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INTERVAL TOPOLOGY OF AN 1-6ROUP
BY
J. JAKUBIK (KOSICE)

L. Introduction. In this section some definitions from the theory of
l-groups are given and the main results are formulated. The terminology
is that of [1] (%).

An Lgroup G = (@; 4, <) is a group (G; +) (written additively,
but not necessarily commutative, the neutral element of (¢; --) being
denoted by 0), which is at the same time a lattice (@; <) such that ¢ <y
implies a+z--b < a4y b for all @, b, @, y e« G. The l-group G is ordered
if any two elements &, ye @ are comparable (i. e., either # <y or y < ).
G7 is the set of all e G, @ > 0. The elements #,y<G* are called disjoint
if 2~y = 0. If G 5= {0}, then there is no greatest and no least element in
G. Aget A = Gis conver in @ if from a,, dped, 2 G, a; < @ < a, follows
weA. An l-ideal of G is a normal subgroup of (@; +) which is a convex
sublattice of (G'; <). Every l-ideal H of G determines a congruence rela-
tion on G and the factor I-group G//H. The direct union B = ZA; (ieI) of
l-groups A; is the set of all functions # on I such that z(é)ed for each
tel (x(i) is called the i-th compoment of ), the operations 4, A, u in
B being performed component-by-component, i. e., (zoy)(¢) = #(i)oy (),
where oe{-+, ~, u} ([1], p.222); in [6] the term “direct product” and
the notation IT4; is used). Let {4,} (y<I') be a class of I-ideals of G; the
l-group G is a cardinal sum of l-groups A, (notation G = X A) if the
group (G; +) is & direct sum of its subgroups 4,(+) and if from a,, ...+
+a,, = 0 (where a4, and y; # y; if 4 #j) fo]lovv_rs @, =>0fori=1,

..;n. In the case I' = {1,2} we put X+ 4, = A,+4, (cf. [2], p. 213).
The cardinal sum A,-+A4, is non-trivial if A4, 5= {0} # 4,.

Let G be an l-group, G +# {0}, a<G. The sets I,(a) = {r|lr e, 2 < a},
I(a) = {z|2<@, 2 > a}, G will be called infinite intervals (of G). The
interval topology of G is defined by taking as a subbasis for the closed
sets the system of all infinite intervals of G (ef. [2], p. 228). Consider
the followmg conditions:

(*) [1] always means [1], Cha.pt XIV.
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(t) G is a topological group in its interval topology,

(h) @ is a Hausdorff space in its interval topology,

(0) G is an ordered group.

It is well-known that any topological group is a Hausdorff space,
i.e., (6)> (h). It is easy to see thab (b) is implied by (0). The following
theorems are known:

(A) The additive I-group of all continuous functions defined on a clo-
sed unit interval does not satisfy (t) (B. S. Northam [4]; this is & solution
of the Problem 104 of G. Birkhoff [1], p. 233).

(B) If every non-emply subset of G contains a minimal element, then
(t) = (0) (Choe [3]).

(C) If G is Archimedean, then (t) = (o) (c¢f. [5]).

(D) If G is a small lemico-extension of ordered groups, then (t):3 (0)
(Conrad [2]; the concept of the small lexico-extension will be defined in
gection 5).

(B) If G is an l-subgroup of a direct wnion of ordered Archimedean
groups Gy, then (h) = (o) (Wolk [6]).

P. Conrad and B. S. Wolk have formulated the following problems:

(P1) Find an example of a non-ordered Il-group that is a topolo-
gical group in its interval topology ([2], p. 230).

(P 2) It remains an open question whether Theorem (E) can be
extended (at least for commutative I-groups) to the case where some or
all of the factor groups G; are non-Archimedean.

'We shall give a partial solution of (P 1): it is not possible to construct
a commutative non-ordered I-group satisfying (t) (Theorem 4.3). Since
each I-group G fulfilling the assumptions of the theorems (A), (B), (C)
or (B) is commutative (¢f. [1], § 7, §13), it follows that these theorems
are corollaries of the theorem 4.3. Further we prove that the answer
to the problem (P 2) is affirmative (Theorem 6. 2) and we give some suf-
ficient conditions for (t) = (o) to be fulfilled in a general (non-commuta-
tive) I-group. Theorem 5.3 is a generalization of (D).

2. Lexico-extensions. Let A Dbe an l-ideal of G. The l-group G is
called a lewico-emtension of A (notation G = {A4); of. [2], p. 214), if for
each £eG™\ A and each aeA the relation # > o holds. The lexico-exten-
sion in non-trivial if {0} # 4 # G. In such case, if zeG\ A, then either
@ >a or @ < a for all elements a<4 (¢f. [2], lemma 9.1). This implies
that G[A is an ordered group.

Let N (@) be the set of all xe &, & >0, such that there exists y(x)e ¢
satisfying y(z) >0, y(x) ~2 = 0. (In such a case clearly y(x)eN(G) also
holds.) If n iz a positive integer and xeN (&), then nw~y =0 (ef. [1],
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Theorem 6); hence nw < N (@). Let B(@) be the subgroup of (G';--) generated
by N(@). Then B(G) is an l-ideal of G and G = (B(G)> (of. [2], §9).
2.1, Let a;, bie@, i=1,...,m; j=1,...,m,

M = {Ii(ay), -,y Li(an); Io(by), - .., I5(bm)} -

Let @, beG. The system M will be called an s-system for a,b in G
if M covers & (i. e., (UT{a))w(\UZL(b;)) = &) and if none of the intervals
of M contains both @ and b. M is minimal if no proper subsystem of M
is an s-system for @, b in @. From the definition of the Hausdorff space
it follows immediately (cf. also [2], lemma 6.4) that @ satisfies (h) if and
only if for any two distinet elements o, be @ there exists an s-system
in @; from each such system M a minimal system M’ < M can he con-
structed.

Remark. If there exist finite sets {a;}, {b;} such that & = (U I, (a))w
v (U L;(by)), then Dboth {a;} and {b;} are non-empty. Indeed, suppose

.G = U Is(a;) and write | J a;=a; since @ = {0}, we can choose a’¢G such

that &' > a; hence a'¢{JI,(a;), which is a contradiction. In the case
@ = U IL.(;) the proof is analogous.

2.2. Let G = (8, a,be8, let M be o minimal s-system for @, b in 8.
Then all a;, b; belong io S.

Proof. If 4y, he{l, ..., n}, % # 4, a;—ay,¢S, then the elements
@, 4;, are comparable; hence one of the sets 11(“1'1), I,(a;,) is & subseb
of the second, which contradicts the minimality of M; this shows that
@, — a,eS. Analogously, ¥;—b,e8 if j; #j,. If a;¢8, @ >0, then
a; >a, a; >b; hence a, bel (a;) which is impossible; therefore a;¢S
implies @; < 0. Analogously, ;eS8 or & > 0.

Suppose @a;¢S; write (N b; = u. By the preceding result either =
belongs to § or u is greater than any element of S. In either case there
exists a weS, u; < u. Then wu;¢lJIi(a;), u;¢I,(u) > U I (b;); hence
M is not an s-system for e, b in @, which is a contradiction. Consequently
a;efS; applying an analogous argument we get b;<S. '

2.3. THEOREM. Let G =<8y, 8 £ {0}. Then G satisfies (b) if and
only if S satisfies (h).

Proof. (a) Suppose § satisfies (h). If ¢S, we denote by J;(¢) the
set I;(c) ~ S (¢ =1,2). Leta, beS, a 5 b. Then by 2.1 there exist a,,...,
Qns byyoiiyby, 21, m 21, such that

My = {J1(@1)y -+ -; J1(@n); I3 (B1)y - -5 Jo(bm)}

is an s-system for a, b in 8. The system I is now an s-system for a, b
in @. (If e\, then either # > 0 or 2 < 0; in the former case we have
xeli(a,), in the latter zel,(by).) If 4,ve@, v # v, u—veS, put a =0,
b =u—wv and let a;, b; have the same meaning as above. Write K; =
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— I,(a5)+v, Ej = I,(b)+v. The set of intervals Ki, Kj (i =1,...,m;
j=1,...,m)is an s-system for u, v in G If u,ve@, u—v¢S, then the
elements u, v are comparable; we may assume % <l 9. Since there does
not exist the greatest and the least element in S (and hence there does
not exist the greatest element in 8-+u and the least element in §+-v),
we oan choose elements u,, ;G such that w—uw S, v—0e8, u < Uy,
v, < v. The set {I,(u,), I1(v,)} is an s-system for u, v in G.

(b) Suppose now that @ satisfies (h) and let a,beS, a s b. There
exists an s-system M for @, b in ¢; we may suppose thab M is minimal.
By 2.2, a;, b;eS; hence M, is an s-system for a, b in 8.

3. Condition (P). Let 2, y<G; by # < y we mean that 0 <y and that
nw <y for every positive integer = (ef. [L11, p.225). Consider the
following conditions:

(P) If » >1is a positive integer, by, ..., by, ceN(GF), by < by+...+
4Dy, €< bytbot... by, then 6 < by+...+ by

(vy) There are elements b, by, ..., breN () such that for any ¢ N ()
the relation ¢ <b,-+by+...+b, =0 holds.

3.1.7If (v,) holds, then n > 2.
Proof. Let b,e N(@); by 1,5 (b)) e N(@), y{(b;) ~ by = 0; then y (b)) non < b;.

3.2. Let G + {0} be covered by the system M. Then there evists an ele-
ment ¥ e @, v' =0, such that G = I,(v") v I,(0).

Proof. Write u = () b;, v = (U a;) v u; from I (a;) < I;(v), L(b) =
< L(u) follows & = I,(v) w I,(#). The mapping » —~as—u (ve@)is an
automorphism of the lattice (G; < ), therefore the relation G = I(v)v
I,(x) implies & = I,(v") w I,(0), where o =ov—u >0.

3.3. If G is non-ordered and satisfies (h), then there ewists a positive
integer n such that the condition (v,) is fulfilled.

Proof. Since G is mnon-ordered, there exist incomparable elements
f,qe@. Write p; =p—(p~q), ¢» = g— (p ~q); then the elements p,, ¢
also are incomparable, p, >0, ¢, > 0 and p; ~¢; = 0; hence p,, ;<N (G),
N(@) # 0, B(G) # {0}. By 2.3, B(G) satisties (h) and by 8.2 theree xists
' eB(G) such that 0 <o, B(@) = (L(v")~B(@) v (I,(0) ~ B(@). From
the definition of B(&) it follows that there are elements by, ..., b,eN (&)
guch that o <b;+...+b, =b. Let #eN(G); there exists #' <N (¢) such
that  ~ o’ = 0. Write ¢ = v —a'. Since # and 2’ are disjoint, the elements
0, z are incomparable (ef. [1], p. 220, lemma 2); hence zel;(v'), z < v'.
Consequently 2z <b, 0 <b, 3 =200 <b.

3.4.7 If @ fulfills (P), then there is no positive integer n satisfying (Va)-

Proof. Let n >2 (cf. 3.1) be the least positive integer such that’

(v,) is safisfied ; suppose @ fulfills (P).If ¢« N (G), then me e N (@), (m-+1)bie
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«N(G) for any positive integer m; hence ¢ < b, b, < by+...-+b,. From
(P) follows ¢ < by+-... - by,; therefore (v,,_;) holds, which is a contradiction.
3.5. THEOREM. If @ satisfies (P), then (h) > (o).
The proof follows from 3.3 and 3.4.

Remark. I do not know whether there exists any non-ordered
l-group which does not satisfy (P).

4. Commutative [-groups. We have

4.1. Let B(G) be commutative. Then (v,) is false for any positive in-
teger n.

Proof. Suppose that » is the least positive integer such that (v,)
is satisfied. By 3.1, » >1. From b,eN (@) follows 2b,¢N (@), and hence
by <bgteoitbyy, b <2(0by+...4by) = 2b,+...+2b,. Therefore (v,_,)
holds, which contradicts the minimality of x.

4.2. THEOREM. Lei B(G) be commutative. If B(G) satisfies (h), then
B(G) = {0}.

Proof. From 4.1 and 3.3 it follows that ¢ is ordered ; hence N (¢)=@,
B(G) = {0}.

4.3. THEOREM. If G is commutative, then (h)=> (0).

Proof. If ¢ is a commutative I-group satisfying (h), then, by 4.2,
B(G) = {0}; hence @ = @/B(@), and by section 2 the factor l-group
G/B(G) is ordered.

5. Small lexico-sums. Conrad [2] investigated the small lexico-sums
of ordered groups C,. Under the more general assumption that C} are
l-groups, the definition of this concept is as follows (cf. [2], p. 224):

Let N be the set of all positive integers or ¥ = {1, 2, ..., k}. Let
0,‘, (yely # @) be l-ideals of an l-group G. For every neN let C" be an
l-ideal of G such that:

(a) O = Z40; (yell);

(b) if n+1eN, then C" < O™, and MLJJ " =@

(¢) for n >1, (" = 2+4C; (yel, # @) where each (7} is a convex
subgroup of G and either a non-trivial lexico-extension of a finite car-
dinal sum of two or more of the components C5~* or (} is equal to one of
the O3~

Under these suppositions G is called a small lewico-sum of l-groups Cj.

Remark. The l-groups C} in the preceding definition are not uniquely
determined.

Example. Let G be the additive I-group of all integers with the
natural ordering. Put

(@ =L={},0=0=0=0=6;

(o) In={1,2}, I = {1}, Oizozlzal = {0}, Gi =0 =6
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5.1. Let G # {0} be a small lewico-swm of ordered groups. Then we can
choose ordered l-ideals C; (yel) of G such that & s a small lewico-sum of
l-ideals CL and O, = {0} for every yel'.

This follows from the construction given in the proof of the theorem
6.1, [2].

In the whole section 5 we assume that G is a small lexico-sum of
l-groups 0% = {0} (yel’). Clearly & is a small lexico-sum of I-groups C}
(yell) for any nelN. If A is a set, we shall denote by card A the (&I‘db
nality of A.

5.2. Let O (yely) be ordeved groups. Then @
if card I, =1 for any meN.

Proof. («) Sinece €} s {0}, it follows Dby induction on » that

Oy # {0} for every n,el\’ and yel),. If there exists an neN such
that card I', > 2, then C" is a non-trivial eardinal sumj hence o™ is
non-ordered; therefore, by (b), & is non-ordered.

(B) If card I, = 1 for every nelN, then it follows by induction on n
that all O} are ordered groups; hence by (a) and (o) every O™ ig ordered;
therefore, by (b), & is also ordered.

The theorem (D) ean now be formulated as follows:

(D') Let CL + {0} be ordered growps. If & satisfies (t), then card [y =1
for any neN.

5.3, If neN, n >1, card [}, =1, then 0" = )
card I, = 1, I, = {y}. Hence, by (¢),

is orderved if and only

Proof. Let n >1,

' " =<(B>, B=ZX+0"" (aelny),

where I7,_, is a non-empty finitie bllbb&f} of I'y_,. Suppose ajelly_NLn_1

and choose agely_;, %o eCaly 2,<CL Y, m, >0 (i =1,2). Since a,,

m.,zec”“l =IO N ael, 1),ib follows from the definition of the cardinal

sum (cf. section 1) that =, , %, are incomparable and that w, ¢B. Since
o €0TN\B, We get from the defmltlon of the lexico-extension that z, >

> maa, this is a contradiction. Hence I}, = I',_,, which implies B = ot

54, If G = A+B 4 #{0} # B, then G
system of infinite intervals I'«@a.

cannot be covered by o finite

Proof. Suppose @ is covered by the system M. By 3.2, ¢ = L(v') o
UI,(0). Let v =a+b', aecd, b'eB. There exists aleA yuch that
a,>av0. Let beB, b>0. Then a,—b non < a0’ =19, ay—b non > 0;
hence a;—b¢I;(v'), a,—b¢I,(0), which is a contradiction.

COROLLARY (¢f. [6], Theorem 2, [2], lemma 6.3). If & == A—{—B
A # {0} # B, then G does not satisfy (h).
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The following theorem is a generalization of (D'):
5.5. TuroREM. If G satisfies (h), then cardl, =1 for

Proof. Let neN, card I, > 2. Sinee ¢ is 2 small lexico-sum of I-groups
(% (yely), we may suppose # = 1. Then C? is non-ordered ; choose a, beC',
« # b. Suppose that ¢ satisfies (h) and let M be an s-system for a, b
in @. Let m be the least positive integer such that all a;, b; belong to
(™. Therefore the sets

any neN.

Ifa) nC™ = Ky, L) 0" = Kg"

are infinite intervals in ¢ (distinet from C™) and

) (UK (U Ky = ™.

From (1) and 5.4 it follows that C™ is not a non-trivial cardinal sum;
hence card I, =1 and m >1. Therefore, by 5.3, ™ = (0™ *>. Since,
by (), &, beC™ 1, it follows from 2.2 that all a;, b; belong to €™, which
contradicts the minimality of m.

6. Direct unions of ordered groups. We have

6.1. TueorEM. Let G be an l-subgroup of a direct union Z'G
of l-groups G;. If there ewists ge @ and jel such thai

(a) geN (@), g(j) >0,

(b) Gy is ordered,
then (h) = (o).

Proof. Suppose G is a non-ordered I-group fulfilling (h) and satisfying
the conditions of the assertion. From 3.3 it follows that there exists a posi-
tive integer n such that (v,) holds. From geN () we get g <b; hence
g(j) < b() = by(f)+...+b,(j). Let by(j) be the greatest element of the
set b;(j) (¢ =1,..., n); since g(j) >0, we have b(j) >0. Therefore
b(j) < nby(j) < 2mby(j); hence 2mbnon<b contradieting (v,,) (since
2nby,e N (G)).

6.2. THEOREM. If G is an l-subgroup of a direct union of ordered
groups Gy, then (h) = (0).

Proof. Let @ be an l-subgroup of a direct union of ordered groups
G; (4eI). ¢ G is not ordered, then there exist incomparable elements
01, g6 such that g;~g,=0; hence ¢;eN(G). Clearly there exists
jeI sueh that g,(j) > 0. Therefore, by 6.1, & does not satisfy con-
dition (h).

Remark. Since any commutative l-group is a subdireet union of
ordered groups (ef. [1], Theorem 13), theorem 6.2 yields an alternative
proof of theorem 4.3.

: (del)
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A FIXED POINT FREE MAPPING
OF A CONNECTED PLANE SET

BY

F. B. JONES (RIVERSIDE, CALIF.)

J. L. Kelley pointed out in [2] that the question of the possible
existence of a fixed point free, periodie, continuous mapping of a connee-
ted and non-cutting subset of the plane into itself was still unanswered.
Contained in the proof of a special case of his Conjecture A is the sugges-
tion that such a mapping might possibly be of period 2. Such a mapping
of period 2 does, in fact, exist.

THEOREM. If M 48 a plane pseudo-arc and K is a composant of M,
then there ewisis a fized point free homeomorphism of period 2 of the conne-
cted point set M — K onto itself. Furthermore, if K contains & point accessible
from the complement of M, then the complement of M — K is strongly (= con-
tinuum-wise) connecled.

Proof. The congtruction of a pseudo-arc M from p to g given in
Moise’s thesis [3] as the intersection of O} where, for each n, 0, is a finite
collection of open plane sets whose closures form a chain of a specific
type, may be carried out in a fashion symmetrical with respect to the
two points p and ¢ as indicated in his Figure 1. In particular, if for each
n, 0, = {C,} (1 =1, ..., 1,) is the natural ordering of C, from p to q and
C, = {0} (6 =1,...,14,) is the reverse ordering (i. e., the natural order-
ing from ¢ to p), then G, intersects Oy, if and only if G}, intersects Cy, -

Now let # be a point of M and for each #, let 4 be the smallest inte-
ger such that J, contains x. So @ = (J;,. Define the function f on M
so that f(#) = () Ci,. Obviously f(p) = ¢, f(g) = » and f(x) = » if and
only if # = M\Ci, = M. Clearly f is continuous, 1-1, and of period 2
with only one fixed point, namely, the point o determined by the middle
elements of the chains.

Let o’ be a point of the composant K of M. Since M is homogeneous
[1], there is a homeomorphism kb of M onto M such that k(o) = o’. The
homeomorphism Afh~! leaves o' fixed and hence kfh~*(K) =K. So
hfh~! is of period 2 on M —K and has no fixed point.


GUEST




