28 R. SIKORSKI

An example of an $(\mathfrak{m},\mathfrak{n})$ -product can be constructed as follows: Let X_t be the Stone space of \mathfrak{A}_t , let g_t be the Stone isomorphism of \mathfrak{A}_t onto the field of all clopen subsets of X_t , and let X be the Cartesian product of all the spaces X_t . For every $A \in \mathfrak{A}_t$, let $g_t^*(A) =$ the set of all points in X whose t^{th} coordinate is in $g_t(A)$.

Let $\mathfrak F$ be the smallest field (of subsets of X) containing all the intersections $\bigcap_{t\in T'}g_t^*(A_t)$, where $A_t\in \mathfrak U_t$ and $T'\subset T$, $\overline T'\leqslant \mathfrak n$. Finally, let $(i,\mathfrak B)$ be any $\mathfrak m$ -extension of the Boolean algebra $\mathfrak F$. Then

$$(**) \qquad \qquad ((ig_t^*)_{t \in T}, \ \mathfrak{V})$$

is an $(\mathfrak{m}, \mathfrak{n})$ -product of $(\mathfrak{U}_t)_{t \in T}$.

Problem 9. Is every $(\mathfrak{m},\mathfrak{n})$ -product of $(\mathfrak{U}_t)_{t\in T}$ of the form (**)? $(\mathbf{P441})$

I should like also to recall that my problem on principal ideals in the field of all subsets of a set (Sikorski [5], P 61) is not yet solved.

REFERENCES

- [1] L. E. Dubins, Generalized random variables, Transactions of the American Mathematical Society 84 (1957), p. 273-309.
- [2] K. Matthes, Über die Ausdehnung von N-Honomorphismen Boolescher Algebren, Zeitschrift für Mathematik, Logik und Grundlagen der Mathematik 6 (1960). p. 97-105; (II) 7 (1961), p. 16-19.
- [3] R. S. Pierce, Distributivity and the normal completion of Boolean algebras. Pacific Journal of Mathematics 8 (1958), p. 113-140.
- [4] W. Sierpiński, Sur les ensembles presque contenus les uns dans les autres, Fundamenta Mathematicae 35 (1948), p. 141-150.
- [5] R. Sikorski, On an unsolved problem from the theory of Boolean algebras. Colloquium Mathematicum 2 (1949), p. 27-29.
 - [6] Boolean algebras, Berlin-Göttingen-Heidelberg 1960.
- [7] Representation and distributivity of Boolean algebras, Colloquium Mathematicum 8 (1961), p. 1-13.
- [8] On extensions and products of Boolean algebras, Fundamenta Mathematicae 53 (1963), p. 99-116.
 - [9] Boolean algebras, second edition, in print.
- [10]— and T. Traczyk, On free products of m-distributive Boolean algebras. Colloquium Mathematicum 11 (1963), p. 13-16.
- [11] T. Traczyk, Minimal extensions of weakly distributive Boolean algebras, ibidem 11 (1963), p. 17-24.

Reçu par la Rédaction le 26. 11. 1962

COLLOQUIUM MATHEMATICUM

VOL. XI 1963

FASC. 1

A REMARK ON ABSOLUTE-VALUED ALGEBRAS

BY

B. GLEICHGEWICHT (WROCŁAW)

An algebra A over the real field R is called absolute-valued if it is a normed space under a multiplicative norm $|\cdot|$, i. e. a norm satisfying, in addition to the usual requirements, the condition |xy| = |x| |y| for all $x, y \in A$ (see [1]).

An operation * defined on A is called an *involution* if it satisfies the following conditions:

$$(\lambda x + \mu y)^* = \lambda x^* + \mu y^*,$$

$$x^{**} = x, \quad xx^* = x^*x, \quad (xy)^* = y^*x^*, \quad |x^*| = |x|$$

for any λ , $\mu \in R$ and x, $y \in A$ (see [4]).

We say that an involution is non-trivial if it is different from the identity operation.

In every absolute-valued algebra A with an involution we can introduce a new multiplication by means of the formula

$$x \circ y = x^*y$$
.

The algebra $\mathcal A$ with this product will be denoted by $\mathscr K(A)$. $\mathscr K(A)$ remains an absolute-valued algebra. The algebra $\mathscr K(A)$ is called a cracovian algebra generated by A or an algebra induced by involution (see [2], [3]).

THEOREM. If A is an absolute-valued algebra with a non-trivial involution, then there exists in $\mathcal{K}(A)$ an element e such that

$$x \circ x = |x|^2 e$$

for any $x \in \mathcal{K}(A)$.

Proof. Using the well-known process of embedding linear normed spaces in Banach spaces, we can prove that the algebra A can be extended to a complete algebra. Thus, without loss of generality, we may assume that the algebra A is complete. For complete algebras it was proved in [4] that each element $x \in A$ can be represented as a sum $x = x_1 + x_2$, where the elements x_1 and x_2 are self-adjoint and skew respec-

B. GLEICHGEWICHT

tively, i.e. $x_1^* = x_1$, $x_2^* = -x_2$. Moreover, $|x|^2 = |x_1|^2 + |x_2|^2$, $x_1x_2 = x_2x_1$, and there exists one and only one idempotent e such that $z_1^2 = |z_1|^2 e$, and $z_2^2 = -|z_2|^2 e$ for self-adjoint elements z_1 and skew elements z_2 .

Hence, by a simple computation we get the equation

$$x \circ x = (x_1 - x_2)(x_1 + x_2) = x_1^2 - x_2^2 + x_1 x_2 - x_2 x_1$$

= $(|x_1|^2 + |x_2|^2)e = |x|^2 e$,

which completes the proof.

30

COROLLARY 1. The subalgebra of $\mathcal{K}(A)$ spanned by squares $x \circ x$ $(x \in \mathcal{K}(A))$ is one-dimensional and, consequently, is isomorphic with the real field.

COROLLARY 2. For any pair $x, y \in \mathcal{K}(A)$ we have the inequality

$$|x \circ x + y \circ y| \geqslant |y \circ y|$$
.

K. Urbanik has raised the following problem [5]:

If an absolute-valued algebra satisfies the condition $|x^2 + y^2| \ge |x^2|$ for all x and y must it be isomorphic with the field of real numbers?

Since the algebra $\mathcal{K}(A)$ may be infinite-dimensional (see [4], p. 252), Corollary 2 gives a negative answer to this problem.

REFERENCES

- [1] A. A. Albert, Absolute valued real algebras, Annals of Mathematics 48 (1947), p. 495-501.
- [2] B. Gleichgewicht, On a class of rings, Fundamenta Mathematicae 48 (1960), p. 355-359.
- [3] On algebras with a quasi-involution, Colloquium Mathematicum 9 (1962),
 p. 49-53.
- [4] K. Urbanik, Absolute-valued algebras with an involution, Fundamenta Mathematicae 49 (1961), p. 247-258.
 - [5] Problem 361, Colloquium Mathematicum 9 (1962), p. 166.

Reçu par la Rédaction le 28. 4. 1962

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

REMARKS ON ORDERED ABSOLUTE-VALUED ALGEBRAS

 \mathbf{BY}

K. URBANIK (WROCŁAW)

Let A be a not necessarily associative algebra over the real field R, which is a normed linear space under a norm | | satisfying, in addition to the usual requirements, the equality $|xy| = |x| |y| (x, y \in A)$. Such an algebra is called *absolute-valued* (see [1], [2], [5], p. 337).

The aim of this note is to study ordered absolute-valued algebras. An *ordering* of an absolute-valued algebra A is determined by the set A^+ of all positive elements of A, i. e. A can be ordered if and only if there exists a subset A^+ of A satisfying the following conditions:

- (i) 0 ∉A+,
- (ii) A^+ is closed with respect to multiplication by positive real numbers and with respect to addition and multiplication in A,

(iii) if
$$a \neq 0$$
 and $a \notin A^+$, then $-a \in A^+$.

In fact, one can define a > b if $a - b \in A^+$.

An absolute-valued algebra A is said to be of real character if $x^2+y^2\neq 0$ and $xy+yx\neq 0$ whenever $x\neq 0$ and $y\neq 0$ $(x,y\epsilon A)$. Obviously, each ordered absolute-valued algebra is of real character. The converse implication is not true. Namely, the following theorem holds:

THEOREM 1. There exists an absolute-valued algebra of real character, which cannot be ordered.

Proof. The construction of the algebra satisfying the assertion of the Theorem is similar to that presented in [7], p. 861. Let A_0 be the space of all sequences $x = \{x_n\}$ of real numbers containing only a finite number of non-zero elements. A_0 is a normed space with respect to the norm

$$|x| = (\sum_{n=1}^{\infty} x_n^2)^{1/2}$$
 and with the usual addition and scalar multiplication

$$\{x_n\} + \{y_n\} = \{x_n + y_n\}, \quad \lambda\{x_n\} = \{\lambda x_n\}.$$

Let φ be a one-to-one correspondence of the set of all ordered pairs of natural numbers onto the set of all natural numbers satisfying the