E. STRZELECKI

contrary that there exists a subalgebra A_s , A_1 say, which is not isomorphic to the real field. We examine the transformation T_u of algebra A defined by the formula

$$T_u\left(\sum_{r=1}^n x_r\right) = ux_1 + \sum_{r=2}^n x_r,$$

where u denotes any element belonging to $S \cap A_1$. The transformations T_u are isometries preserving the unit sphere S. In fact, in virtue of Corollary of Lemma 10 the minimal norm in each of the algebras R, C, Q, is multiplicative; so, since $u \in S$, we have $||ux_1|| = ||u|| \cdot ||x_1|| = ||x_1||$. Hence, by Theorem 3, we obtain the equation

$$\left\|T_{u}\left(\sum_{r=1}^{n} x_{r}\right)\right\| = \left\|ux_{1} + \sum_{r=2}^{n} x_{r}\right\| = \max_{1 \leqslant r \leqslant n} \left\|x_{r}\right\| = \left\|\sum_{r=1}^{n} x_{r}\right\|.$$

Since A_1 is a division algebra, different transformations T_u correspond to different elements $u \in S \cap A_1$. Since $\dim A_1 \geqslant 2$, there exist infinitely many elements $u \in S \cap A_1$. Accordingly, there exist infinitely many isometries that transform the unit sphere S onto itself, contrary to the assumption. Theorem 4 is thus proved.

REFERENCES

- [1] A. A. Albert, Structure of algebras, New York 1939.
- [2] M. M. Day, Normed linear spaces, Berlin 1958.
- [3] А. Д. Курош, Курс высшей алгебры, Москва 1949.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCLAW

Reçu par la Rédaction le 30. 10. 1962

COLLOQUIUM MATHEMATICUM

VOL. XI

1963

FASC. 1

A PROOF OF THE WELL-ORDERING THEOREM

BY

V. DEVIDÉ (ZAGREB)

The usual proofs of the well-ordering theorem proceed by induction. It is also well known how to avoid induction and ordinal numbers in the proof. However, the resulting arguments are rather lengthy. Here we present a proof of this kind which we believe is still very short.

Let S be a non-void set and let $\mathscr P$ stand for "power-set of." By the axiom of choice there exists a mapping $\gamma \colon (\mathscr PS - \{\emptyset\}) \to S$ such that $\gamma Z \in Z$ for every $Z \in \mathscr PS - \{\emptyset\}$. Let Z^+ denote $Z - \{\gamma Z\}$.

We define a mapping $f: \mathscr{P}^2S \to \mathscr{P}^2S$ by

i. e. for $\mathscr{Z} \in \mathscr{P}^2S$, $f\mathscr{Z}$ consists of all intersections of non-void sets of elements of \mathscr{Z} (considered as subsets of S) as well as of all subsets of S obtained from elements Z ($Z \neq \emptyset$) of \mathscr{Z} by removing from them their element γZ .

Next, we define a mapping $\varphi \colon \mathscr{P}S \to \mathscr{P}^2S$ by

(2)
$$\varphi Z = \bigcap_{\mathscr{Z} \supset |Z| \smile |\mathscr{Z}|} \mathscr{Z}.$$

By (1), $\varphi Z \subset f \varphi Z$. Conversely, by (2), $f \varphi Z = f \cap \mathscr{Z} \subset \bigcap f \mathscr{Z} \subset \bigcap \mathscr{Z} = \varphi Z$, hence

 $f\varphi Z = \varphi Z.$

By (2),

 $(4) Z_2 \epsilon \varphi Z_1 \Rightarrow \varphi Z_2 \subset \varphi Z_1.$

As $\varphi Z \cap \{V \mid V \subset Z\}$ is one of the \mathscr{Z} 's in (2),

$$(5) V \in \varphi Z \Rightarrow V \subset Z.$$

By (4) and (5), $\varphi Z^+ \subset \varphi Z - \{Z\}$. On the other hand, $\{Z\} \cup \varphi Z^+$ is one of the \mathscr{Z} 's in (2), hence

(6)
$$\varphi Z^{+} = \varphi Z - \{Z\}.$$

54

V. DEVIDÉ

LEMMA. $Z_1, Z_2 \in \varphi S \Rightarrow Z_1 \subset Z_2 \vee Z_2 \subset Z_1$.

Proof. Let Z be the intersection of all T, $Z \in \varphi S$, such that T contains every element V of φS for which there exists in φS an element W. By (3), $Z \in \varphi S$.

The set

(7)
$$\mathscr{S} = \{R \mid (R \in \varphi S \& R \supset Z) \lor R \in \varphi Z\}$$

is one of the \mathscr{Z} 's in (2) for S as Z. For, intersections of sets of elements of \mathscr{S} are again in \mathscr{S} and if $R \in \mathscr{S}$, then $R^+ \in \mathscr{S}$ (in case $R \supset Z \& R \neq Z$, $\gamma R \notin Z$ since otherwise R^+ would be one of the V's, with W = Z, not contained in Z: a contradiction).

Hence $\varphi S \subset \mathcal{S}$. On the other hand, by (4), $\mathcal{S} \subset \varphi S$, so $\mathcal{S} = \varphi S$. Suppose now $Z \neq \emptyset$. Then γZ must be an element of a set V and $V \neq Z$ by definition of Z, so $V \in Z^+$. But by $\varphi S = \mathcal{S}$ we have $V \in \varphi Z$ and (5), (6) imply $V \subset Z^+$. Hence $Z = \emptyset$ and the lemma is proved. We define a mapping $\Phi \colon S \to \varphi S$ by

(8)
$$\Phi s = \bigcap_{\substack{Z \in \wp S \\ s \notin Z}} Z.$$

Then $s \in \Phi s \neq \emptyset$, and by (1) and (3), $\Phi s \in \varphi S$. $(\Phi s)^+$ is a proper subset of Φs ; so, by (8), $\gamma \Phi s = s$ and Φ is 1-1.

Finally we define the relation ≤ by

$$(9) s_1 \leqslant s_2 \Longleftrightarrow \varPhi s_1 \subset \varPhi s_2.$$

Using the lemma and the fact that Φ is 1-1, we see immediately that \leq is a relation of total ordering.

Let Z be a non-void subset of S and let T be the intersection of all elements of φS containing (as subsets of S) all Φs for $s \in Z$. φT must be an element of some Φs_0 , $s_0 \in Z$. But then $T = \Phi s_0$, for otherwise T would be incomparable to Φs_0 , contrary to the lemma. Hence $s_0 \leq s$ for all $s \in Z$ and \leq is a well-ordering.

UNIVERSITY OF TOKYO UNIVERSITY OF ZAGREB

Recu par la Rédaction le 29, 8, 1963

COLLOQUIUM MATHEMATICUM

VOL. XI

. 1963

FASC. 1

REMARKS ON DYADIC SPACES

BY

R. ENGELKING AND A. PEŁCZYŃSKI (WARSAW)

Let $D = \{0, 1\}$ denote the two point discrete space. For any cardinal number m by the m-Cantor set we mean the Cartesian product D^{m} of m copies of D. The \aleph_0 -Cantor set is a well-known Cantor perfect set on the real line. It is known (see e. g. [9], vol. II, p. 13) that every compact metrizable space is a continuous image of D^{\aleph_0} . In [1] P. S. Alexandroff defined a dyadic space as a compact space which, for some cardinal number m, is a continuous image of D^m , and has raised the problem of whether every compact space is dyadic. This problem was solved in [10] by E. Marczewski, who has shown that every family of non-empty, pairwise disjoint, open sets in D^m (and then in any dyadic space) is countable, and remarked that the one-point compactifications of high power discrete space are therefore never dyadic (for proofs see [8], p. 166). The class of dyadic spaces was investigated by Šanin [13], Esenin-Volpin [7] and, recently by Efimov [6], [6a].

In this note we give simple proofs of two known theorems (1 and 2) and we establish two theorems (3 and 4) which seem to be new. In section 1 theorems 1-4 are formulated and the proofs of theorems 1 and 2 are given. Section 2 contains purely topological proofs of theorems 3 and 4 and two examples in connection with theorem 3. In section 3 we give proofs of theorems 3 and 4 by using the "function space method", based on the fact that the functor $\mathcal{C}(\cdot)$ establishes the contravariant isomorphism of the category of compact spaces with homeomorphic embeddings and continuous mappings onto as morphisms, to the category of Banach algebras of all continuous real-valued functions on compact spaces with homeomorphisms onto and isomorphic embeddings as morphisms.

By space we always mean a completely regular space. By E, I, N and D, we shall denote the real line, the closed interval $0 \le x \le 1$, the set of positive integers with discrete topology and the two point discrete space, respectively. D^m and I^m denote the Cartesian product of m copies of D and I, respectively. The Čech-Stone compactification of a space X is denoted by βX . It is characterized among the compactifications of X