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contrary that there existy a subalgebra Ay, A; say, which is nob iso-
morphie to the real field. We examine the trapsformation T, of algebra
A defined by the formula

1?&(2’“’1’) = “"1'1"" > Ly
r=1
where w denotes any element belonging to § ~ 4;. The transformations
T, are isometries preserving the unit sphere 8. In fact, in virtue of Corol-
lary of Lemma 10 the minimal norm in each of the algebras &, C,@Q,
is multiplicative; so, since u <8, we have [um,|| = [jull* (|2,]| = [l24]|- Henoe,
by Theorem 3, we obtain the equation

|2 3]

= “er y-”r” = max |2,] = ” ya«r

I€r<n

Since A4, is a division algebra, different transformations 7', corres-
pond to different eloements ueS~ 4;. Since dim.A4, > 2, there exist infi-
nitely many elements ueS~A4,. Accordingly, there exist infinitely many
isometries that transform the unit sphere § onto itself, contrary to the
agsumption. Theorem 4 is thus proved.
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A PROOF OF THE WELL-ORDERING THEOREM
BY
V. DEVIDE (ZAGREB)

The usual proofs of the well-ordering theorem proceed by induction.
It is also well known how to avoid induction and ordinal numbers in the
proof. However, the resulting arguments are rather lengthy. Here we
present a proof of this kind which we believe is still very short.

Let § be a non-void set and let 2 stand for “power-set of.” By the
axjom of choice there exists a mapping y: (#S—{@}) — 8§ such that yZeZ
for every Ze #8—{0@}. Let Z* denote Z— {yZ}.

We define a mapping f: #°8 —#°8 by

(1) & ={NZI0 #%c Z}o {ZT0 £ Z %},
Ze¥
i.e. for Zed'S, f% consists of all intersections of non-void sets of ele-

ments of & (considered as subsets of §) as well as of all subsets of S ob-
tained from elements Z (Z # @) of & by removing from them their ele-

ment yZ.

Next, we define a mapping ¢: 28 — 278 by
(2) 9= () Z.

EDNZANE

By (1), ¢Z < fpZ. Conversely, by (2), foZ = frnZ cNf&¥ < Z =
= ¢Z, hence
(3) foZ = 9.

By (2),
(4) Zye 92y = 92y < 92y

As @Z ~ {V|V < Z} is one of the 27 in (2),
(8) VegZ >V = Z.

By (4) and (5), ¢Z* < ¢pZ—{Z}. On the other hand, {Z}v¢z+ is one
of the Z’s in (2), hence

(6) @It = gZ—{Z}.
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LeMMA. Zy, ZyepB 7y < L3V Zy < 4.

Proof. Let Z be the intersection of all 7', Ze S, such that 7
contains every element ¥V of ¢S for which there exists in S an ele-
ment W. By (3), Ze¢S.

The set

(7) & = {R|(RegS&R > Z) V RepZ}

is one of the 275 in (2) for § as Z. For, intersections of sets of elements
of & are again in & and if Re %, then RTe ¥ (in case B > Z&R +# Z
yR¢Z since otherwize R would be one of the Vs, with W = Z xmt’.
contained in Z: a contradiction). ’
Hence @8 =&. On the other hand, by (4), & < @8, s0 & = ¢8.
Suppose now Z # @. Then pZ must be an element of a set V and
V #Z by definition of Z, so V ¢ Z¥. But by ¢S = & we have Ve oZ
and (5), (6) imply V < Z*. Hence Z = @ and the lemma is proved
We define a mapping é:8 — p8 by ‘
Ps = (M Z.
ZepS
8eZ
Then se @s = @, and by (1) and (3), PsepS. (Ds)* is a proper sub-
set of ®s; s0, by (8), yPs = s and & is 1-1.
PFinally we define the relation < by

8 < 8 & Psy = Ds,.

Using the lemma and the fact that & is 1-1, we see i i

) q - ¢ immediatel

that < is a relation of total ordering. ’ o
Let Z be a non-v:oid subset of § and let 7 be the intersection of all

elements of @8 containing (as subsets of §) all s for seZ. »T must be

an element of some @s,, s,cZ. But then T = ®s,, for otherwise T would

be incorfxparable to @s,, contrary to the lemma. Hence s, < s for all seZ
and < is a well-ordering. ‘

(8)
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REMARKS ON DYADIC SPACES
BY

R. ENGELKING ianp A. PEECZYNSKI (WARSAW)

Let D = {0, 1} denote the two point discrete space. For any cardi-
nal number m by the m-Cantor set we mean the Cartesian product D™
of m copies of D. The %,-Cantor set is a well-known Cantor perfect set
on the real line. It is known (see e. g. [9], vol. IL, p. 13) that every compact
metrizable space is a continuous image of D¥. In [1] P.S. Alexandroff
defined a dyadic space as a compact space which, for some cardinal num-
ber m, is a continuous image of D™, and has raised the problem of whether
every compact space is dyadic. This problem was solved in [10] by E. Mar-
czewski, who has shown that every family of non-empty, pairwise disjoint,
open sets in D™ (and then in any dyadic space) is countable, and remarked
that the one-point compactifications of high power discrete space are
therefore never dyadie (for proofs see [8], p.166). The class of dyadie
spaces was investigated by Sanin [13], Esenin-Volpin [7] and, recently
by Efimov [6], [6a].

In this note we give simple proofs of two known theorems (1 and 2)
and we establish two theorems (3 and 4) which seem to be new. In section
1 theorems 1-4 are formulated and the proofs of theorems 1 and 2 are
given. Section 2 contains purely topological proofs of theorems 3 and 4
and two examples in connection with theorem 3. In section 3 we give
proofs of theorems 3 and 4 by using the “function space method”, based
on the fact that the functor C(-) establishes the contravariant isomorphism
of the category of compact spaces with homeomorphic embeddings
and continuous mappings onto as morphisms, to the category of Banach
algebras of all continuous real-valued functions on compact spaces with
homomorphisms onto and isomorphic embeddings as morphisms.

By space we always mean a completely regular space. By B,I, N
and D, we shall denote the real line, the closed interval 0 < @ <1, the
set of positive integers with discrete topology and the two point discrete
space, respectively. D™ and I™ denote the Cartesian product of m copies
of D and I, respectively. The Gech-Stone compactification of a space X
is ‘denoted by X. It is characterized among the compactifications of X
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