proof of the lemma.

**2.6.** THEOREM. If  $\mathfrak{m}^+=2^{\mathfrak{m}}$ , then there exists an  $\mathfrak{m}$ -complete field of sets F such that its minimal extension is not weakly m-distributive.

**Proof.** Pierce [2] has built an  $\mathfrak{m}$ -complete field of sets F whose  $\mathfrak{m}$ nimal extension is not m-distributive.

Namely: let X be an arbitrary set of power  $\mathfrak{m}^+$ , let Y be the set of all ordinal numbers smaller than  $\alpha$ , where  $\alpha$  is the least ordinal number of power  $\mathfrak{m}$ , and let Z be a set of mappings of X into Y, defined as follows:

 $f \in \mathbb{Z}$  if and only if  $f(x) < \eta$  for every  $x \in \mathbb{X}$ , and some  $\eta \in \mathbb{Y}$ .

24

T. TRACZYK

For every subset  $W\subset X$ ,  $\overline{\overline{W}}\leqslant \mathfrak{m}$ , and for every  $\varphi \epsilon Z$ , let  $L_{W,\varphi}$  be a subset of Z defined as follows:

$$f \in L_{W, \varphi}$$
 if and only if  $f|W = \varphi|W$ 

(i. e. if  $f(x) = \varphi(x)$  for every  $x \in W$ ).

F is the m-field of subsets of Z generated by all the sets  $L_{W,\varphi}$ . Now we are going to prove that  $F^n$  is not weakly m-distributive, if  $n \geqslant m^+$ .

Let

$$T(x, \eta) = \{ f \in Z : f(x) = \eta \},\,$$

and let

$$A_{\eta} = \{T(x, \eta) : x \in X\}.$$

Every family  $A_{\eta}$ ,  $\eta \in Y$ ,  $\mathfrak{m}^+$ -covers F (see [2], p. 139). It follows from the definition of Z that

(i) 
$$\bigcap_{\eta \in Y} \bigcup_{x \in X} T(x, \eta) = 0,$$

where the intersection and the union are set-theoretical.

Suppose that there exists a covering A of F which  $\mathfrak{m}$ -refines every  $A_{\eta}$ . Thus, the field F being  $\mathfrak{m}$ -complete, every element of A is included in the set-theoretical union of elements of  $A_{\eta}$ , for every  $\eta \in Y$ . Therefore it is empty, by (i). Contradiction.

Consequently, by lemma 2.5, F" is not weakly m-distributive.

#### REFERENCES

[1] S. Banach et C. Kuratowski, Sur une généralisation du problème de la mesure. Fundamenta Mathematicae 14 (1929), p. 127-131.

[2] R. S. Pierce, Distributivity and the normal completion of Boolean algebras, Pacific Journal of Mathematics 8 (1958), p. 133-140.

[3] R. Sikorski, Boolean algebras, Berlin-Göttingen-Heidelberg 1960.

Reçu par la Rédaction le 8. 8. 1962



## COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

#### A FEW PROBLEMS ON BOOLEAN ALGEBRAS

BY

#### ROMAN SIKORSKI (WARSAW)

The purpose of this short note is to collect a few problems concerning Boolean algebras which seem to be interesting. Some of them were mentioned in my expository paper [7], others were quoted in my book [9]. Perhaps, the level of difficulty of some of them is rather low. In any case, their solutions will mean a progress in the theory of Boolean algebras.

The first problem concerns the following simple theorem: If a Boolean algebra  $\mathfrak A$  is  $\mathfrak m'$ -complete for every infinite cardinal  $\mathfrak m' < \mathfrak m$ , A,  $A_t \in \mathfrak A$ ,  $A = \bigcup_{t \in T} A_t$  and  $\overline{T} \leqslant \mathfrak m$ , then there exist elements  $B_t \in \mathfrak A$   $(t \in T)$  such that

$$B_t \subset A_t$$
,  $B_t \cap B_{t'} = 0$  for  $t \neq t'$  and  $A = \bigcup_{t \in T} B_t$ .

Problem 1. Is this theorem true without the hypothesis that  $\mathfrak{U}$  is  $\mathfrak{m}'$ -complete for every  $\mathfrak{m}' < \mathfrak{m}$ ? (P 434).

Another problem of this kind is

Problem 2. Find, for every uncountable cardinal  $\mathfrak{m}$ , a Boolean  $\mathfrak{m}$ -algebra  $\mathfrak{A}$  with the property: if the join  $\bigcup_{t\in T}A_t$  exists in  $\mathfrak{A}$  and  $\overline{T}\leqslant \mathfrak{m}$ , then there exists a finite subset  $T'\subset T$  such that  $\bigcup_{t\in T}A_t=\bigcup_{t\in T'}A_t$ . (**P 435**).

For  $\mathfrak{m}=\aleph_0$  an example of such a Boolean algebra was given by Sierpiński [4].

Problems 3-6 which follow are connected with a classification of Boolean algebras discussed in my paper [7].

Problem 3. Find an example (for every uncountable cardinal m) of a weakly m-distributive Boolean m-algebra which is not m-distributive (P 436).

In the case where  $\mathfrak{m}=\aleph_0$  such an example is given by non-atomic measure algebras (i. e. Boolean  $\sigma$ -algebras with a strictly positive finite  $\sigma$ -measure). Other examples can be obtained e. g. by forming the direct