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Representation theory for polyadic algebras™
by

A. Daigneault (Montreal) and D. Monk (Berkeley)

The notion of a polyadic algebra was introduced by Halmos to reflect
algebraically the essentials of the first order predicate logic. That the
notion is adequate for this purpose was demonstrated by Halmos’s
representation theorem for locally finite polyadic algebras of infinite
degree (). Algebraically, it is still interesting to ask for stronger repre- -
sentation results. Also, current increased interest in logic with infinitely
long expressions makes the possibility of a stronger result interesting to
logicians.

In this paper we shall prove the following strong extension of Halmos’s
result: every polyadic algebra of infinite degree is representable (3). Our
proof is purely algebraic and is, generally speaking, close in method to
Halmos's work in this field. In the paper [12] immediately following
this paper, H. J. Keisler gives a metamathematical proof of this result,
using the ecorrespondence between polyadic algebras and infinitary logics (%).

We shall preface our proof with an outline of the elementary theory
of polyadic algebras, in which, besides results of Halmos, we shall give
some lemmas needed in the remainder of the paper (§ 1 and.§2). The
first part of our proof consists in an embedding process known as dilation.
This process is applicable to certain more general relational systems,
and we shall first give a proof of the more general result (§ 3). The process
is extended to the polyadic case in § 4. An alternative method of arriving
at the main result of § 4 is outlined in § 5. The second part of the re-
presentation proof follows a pattern which may be traced back to the

* The work of the first author on this paper was done while he was a fellow of
the Summer Research Institute of the Canadian Mathematical Congress.

(*) See [5] and [7].

(%) See the abstract [2].

() Keisler's results were previously announced in [11]. Our main result was
discovered independently by Daigneault and Keisler; Daigneault’s proof was ma-
thematical, and Keisler's metamathematical. After Keisler's result was announced,
but before Daigneault’s mathematical proof was announced, Monk devised a mathe-
matieal proof for the result, The present paper combines methods of Daigneault and Monk.
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well-known completeness proofs of Henkin, and Rasiowa and Sikors
(§6) ()

Besides the proof of the main theorem we prove other interestin
results about dilations and representations. The reader interested onl
in the main representation result (Theorem 6.4) needs only to follow th}
following path: read § 1 and § 2; omit Theorem 3.4 in § 3; read § 4; omit
§ 5; omit Theorems 6.1, 6.2 and 6.3 in § 6. Those interested only in the
existence of representations and not in the cardinality conditions of
Theorem 6.4 may simplify the proof even further by eliminating the
words “minimal” and “faithful” in our proof, making the corresponding
simplifications.

We shall use common set-theoretical notions and terminology, but
it is perhaps worthwhile to explicitly state some of the less common
notations here (°). The identity function on a set 4, ie., the set {(z, 2):
xed}, is denoted by d4. A function f restricted to a set A4, ie., the set
{(@,9): f(#) =y and @ e A}, is denoted by f]4. The set of all functions
with domain I and range included in X is denoted by X% or sometimes
by F(I, X). Cardinal numbers are denoted by small German letters
m, m, P, q, ete. The least cardinal greater than a cardinal m is denoted
by m*. Cardinal numbers are identified with initial ordinal numbers.
A symbol like 1 also denotes the cardinal of the set of all functions from
? to n. The letter w is used to denote the set of all natural numbers,
ie, ©=1{0,1,2,..).

§ 1. Polyadic algebras. In this section the bagic definitions of
?he theory of polyadic algebras are given. More details may be found
in the papers [6] and [7] of Halmos.

A quantifier on a Boolean algebra A is a mapping & of 4 into 4
such that the following conditions hold for all P,qed:

(Q) 0 =0;

Q)  p<Hp;

(Q) F(padg) =Fpady.

men,;THEOREM L1. If X is a quantifier on a Boolean algebra A’ and pyqed,

(i) d1=1

{f) dH =49;

() i p<q then dp < Hg;

@v)  A(lp) = (dpy;

(v)  d(pvy) =HpvHg.

_

tho 5(23 nSdee [2;[1, 4], ﬂ:ud [17]. The authors arrived at this second proof independently;

that o a;lmi :1‘ ?,rr‘w.ed a.t_ the Proof by generalizing an unpublished proof of Tarski
0 y e infinite dimensional cylindrie algebras are representable.

() In general we follow the notation of [8].
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For the proof, see [6], pp. 220-222, This theorem will be used
constantly without citation.

We now define a concrete operation which generates quantifiers.
Let B be a Boolean algebra, and X and I non-empty sets. For each J C I
and p ¢ F(X7, B) let W(J)p be the element of F (X', B) defined by

(F) T(p@) = V@) a(I—J) =y|T—0)},

provided this supremum exists for every ze Xt
Another operation which is useful in this context is defined as follows.
For each 7 eI’ and p e F(X%, B) let

(F3) Sy (@) =pler),
for all z e_XI.

A functional polyadic I-algebra with domain X and value algebra B
is a quadruple (4,1, §7, @'y such that 4 is a Boolean subalgebra of
F (X', B), A is closed under the operation §'(z) for each v ¢ I, and T(J)p
exists and is in 4 whenever J CI and p e A. Of special interest is the
case where B is the two element Boolean algebra, which is henceforth
denoted by O.

The general notion of a polyadic algebra is obtained from this concept
by abstraction. A polyadic algebra is a quadruple (4, I, S, d) such that
A is a Boolean algebra, S is a mapping from I” to Boolean endomorphisms
of 4, ¥ is a mapping from the set of all subsets of I to quantifiers of 4,
and the following conditions hold:

Py} S(01) = da;

(P, S(or) = S(0)S(z) whenever o,vel’;

(Ps)  H(0) = a3

Py H(J v K)=H(J)A(K) whenever J, K C I;

(Ps) if o,vel’, if JCI, and if ojI—J) =fI—J), then S(c)A(J)

= S{)dA(J);
(Po) if vel’y if JCI, and if w|z™J s biunique, then A(J)S(z)
=S(H) A ).
We shall say loosely that 4 is a polyadic I-algebra. Members of I are
called variables. The cardinal number of I i3 called the degree of A.
The following theorem shows that the abstraction made in the pre-
ceding definition is sound.
TEEOREM 1.2. Bvery functional polyadic algebra is a polyadic algebra.
§ 2. Preliminary results. Throughout this section let (4, I, S, q)

be a fixed but arbitrary polyadic algebra. If J C I, an element p of A
is said to be independent of J it A(J)p = p. The dual concept is that of
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a support: a subset J of I supports p <4 if p is independent of 7—.J.
The following theorem summarizes the most elementary facts about
supports and independenee

THEOREM 2.1. (i) If p ¢ 4, then {J: p is independent of J} is an ideal,
and {J: J supports p} is a f11t37 in the Boolean algebra of all subsets of I;
(i) if J C I, then {p: p is independent of J} and {p: J supports p}
are Boolean subalgebras of A;
(iii) 4f p is independent of J amd K C I, then H(K)p = W(K—J)p;
(iv) if J supports p and K C I, then B(K)p = T(K ~ J)p;
(v) if p is independent of J and K C I, then H(K)p is independent
of J and of J U K;
vi) if J supports p and K C I, then both J and J — K support HA(K)p;
(vu) if p s independent of J and o,7 e I* with o|(I—J) ) =<|(I—J),
then S(o)p = S(z)p.
The proof may be found in [7], pp. 276-277.
The following result of the same cha.racter requires a proof here,
since Halmos obtained a weaker theorem (¢ ).
THROREM 2.2. If J supports p and v eI, then «J supports S(z)p.
Proof. If J = 0, then by Theorem 2.1 (vil) we have S(t)p = S(d7)p

=p, and 50 w/ = 0 supports S(v)p. Hence assume that J = 0. Choose ¢
such that ofJ = 7|J and ¢(I—J)CzJ. Thus o~YI—=J) — 0. Hence

UI-2J)S(x)p =L(I—2)S(a)p 2.1 (vii)

=S(c)H(0)p (®y)
=S(7)p. 2.1 (vii)
Q.E.D.

The next three iomewh‘ant involved lemmas will be found useful later.

Levyvs 2.3. Suppose p e A, o,7el’, Jy,EC1I, and the following
conditions are satisfied:

(i) olJ is biunique;
(f) t(K~Jd) ~ o =0;
(iti) K supports p;
(iv) ol(I—J) =7|(I-J).
Then S(x)d(J)p =q(od)S(0)p.
Proof. Suppose first that o — 7. Then by (ii), K—J = 0, so by (iii),

J supports p. Because of (i) there is a biunique 6 such tha,t Oo|J = ;.
Hence

(*) See {7}, Lemma 6.14. In Halmos’s proof local finiteness is assumed.

Representation theory for polyadic algebras 155
A(ad)S(o)p =L(D)S(o)p
= S(@)C’I(I (o)p 2.1 (vii)
(OI(97)S(0)p
( )S(6o)p (®e)
—-E[(J)p 2.1 (vii)
=S@)AJ)p 2.1 (vii)

Thus we may and do assume henceforth that ¢J = I.

Choose geI’ such that pld =olJ, @|{(K—J)=1|(E—-J), and
¢[I—(E wJ)]CI—oJ. Then by (iv), ¢|K = o|K. Also, ¢g~l¢J =J_ by
(ii), and ¢@|J is biunique by (i). Note that K—J supports H(J)p in virtue
of (iii) and 2.1 (vi). Hence

S@HA)p = 8@ A(J)p 2.1 (vii)
=H(cd)S(p)p (P
=qA(eJ)S(a)p. 2.1 (vii)

Q.E.D.

Lemva 2.4, Suppose p,qed, vel’, J, KCI, and the following con-
ditions hold:

(i) K supports p;

(ii) g 7s independent of vJ;

(iii) zJ ~ K =0;

(iv) =|J 4s biunique;

(V) TI(K—J) = 6K_._7;

(vi) ¢A{{H(T)p] vS(z)p} =0.

Then g =0.

Proof. By (i), (iii) and 2.1 (v), (i), [A(J)p] is independent of zJ.
Hence by (ii), (Qs), and 1.1 (v), upon applying H(zJ) to the equation (vi)
we geb :
(*) qA )Y V() S(x)p} = 0.

By Lemma 2.3 we have A(tJ)S(r)p = S(z)dA(J)p. By (i) and 2.1 (vi),
K —J supports A(J)p, and so by (v) and 2.1 (vii), S(z)A(J)p = S(én)H(J)p
= H(J)p. Hence () yields ¢ = 0, as desired.

LEvMA 2.5. If ped, p,0,7el’, J,KCI, J supports p, o|loJ is
biunique, and vo|od = 8.7, then A(K)S(o)p = S(z)A[o(K ~ 0J)]5(p0)p.

Proof. From Theorem 2.2 and the hypothesis we infer that ¢J sup-
ports H(K)S(o)p. Hence

A(K)S(o)p =S@)S(0)H(K ~ od)S(o)p 2.2, 2.1 (vii)
= S(7)A[o(K ~ oJ)]S(0e)p. 2.3
Q.E.D.

Fundamenta Mathematicae, T. LIT 11
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An ideal in a polyadic algebra A is a subset I of 4 which is a Boolean
ideal in 4 and satisfies the condition

(R) it peM then H(I)p e L.

The algebra A is simple if {0} is the only proper polyadic ideal in it.

The notions of subalgebra, direct product, subdirect product, homo-
wmorphism, and isomorphism are carried over in a natural fashion from
universal algebra to apply to polyadic algebras. A semisimple polyadic
algebra is one which is isomorphic to a subdirect product of simple poly-
adic algebras.

) THEOREM 2.6. Bvery polyadic algebra is semisimple. In fact, o poly-
adic algebra A is isomorphic to a subdirect product of simple algebras the
index set of which is A— {0}.

A proof may be found in [7], p. 289.

‘ THEOREM 2.7. A direct product of B-valued functional I-algebras
with a common base X, over a set T, is isomorphic to a BT -valued functional
I-algebra with domain X.

Proof.‘For each te T let (4, I,S;,d;) be a B-valued functional
I -?,lgebra, with base X ; and let (4, I, S, H€) be the product of these algebras
(with 4 =lIe;A,). Define F mapping 4 into F (X', BY) by setting

(fp)(®): = pum)

?or eaf;h ped,ze X7 and t e T. The fact that f is the desired isomorphism
iy easily checked.

§ 8. Dilations of transformation systems. This section is
devoted to the study of two complementary concepts, that of dilation
and that Qf compression. Because this discussion is more appropriately
presen?;ed n a context more general than that of polyadic algebras, we
shall fu'sfs ignore the fact that our algebras are polyadic or even Boo’lean
and retain only the fact that they ave relational systems endowed with
2 tra,nfs'formation structure. More precisely, we shall call an I-{rans-
formation syfztem, a triple (4, I,8) where 4 is a relational system, I is
gfsetﬁ anc}l Sisan l}ﬂlnomol’phism from the semigroup I’ into the semiéroup
Sime; lyegy()jlo;ll)llgsms of 4. Oftfm.the system (4,1, S) will be denoted
iy bﬁt o rg 21;; 1;10 resmcmolns on lthe set of operations and rela-
o rb ,e eness a.nd simplicity’s sake we shall assume that
Pt one binary operation V and of one binary relation R. The

ition of a (V, R)— I-transformation system can thus be expressed

symbolically as follows i
o y ows. Letting a, g range over I7 and P, P1, P Over A

iom°
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(T S(én)p =p;
(Ty)  S(ap) =S(2)S(p);
(Ty)  V(S(a)p1s S(a)py) = S(a)V(P1s Ps);
(Ty)  R(piyp.) implies R(S(a)ps, S(“)Pz)-

If I+ is a superset of I, an I*-dilation of 4 is an I'*-transformation
system (A%, I¥, S*) such that 4% is a (V, R)-system of which 4 is a sub-
system and such that the following conditions hold for all a, a;, a, € I+I*
and p e A:

(D) SHa)p = S(u«|I)p whenever a(I)C I;
(Ds)  SH(a)p = St(ay)p whenever o)l = ap}l.

“We note that when I is infinite, (D,) becomes superfluous. In-
deed we can then let » be a biunique transformation of I* such that
y(ay(I)) C I and, noting that yay|I = ya,|I, write S*(y)S*(a)p = S(ya|D)p
= S(ya|I)p = S*(y) S*(a;)p according to (D;) and (T,) applied to A*.
Finally, if o ¢ I*7* is such that oy = §;+, we obtain (D) by applying
S+(0) to S*(y)S*(a)p = S*(y)S*(a,)p and using (Ty) and (T,).”

An example of transformation system is that of a functional trans-
formation system. Let B be a (V, R)-relational system and I and X be
sets; then the direct power F (XI, B) of all functions from X to Bisin
a natural manner a transformation system. More precisely F(X, B)
becomes a (¥, R)—I-system if we set for all x e X {1, Te eP(XN, B)
and ael’:

(BT Vif, f) (@) = T (fa), @)
(BT R(f, 1) iff B(A®), 1)) for all y e X7;
(FTy)  (S(@)f)(x) =F(za).

Any subsystem of F (XI, B) is said to be a B-valued functional I-system
with domain X.

The following known and easy but basic result shows that the above
example is universal.

THEOREM 3.1. Any I-transformation system A is isomorplic to a fune-
tional I-transformation system.

Proof. Let X =1 and define a mapping

H: A>F (X', 4)

by setting H(p)(z) = S(x)p for all ped and zeX’. The verification

that H is an I-isomorphism is straightforward. QE.D.
An I*-dilation is said to be minimal if 4* has no proper subsystem
containing 4, i.e., if any subset of A* containing 4, and closed under ¥
11*
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and S*(a) for all a, is equal to 4™ Quite obviously any dilation of 4
contains a minimal one.

We are now ready for the main theorem of this section.

THEOREM 3.2. For any set I and superset I'*, any I-transformation
system admits o minimal I*-dilation.

Proof. It suffices to show that any functional transformation system
F (X%, B) admits a dilation. For this we define a mapping

H: (X!, B)-F (X", B)

by setting {H(f))(z) = f(|I); feP(X,,B), we X", It is easy to verify
that H is a (V, R)-isomorphism. After the usual identification of the
elements of F(X’, B) with their images in (X", B), the conditions (D,)
and (D,) read respectively: S*(a)H (f) = H(S(alI)f) whenever a(I)C I;
and S+(a) H(f) = $*(a,) H(f) whenever o,|] = a,|I. We omit the details
of these verifications. Q.E.D. :

When I is infinite, a useful description of minimal dilations can
be given.

THEOREM 3.3. If I is infinite and C is an I*-dilation of A then the
minimal dilation A% of A in C consists of the elements of the form S*(o)p
where p e A and o e *I* is biunique on I. Furthermore, if IT > I, then
we may assume that o is a permutation of IT.

Proof. We first show that the set of elements S+(o)p with ped
and o e I*I* is closed under V and St(a) for all aeI**. As to V this
means that, if o, and o, are transformations of I+ and if p, and p, are
elements of A4 then V(S*(al)pl, S+(a2)p2) can be written in the form
S#(e)p. Let y and o be transformations of I+ such that y is biunique on
J = a(I) v afI), yJ CI and oy|J = §;. Hence we have successively:

oyay|I = q|I;
SH(oyar)py = §*(an)ps; (Dy)
SHoya)p, = 8§*(0) S(yar|I)py;  (Ty), (Dy)

And similarly for a, and p,. Finally using (T,) we get
@ V(S*(a)py, S(a)ps) = SH(0)V (S (yay | 1)y, S (yay| T)ps) .

Thus this eai;e Is settled with p =V (S(ye|I)py, S(yas|I) py).

As to S*a), let S*(a1)p;, and a be given; «, oy eIt ped. Set
MJ{J= ﬂgaﬂldjg =uﬁ(1), and choose y and ¢ in I*I* such that J C I and
ay|d = 0y. Finally we have S*(a) S*(a;)p, = S+ = 8*(o) S
this case is settled with p = S(yﬁll)lp: oz (SN, and

When It > T it is obvious that, in both

! : X cases above, y can be chosen
a permutation of I+ and y~* can be used as 0. When i;—, is not assumed

icm
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that T+ > I we can only show that any element S*(a)p with aeI*I*
and p e A is equal to an element S*(o)g With ¢ ¢ I+/" biunigue on I with
g eA. Indeed let o be a transformation of I* biunique on I and such
that o(I) D «(I). Let also B be a transformation of I+ such that g(I)C I,
and opT = a|I. Sefting ¢ = S(]I)p we have,

§+(c)q = S*(0) S(B|1)p = S*(0) S¥(B)p = S*(af)p = S*(a)p .
) Q.E.D.

As a corollary to this theorem we obtain, provided I is infinite,
a unicity statement that shows that, in this case, our definition of dilation
leaves nothing to be desired.

TrrorEM 3.4 If I 4s infinite then any two wminimal I*-dilations
of A are equivalent.

Proof. Let (4; ,S7) and (45, S7) be two minimal I+-dilations of 4.
Using the preceding theorem we wish to show that the mapping S (a)p
S8 (a)p, ae ™™, ped, from A to 47 is a surjective isomorphism
leaving A elementwise fixed. The only non-trivial parts of the assertion
are that the mapping is well-defined and biunique and that it preserves v
and R.

To show that the mapping is well-defined and biunique, suppose that

(2) 8y (a)py = Sf(az)Pzi PisPeed; and @, ope .
We must see that this is equivalent to
(3) S:(a)ps = Sa (ag)pa -

But, setting J = ¢,(I) U a(I) and letting y and o be transformations
of I such that yJ C I and op|J = 05, both (2) and (3) can be shown to
be equivalent to

(4) S(yo [I)py, = S{yas|I)ps -

For instance we obtain (4) by applying Sy (y) to (2) and using (D,) and
we go back to (2) by applying 87 (o) to (4) and using (D,) together with
oy |1 = a|1.

The fact that the mapping 47 —A47 preserves ¥ is seen immediately
from (1).

Finally, that the mapping preserves & follows from the equivalence

(5) R(S?(al)Pu Sg’(ae)_‘pa) iff R(S(WJI)'PH S(Vale)Pz) )

i =1, 2, in which » has the same meaning as above. The proof is based
on (Ty), (Ty), (Dy) and (D). Q.E.D. )

The concept of compression, complementary to that of dilation,
necessitates a generalization of our polyadic notion of support. In the
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context of transformation systems we shall say that a subset J of I supports
an element p of A if, whenever o and a, ave transformations of I such
that o |J = a|d, we have S{a)p = S(a,)p. That this notion iy indeed
a generalization of the polyadic one will be seen in the next section
(Lemma 4.1). For the time being we will prove some basic desirable prop-
erties, the first two of which we need immediately.

Levma 3.5. If ped, JCI and J supports p, then a(J) supporis
S(a)p for all aell.

Proof. We want to show that if f;|a(J) = fs|a(J) then S(8;)S(a)p
= 8(B,)S(a)p, knowing that «|J = a|J entails S(a)p = S(aw)p. But
this is obvious owing to the fact that f|a(J) = Bua(J) iff fia|d = Ba|J.
For, setting o; = pa, a, = f0 and using (T,) we obtain the desired con-
clusion.

LevMA 3.6, If I is infinite, A* is a dilation of A, pe A, J CI and J
supports p in A, then J supports p in A*

Proof. Given g; and a, in I** such that o|d = a|J, set K = a(I)
U a(I) and let y and o be transtormations of I+ such that yKCI
and oy]K =dg. Then S+(oyey)p = S*a)p since oyoy|l = a|I. Also,
St(oya)p = §*(0)8(yey|)p. Similarly, S*(oyas)p = §%(0) S(yas|I)p =
= 8*(ay)p. But S(ye)|I)p = S(yay|I)p since yo;|J = yap|J and o sup-
ports p. Therefore S*(a;)p = S*(ay)p. Q.E.D.

LevwmA 3.7. If p € A, then {J: J supports p} is a filter in the Boolean
algebra of all subsets of I.

) Proof. That, if J supports p and J; D J, then J; supports p is obvious.
We‘proceed to show that the set of supports of p is closed under inter-
section. Let J; and J, be supports of p and let ¢, and a, be transformations
of I such that o = q|J with J =J, ~nJ,. We want to show that
S(a)p = S(a)p. Let a eI’ e such that a|J; = a|, and a|J, = |,
Then S(a)p = S(ey)p since J, supports p and simﬂaﬂy S(a)p = S{a )121.
Therefore S(a;)p = S(ay)p. The proof is complete. :

. For a subset J of I the J-compression of 4 is a system (4y,J, S7)
defined as follows. 4; consists of the elements of 4 that J su’pp;rtS'
tha.t .A‘J is clos(?d under ¥ follows from (T;). The relation R of 4 is by’
deﬁmtlo‘rll 1_:]19 intersection with 4; of the relation R of 4. Finally, if
f_orsa fJ » @18 any transformation of I such that @|J = o we set S~ (’a)p
s_u (al)'éz; fo\r gr ed;. The @eﬁnition is obviously independent of & since J
qug,zi Onsp;+[Je~may for Tstanee take for @, ot which is defined by the
onations ﬁon: éxhand at|I —J =d7-;. The conditions (T})-(T,) for 4
i o g e same reilatlgns fo.r 4 and the equation (af)t = a*p*
T Glatton ot 4 a an.d B in J°. It is also easily verified that 4 is an

of 4;. We wish to answer the question: when is 4 a minimal

icm
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dilation of 4;7 For that we need a definition. The effective deyree of
o transformation system A is the smallest cardinal e such that any element
of A admits a support whose cardinality does not exceed e.

TemorEM 3.8. If I is infinite then the dilation 4 of A; is minimal
iff J =

Proof. If the dilation is minimal, then any element of A has the
form S(o)p for some ¢ e I' and p e A; (Theorem 3.3) and has therefore
a support o(J) of cardinality at most J (Lemma 3.5). Hence e <J.

Conversely, if e <J, let g be an arbitrary element of 4. Let K be
a support of ¢ such that K < J and let ¢ and y be transformations of I
such that o(E)CJ and yo|E = dg. Setting p = S(o)g, we have p eAs
by Lemma 3.5 and, since ¢ = S(y)p, g is in the minimal dilation of Ay
contained in A. Q.E.D.

When J > ¢ and I is infinite, the compression 4; will be said to be
faithful. In this case 4 can be recovered from A; as its unique minimal
I -dilation.

Theorem 3.8 admits the following “converse”. In general, if A+ is
a dilation of 4, 4 is not a compression of 4*; but this is so if 4 is minimal.
More precisely we have:

TaEorEM 3.9. Ij I is infinite and if A+ is a minimal I+-dilation
of A then A is a faithful compression of A*.

Proof. Because of (D,) 4 is contained in the I-compression of 4%
To show that A4 is identical with this compression let g = S*(a)p, p € A,
o ¢ I¥I*, be an element of 4* supported by I. Let a e I*T* be such that
a|l = 67 and ao(I)C I. Then, since I supports g, SHa)q = g = S*(ao)p
= S(ac|I)p e A. The transformation structures S and S” of 4 coincide
for, if a eI’ and ped, S (a)p =SHa")p = S{at|I)p = S(a)p. The
proof is complete.

The last two theorems are summed up by the statement that A
is a minimal dilation of A iff 4 is a faithful compression of A*,

A functional representation of an I-system A yields a natural fune-
tional representation of its compressions.

TeeoREM 3.10. If A is a B-valued I -transformation system with
domain X then any J-compression of A is isomorphic fo a B-valued
J-transformation system with domain X.

Proof. Define H: A;—»F(X’,B) by setting, for fe 4y and = e X7,
H(f)(®) =f(y) where y € X7 and y |J = . To show that this is well defined
we let z ¢ X* be such that z|J = and we choose & ¢ I such that o|J = s
and oI CJ. Then f(y) = (S(0)f)(y) =Ff(yo) and similarly f(z) = f(z0).
But 20 =yo. The verification that H is an isomorphism of J-systems
is straightforward. Q.E.D.

The following theorem will be needed in the next section.
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TaporEM 3.11. Let I be infinite and I, and I, be supersets of I sych
that I, C I,.

() If (Ay, L, S5) is an I,-dilation of (S, I, 8S) then the I;- compression
(dy, I, 8y) of Ay is an I,-dilation of A, and if A, is a minimal dilation
of A so is 4.

(i) If (Ay, L, S, i a (minimal) I,-dilation of (4,1,S) and 4,
is o (minimal) I,-dilation of Ay, then A, is a (minimal) I,-dilation of A.

Proof. Only two of the many verifications to make are not straight-
forward. The first of these two things is that, in (i), if 4, is & minimal
dilation of 4 8o is A;. Let g = Sy(a)p, a eI“gr“, P €4, be an element of 4,
which I, supports. We shall construct o, <Ii* such that g = Si(oy)p.
Let y e I2* be such that y|I, = 67, and pa(l;) C I,. Then, since I; supports
4, 8(y)q = Sy(0,)¢ = ¢ Hence, setting o¢=ya, we have ¢ = S(o)p
with ¢(I;) C I;. If, finally, we let o, = o|I; we have, since I supports p
in 4 and hence in 4,, Si(0y)p = Sy(o)p by definition of S,.

The second non-trivial thing is the proof of (D) for the dilation A4,
of 4 in the context of (ii). For p e 4 and a < I* such that a(I)C I, we
have to show that Sy(a)p = S{a|I)p. Let f e I3* be guch that BlI =all
and B(I,) C I;. Since I supports p in A, it still does in 4, and hence also
in 4,. Therefore, Sy(a)p = S5y(f)p. Now, since 4, is a dilation of 4, we
have by (Dy), SyB)p = Sy(B|I)p. Again since 4, is a dilation of 4 we
have by (Dy), 8y(f1L)p = S(a|I)p. Therefore, Sy(a)p = S(a|I)p.

We omit the other verifications. Q.E.D. '

The last two theorems enable us to strengthen Theorem 3.3 a little:
the requirement that “I* > I” there can be replaced by “T* > . Let-
ting J be a subset of I of cardinality e it suffices to apply (ii) of
Theorem 3.11 with A4; in the role of 4, 4 in that of 4, and A* in that of
A,, noting that, by Theorem 3.8, 4 it a minimal dilation of A;.

) Two concepts related to that of effective degree will be nsed in § 6.
First, we shall call the effective oardinality ¢ of 4, the cardinality of 4,
where J is a subset of I such that J = e. The effective cardinality is 111
dependent of the choice of J since if J; and J, are subsets of I such that
Jy=4d,, 47, and 4;, are isomorphic (V, R)-systems. Ay, is indeed mapped
onto Ay, by any automorphism S(a) of A4 arising from a permutatﬁn a
of I such a(dy) = J,. This follows from Temma 3.5,

j]?he second consept is that of local degree of A. This iy the smallest
zzra(lllmal n(;fsuch that each element of A4 has a support of cardinality less
tha b?.rea ]i;zgg.rse, m > e. The two possibilities “m = ¢ and “nt = ¢
- I;Antgzament P of 4 is said to be closed if the null set supports it. Thig

§ that S(a)p =p for all a e I'. 4 is said to be degenerate it all its

elements are closed. In this case, c=dA, m=1, and e =0
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THEOREM 3.12. If I is infinite and A is non-degenerate then A4 > L

Proof. Let p be an element of 4 which is not supported by 0. To
construct a family {p;|i ¢ I} of distinet elements of A, let {al}i eI} be
a family of elements of I” biunique on I and such that a;(I) ~ () = 0
whenever ¢ # §; and set p; = S(a;)p (7). Then, if ¢ =] and p; =p; =g,
we have by virtue of Lemma 3.7, that 0 supports ¢. Finally, if o eIt is
such that ca; = 67, we have p = S(o)g and hence, ¢(0) = 0 supports p.
This contradicts the choice of p.

The foregoing theorem will help to clarify certain cardinality con-
ditions in the representation theorem. In particular we have that for
a non-degenerate 4, ¢ > e.

§ 4. Dilations of polyadic algebras. It is obvious from our
constructions (in the proof of 3.1 and 3.2) that a dilation of a transfor-
mation Boolean algebra is a Boolean algebra since the class of Boolean
algebras is closed under the taking of powers and the taking of sub-
algebras, i.e., subsets closed under all Boolean operations. For the same
reason a compression of a transformation Boolean algebra is also a Boolean
algebra to which we may apply the processes of compression and of
dilation. In this section we will generalize these processes in order to
take care of the quantifier structure. First we need to show the identity
of the transformation and polyadic concepts of support.

LeyyA 4.1. Let (4,1,S,H) be a polyadic algebra with T>1 and
let p e A and K CI. Then S(a)p = S{a;)p whenever a; and o, are transfor-

-mations of I such that

oK =K iff TI-Kp=p.

Proof. The condition is necessary. For assuming first K # 0, and
letting @, = 6 and a, be such that a,|K = 6x and a(I—K)C K, we have,
using (P) with J = I—K; A(I-K)p = A(T—K)S(a)p = (I~ K) S(a)p
= S(e)A(0)p = S(x)p = S(aw)p = p-

If K =0, we have S(a)p = S(a)p = S(05)p =p for all ¢ and a
in I, Let J; and J, be non null disjoint sets such that J, v dJ, = I and let o
and o, be such that «(I)CJ, and ay(I)CJ,. Then H(I)p = A(J)A(J:)p
=A(JT)A(JT) S (e))p = H(J1)S(an) H(0)p = H(J1) S (o) p = S(a) A(0)p = p.

The sufficiency is obtained from (P;) with J =I—K thus: S(a)p
= S(a)A(T—EK)p = S(a)T(I—K)p = S(z)p. QED.

If J C I then the compression {4y, J, S} can be turned into a polyadic
compression (Ay,J,S ,q7) by setting for K CJ, A(K)=14(K) |Ar.
The proof that 4; thus becomes a polyadic algebra is a short verifieation
carried out in § 11 of [7].

(?) The necessary partition of I can be induced, for instance, by any biunique
mapping IX I->1I.
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A polyadic algebra (4+,I*, S+, At) is a polyadic dilation of
(4,1,8,7) it (4+, I+, S%) is a (transformation) dilation of (4,1, )
and T+(K)|4 =T (K) whenever K CI. Our terminology departs slightly
from that of [7] where it is further required that 4 be the whole of the
I-compression of A*. This discrepancy vanishes (by virtue of Theorem 3.9
and the following theorem) if we consider only minimal polyadic dilations,
i.e. dilations without proper polyadic subalgebras which are dilations.

TEEOREM 4.2. If I is infinite, and if (4%, It, St, HY) is a minimal
polyadic dilation of (4,I,8,H) then (A%, It, S*) is a minimal transfor-
mation dilation of (4,1, S).

Proof. According to Theorem 3.3 it suffices to show that the
set of elements of 4+ of the form S*(o)p with p €4 and ¢ a transfor-
mation of I* biunique on I is closed under the quantifiers &+(K), IL C I+,
Choose J C I such that o = K~ ol. Then by Lemma 2.3 we have:
THK) S*(0)p =H(K ~ o) S*{0)p =T*(0J) S*(0)p = 5*(0) AH(J)p = S*(o)q
with ¢ =qA(J)pe 4. QE.D.

THEOREM 4.3. Any polyadic algebra of infinite degree (4,1I,S,)
admits for any superset It of I one and, to within equivalence, only one
minimal polyadic dilation (A*, I+, S+, H*),

Proof. First we prove the unicity. Assume T+ is a quantifier structure
on the (unique) minimal transformation dilation (4+,I*, $*) of (4, I, S)
such that (4%, I*, §*, @*) is a polyadic algebra and:

1) I+(K)|Ad =H(K) whenever KCI.

Let g = S*(o)p be an element of A+ oeI**, pe 4. By Lemma 2.5

we have that ’

AHEK) g = S$*(z) T e(K ~ oI)]S*(g0)p,

whenever v and ¢ are transformations of I* such that 70| 0l = &,y and

o] .UI is biunique. If moreover, goI C I, then, by virtue of (1) and (D)
this equation becomes,

(2)

’

THE) §*(0)p = S*(x) A[o(K ~ oI)] S(go|I)p .

From equation (2) it is apparent that T+ can be described in terms of the
data d, S and S*, and is therefore unique.

- The unicity proof just given suggests the course to follow for the
existence proof. We could indeed, define T+ by means of equations (2)
v.nth 1and 2 a8 before. However, in order to take advantage of a slight
sxmphﬁeatlon that becomes possible it T+ > T, we shall make this assumption
noting that when ¥ =7 the existence of T+ can be obtained from the
other case by polyadic compression by virtue of part (i) of Theorem 3.11.
The general case could be treated directly at the expense of more compli-
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cated computations. When It > 1, o in (2) can be chosen a permutation
and we can use ¢~* as v. Hence we define #* by means of the equation

3)

in which the notation is a before and in particular ool C I.

Of course we need to show that this definition is independent of o,
o and p, that is to say, if for some oy, p; and g, 4 = §7(0)p = S*(a1)p,
and g09(1) C I, then

TH(E) S*(0)p = S* (™) H[o(K ~ oI)1S(ea|I)p ,

4) St ALK ~ eD)]S(eo|I)p = ST (o) ALK A 1)) S(eonlD)ps -
To do that let o be a permutation of I™ such that
ale™(D) v a(D)CI.
Then applying S*(«) to (4) and using (D) yields an equation equivalent
to (4) the left member of which is
) S(ag=| 1) ALo(K ~ o)1 S(go|D)p -
Applying (Py), we see that this expression is equal to
(6) HA(aK ~ aol)SHa)q .

Now we have that a(elu o;I)CI and hence S*(a)g = S(ac|I)p
= S(uoy|I)p, € A. Therefore both acl and ao.l, and hence also acl ~ aoyl,
support S+(a)g. By virtue of (iv) of Theorem 2.1 this implies that the
expression (6) is equal to

H(aK A aol ~ oo l)SH(a)q .

Similarly the right member of the equation of which (5) is the left member
could be shown equal to the same expression. This completes the proof
of the unambiguity of the definition (3).

Next we have to show that the unary operations H*(K) just defined
on A+ are quantifiers and that (4*, IT, S*,dT*) is a polyadic algebra.
That is to say, we have to verity (Q;)-(Qa) and (Ps)-(Ps). Both (Q,) and (P)
are obvious. We proceed to a stepwise verification of the remaining con-
ditions.

Proof of (Q,). We have to verify that ¢ < THK)¢, with K CI* and
g eA4*. We have, with an obvious notation

q=S*o)p,
S+(0) §*(0)p = S(oo|)p < A[o(K ~ oI)]1S(eo|D)p,
S+(o)p < St(e™)A[o(K ~ aI)]1S(es|I)p,
q < THEK)q.
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Proof of (Qs). We have to verify that
U] THE) (A THE) g3) = THE) o N TH(K) g

with ¢, = S*(0))p, and ¢, = §*(0y)p, in 4*. Let ¢ be a permutation of I
such that g(ol w 6,I)C I and set p = S*(o)[q:ATHK)g,]. We have, by
definition and familiar rules,

(8) p = S(go|)p, (K ~ 0xI)] S (00))ps s

and therefore p is in 4. The left member of (7) is Lm. = A (K)S*(o™1)p.
To evaluate it we apply (3) with ¢ in the role of ¢ and y in
that of g, y being a permutation of I+ such that yo I CI. We have
Lm. = SHy W H[y(K ~ ¢7I)]1 S{yp~*|I)p. Replacing p by its value taken
from (8) and setting » = S(yp|I)H[o (K ~ 03I)1S(00,|I)ps, this becomes
(9) Lm. = Sy ) Ay (K ~ ¢ D)]{S (yos | I)pinr} .
Both arguments of A in (9) are in 4. » is supported by y (o, — K) (which
is disjoint from yK) and is therefore independent of y (K ~ p=*I) (which
is contained in yK). Hence, applying (Q;) in 4, (9) becomes
{10) L. = S*(p)Hly (K ~ ¢ I)] S (yoy | I)ps ATHE) g, -
Since yo,I supports S(ye;|I)p,, we have, using (iv) of 2.1 and noting
that o112 oy,
(11) ALy (K ~ e ]S (yoyI)py = [y (K ~ 0,1)] S(yay|I)p, .
From (11) it follows that the first argument of A in (10) is AHK)q,. The
proof is complete.

Proof of (P,). We have to verify that

(12) AT v K) SH(o)p = THJ) T(K) S*(o)p

with J, KCI* ped; and oeI*™ ag before. The left member is
lm: = $*(e)A[e(J v K) ~ 0oI]S (g0 |I)p, where g is a permutation of I+
such that geI C I.

The right member of (12) can be written successively as
THT) S o) T o(K ~ oI)] S(go|I)p;
§*(e™) A (ed A DF[o(K ~ oI)] S(o0|I)p;

SHe™ (] A I) v (0K ~ o)1 S(go|I)p -

This Ia:-st expr-ession is the same as the one for the left member above
according to (iv) of 2.1 and the fach that ool supports S(eo|I)p.
Proof of (P;). We have to verify that

(13) - SHa)THI) o) p = S*(a) THT) SHo)p
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where p € 4;J CI*; ay, ty € IFY; 0| T*—J = a,|J*—J; and o is a permuta-
tion of I*. Let ¢ be a permutation of I+ such that goI CI. Setting
ot =y, @wet =y, K=9(J ), g=S(co|l)p, (13) becomes
Sty ) H(E)g = S*(y) A(K) g where ged, K CI, and y,|[I*— of = p,|I*—
— ¢J. The last equation is equivalent to

(14) S(By: | DA (K)g = S(By,| ) T(K)q

where f is a permutation of I* such that §(y.I u 9,I)C I. Equation (14)
is true by virtue of (P;) in A since fy,[I—gJ = fy,|I—poJ and gol—
— K CI—gJ supports H(K)q.

Proof of (Ps). We bave to verify that

(15) TH(K) 8§*(z) S*(0)p = S*(x) T (x K) S*(o)p

where K C I'*, p e A, o is a permutation of I+, and 7 is a transformation
of I* biunique on 7-1K.
By definition, equation (15) means that

(16) SH(e™)A[e(K ~vol)]S(evo|I)p = SH(re™)Alo(z K ~ oI)]S (o |I)p

where ¢ is a permutation of I+ such that ¢(zel v oI)C I. Applying (Pg)
in 4 to part of the left member of (16) we obtain

Ao (K ~ tol)]S(gve|l)p = S(pro | )T (c "t K ~ I)p .
Treating the right member in the same way and substituting the
results back in (16), we get that both members of (16) are equal to
St(zo) (o7t 1K ~ I)p.

It remains only to verify (1) above. Suppose K CI and p ¢ 4. Then
with ¢ = ¢ = dr+, the definition (3) yields

FHE)p = THE) S*(0p+)p = S*(0r+) H(K) S(8r) =H(K)p .

This completes the proof of Theorem 4.3.

We say that a compression (4y,J,S , X)) of (4,1, S, H) is faithful
if, as a transformation system, 4y is a faithful compression of 4. A* is
a minimal dilation of 4 iff 4 is a faithful compression of 4*.

A functional representation of 4 yields natural representations of
any compression or minimal dilation.

THEOREM 4.4. If A is a B-valued functional polyadic I-algebra with
domain X and A+ is a minimal I+-dilation of A then A* is isomorphic
to o B-valued functional polyadic It-algebra with domain X,

Proof. We have seen in the proof of Theorem 3.2 that if F (X”, B)r
denotes the functional I*-transformation algebra of all functions 1’1‘0m+ b ol
t0 B and if we set for g e 4 and z ¢ X”, H(g)(z) = g(z|I), then F(XI , B)
becomes an I+ dilation of (4,I,S) after identification of g with H(g)
for all ge d.
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Suppose for a moment that B is a complete Boolean algebra. Then
F(X",B) becomes a functional polyadic algebra whose quantifier
structure we denote by Tt. Now it ig easy to verify thatb

TH(K)H (g) = H(T(K)g)

whenever K CI and g e A that is to say that equation (1) is satisfied
after identification of A4 with H (4). Therefore If’(X1+, B) is a polyadic
dilation of 4 containing a minimal dilation of 4 which is functional.
But, by the unicity part of Theorem 4.3, any two minimal dilations are
equivalent.

Tf B is not complete, it can be replaced by its McNeille completion B,
for the imbedding B —B is sum preserving. As before we obtain a minimal
dilation of 4 in F(Xﬂ, B). That this minimal dilation is actually B-valued
follows from Theorem 4.2 together with the remarks at the beginning
of the present proof.

The use of B could be avoided at the expense of showing directly by
computation using (2) that the suprema (H+(K) S+(o) H (g)) (x) exist in B
whenever KECI*, c e I*1*, ge 4 and 2 X', QE.D.

TeEOREM 4.5. If A is o B-valued functional polyadic I-algebra
with domain X then any J-compression of A is isomorphic to o B-valued
functional polyadic J-algebra with domain X.

Proof. The proof is the same as that of Theorem 3.10 supplemented
with the eagy verification that

[H (A(E)f)] (2) = [A(E)H (f)] (=)
for all we X', fed; and KCJ. QED.

‘§ 5. An alternative proof. In this section we shall outline
a different proof for the main result of § 4, which is the following con-
sequence of Theorem 4.3: '

(L1) Any polyadic algebra of infinite degree (4,1, S, ) admits for
any superset I+ of I a polyadic dilation (A%, I+, S+, *).
Our new proof of (Ll), like Halmos’s proof of his dilation theorem

(11.9) in [7], proceeds inductively. We shall describe our proof in & step-
wise fashion.

1. We can easily prove (L1) in the special case I = I+. Let y be
2 biunique function mapping I+ onto I. For each e I+7* let §(z) = S (yrp),
and formegvch JCI+ leb H(J) = H(yJ). Then it iy easy to verify that
(4,I%, 5, ) is a polyadic algebra. Moreover, it is also straight-forward
to show that S(y|I) is a polyadic isomorphism of (4,I,S,d) into the

I-compression of (4, I+, 5, H). Hence (L1) easily follows in this special
case.
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2. In the locally finite case (where the local degree of 4 is ;) it is
possible to proceed from this special case as follows (after Halmos): we
puild a chain of dilations 4 =4,C4,C4,C..C4,C ..., adding one
new variable at each non-limit step, and at limit steps going in two stages;
first to a quasi-polyadic algebra (see § 7 of [7]) by taking the union of
preceding algebras, and then to a full polyadic algebra (see Theorem 7.6
of [7]).

Unfortunately, in the general case it is impossible to proceed in
this way, except in the case where there are no singular cardinals m such
that 1 < m < IT. The difficulty can be surmounted by using a direct
limit construction which we shall presently outline. It is essential to
have at hand a general notion of m-quasi-polyadic algebras. By definition,
such an object is a quadruple (4, I, S, d) such that 4 is a Boolean algebra,
I is a non-empty set, A is a mapping from the set expn(I) = {reI’: there
is a J C I such that J < m and t|I—J = é;_s} to Boolean endomorphisms
of 4, and T is a mapping from Su(I) = {JCI: J <m} to quantifiers
on A, such that (P;)-(Ps) hold with “I™ replaced by “expu(I)” and
“gubset of I’’ by ‘““member of 8,,(I)”. Halmos’s discussion of quasi-polyadic
algebras in § 7 of [7] generalizes to the present case; the point is to read
“of cardinality <m’ for “finite’” throughout Halmos’s discussion. In
particular, the essential part of Theorem 7.6 of {7] may be generalized
ag follows:

(12) If (4,I,S,H) is an m-quasi-polyadic algebra, and if for each
P e A there is a subset J of I such that T—J < m and X(K)p = p whenever
K e 8u(d), then there are S and q such that (i) (4,1,5,d) is a polyadic
algebra, (ii) Slexpm(I) = S and | SuI) =T, and (iii) the local degree of
(4,I,8,8) is <m.

3. Now we shall outline a proof of the following induction statement:

(L3) Suppose that I, &, A and I* satisfy the following conditions:

(i) ICI* and TI< 7—"*;
(i) & = {K: ICECI* and K <T%};

(i) for every K ¢ &, Ag is o polyadic algebra with variables K which
is a dilation of Ay (= A).

Then there is a polyadic algebra with variables I+ which is a dilation of A;.

Proof. For each K ¢ K let Ax be the algebra (dx, K, Sk, Hg). Form
the Boolean algebra C = ITgeqdx. Lot M ={f: f<C and for some Kef
we have fz =0 whenever K C K’ ef}. Clearly M is_a Boolean ideal
in C. Let D = C/ M. We shall define the structure of an T*- quasi-polyadic
algebra with variables I+ on D. For 7 e expy (I*) define ¢ ¢ CC ag follows:

Sg(r|K)fg i ECK,
i otherwise,

(pe)x ={
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for all K ¢ & and f € C. Then for each such v there is an S(r) ¢ D” such that

S(2)(f| M) = g f{ M
for all feC. . )
If J e S5 (I7), we define y7 € C” by putting

(whx = Hx(E ~J)fx,
for all K ¢ and f € C. For each such J there is an H(J) ¢ D such that

IV M) = | M

for all feC. It is a straight-forward matter to verify that (D, I+, s :F[)
is an I*-quasi-polyadic algebra.

For each a ¢ A7 we define ¢ « C by sefting ¢.(K) = a for all K ¢ &.
We define 1 mapping 4; into D by letting h{a) = Go/ M for all o ed;.
Let (E, I*, S E{) be the subalgebra of (D, I, s E{) generated by h(4y).
Then, using essentlally a generalization of Theorem 2.2, we find that
the conditions of (L2) are satisfied, and so we obtain S A such that
the conclusions of (L2) hold. Thus (D, It, s iE[) is a polyadlc algebra.
It is easily verified that A is a polyadic isomorphism of 4y into the com-
pression of (D, I, S, %) and the proof of (L3) is complete.

4, Now the proof of (L1) can be given. Suppose that I is a superset
«of I of minimum cardinality such that the conclusion of (L1) fails. Then

by step 1, I < I*. But then the hypotheses of (L3) may be satistied, and
we get a contradiction. ’

§ 6. Representation. We begin our discussion of the represen-
tation theory proper by dealing with the simpler and less important
case of functional representation. First we have a generalization of
Theorem 10.1 of [7].

THEOREM 6.1 (°). If 4 is a polyadic algebra with local degree m, and
4if M is a subset of I such that m < M, then
(%) S@AWT)p =V {S(0)p: oe M and oI —J =|I—J}
whenever p €A, JC I, and v e M*.

Proof. On the one hand, if ¢ e MY and o|I—J =|I—J, we have
S(e)p < S(o)A(J)p = S(r)A(J)p. This proves half of the equality ().
To prove the other half, suppose S(o)p < ¢ for all ¢ € M* such that
o|I—J =7|I—J; we want to show that S()T(J)p < ¢. Let K be a support
of p such that K < m. Then by the hypothesis of the theorem there is

(*) See [17] in which the earliest form of this theorem may be found.
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a o e M7 such that ¢ is independent of o(Knd), c(KAJ)C M—z(E-J),
o|(E ~J) is biunique, and o|I—(K ~nJ) =7|I—(K ~J). Thus

S(@)A(J)p =S@)T(K ~J)p 2.1 (iv)
=T(c(E~J)S(o)p 2.3
< H(U(K ~Jd))g
=q. Q.E.D.
From this theorem we eagily obtain.
THEOREM 6.2. If 4 is a polyad'ec algebra with local degree m, and if
M is a subset of I such that m < M then A is isomorphic to an A-valued
Functional algebra with domain M.
Proof. The isomorphism, f, is defined by the equation

(fp)(z) = S(z)p,

valid for all p e A and 7 e M’. The only step in the verification of the
properties of f which differs in any way from Halmos’s proof of (10.9)
in [7] (except in using our Theorem 6.1 instead of Theorem 10.1 of [7])
is that f is biunique. Suppose that fp = 0. Let J be a support of p of
cardinality <m, and let o and v be elements of I’ and M’ respectively
such that o7|J = ;. We have (fp)(v) =0, i.e., S(z)p =0. Hence p =S(d7)p
= S(ot)p = S(0)S(z)p = 0. QE.D.

‘We note that the proof of Theorem 4.4 combined with Theorems 6.1
and 6.2 provide us with a third proof of the existence of dilations, in the
special but important case in which the local degree, m, is at most I
This is exactly a generalization of the dilation proof Halmos applied in [7].

TUsing our general theorem on dilations (Theorem 4.3), we can now
prove the following functional representation Theorem.

THEOREM 6.3. If A is a polyadic algebra with an infinite set I of
variables, then A is isomorphic to a functional polyadic algebra whose domain
has any specified power greater tham or equal to the local degree of A.

The 1)100f is an easy application of Theorem 4.3, Theorem 6.2, and
Theorem 4.5

We warn the reader that Theorem 6.3 does not settle the question
of the existence of O-valued representations of 4. One might think that
by composing an 4 -valued representation f with a homomorphism A—-0
one would get an O-valued representation. But a quick check shows
that this homomorphism would have to preserve suprema

()p = \/ {S(o)p: o|I—d = b7}

for JCI and p ¢ 4. The existence of such a homomorphism is indeed
the whole problem.

2
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Turning, finally, to O-valued representations, we are now in a po-
sition to prove the main theorem of this paper.

THEOREM 6.4. For any I-polyadic algebra A of infinite degree b, there
exists an homomorphism h of A into an O-valued functional algebra with
domain X. If m is the local degree of A, c is its effective cardinality and n
is any cardinal such that :

n=¢  and Zns =1,
s
then. X can be chosen to be a set of cardinality n.

Proof. If b <, 4 admits a minimal dilation C of degree n of which
A is a compression. If, on the other hand, b >n, 4 admits a faithful
compression C, also of degree 1, of which 4 is a minimal dilation since
n>c¢ and ¢ >e (Theorem 3.8 and Theorem 3.12) assuming that 4 is
non-degenerate. In both cases a representation of C yields a vepresen-
tation of 4 by virtue of Theorem 4.4 and Theorem 4.5. Therefore, the
case where A is degenerate being trivial it suffices to prove the theorem
in the case where b =n. Note that m < 1.

The choice of X is simply X = I. Since every element of 4 hag

a support of cardinality smaller than m, the only quantifiers T(J) we
need to care for are those for which J < m. With this in mind, we let
Z={J,p)lJCI, J<m, ped).

In order to show that the cardinality of Z is at most n, we let K
be a subset of I of cardinality e, the effective degree of 4. Then every
element p of 4 is of the form S(o)g with ¢ e dx and o ¢ I'. Now, it is
obvious that the number of subsets J of I of cardinality not exceeding
a fixed cardinal s is at most n® and therefore the number of subsets J of T
such that J <m is at most 25 =1 Let ¢ in Ag have a support of

. . s<nt
caa:dllna.]lty § <m. Then the number of distinct elements S(o)q with
ge Iz is at most ns < 1. Hence_there are at most - ¢ elements S(o)¢ with
cel’ and gedg. Therefore Z <1 n-¢ = 1.

Hence Z can be indexed (possibly with repetitions) by the cardinal n
80 that Z = {(J, p;): £ <n}. Now there is a funetion v with domain nt
sueh that for each &<, 7, is an element of T, and satisfying the following
conditions:
0 wll—de=dr5,
(2)  7|J; is biunique;
(3)  p, is independent of 73, for each 5 < &;
(&) S(z,)p, is independent of Ted for each 7 < £&.
The exigtfence of = follows easily from the cardinality hypothesis by
& transfinite argument, but in order not to detract from the present line
of proof we shall postpone it #ill the end of the proof of the theorem.
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By Lemma 2.4 we easily infer that the set
) pel v S (ze)ps: £ <m}
generates a proper Boolean filter in A. Indeed it suffices to show by
induction on the finite number » that an intersection of » elements of
this set is non-zero. The induction is immediate, using (1)-(4), if we let
the ¢ of Lemma 2.4 be the intersection of the »—1 of the » given elements
which eome first in the indexing by u, and p be the p; of the last of these
elements.

Let P be an ultrafilter in 4 containing the above set. Henceforth,
the only relevant special property of the ultrafilter P is that for each
element p of 4 and each subset J of I such that J < m there exists p ¢ el
guch that

(5) el —=J =dr-y;

and

(6) [A(J)pY vS(o)peP.

Condition (5) implies that S(g)p < A (J)p which together with (6) entails
(7 A(J)peP iff S(o)peP.

Now we can define the desired homomorphism h. For each p e 4
and 2 ¢ X7 (=I") we set
hip)(®) =1 iff S(@)peP.
We claim that 7 is an homomorphism of A4 into the O-valued funetional
algebra of all functions from X7 to O; and we go through a stepwise
verification of this fact.
1° h preserves V. We have for p,ge4 and @ e X’
hpvg)le) =1 it S)pveerP,
iff  S(z)pvS(w)gelP,
it S(@)peP or S(x)ge P,
it Rh(p)(x) =1 or h(g)w) =1,
it R(p)(@)Vh(g)(x) =1,
it (h(p)Vh(g) (@) =1.

)

I
2° T preserves '. Ior p e A and @ ¢ X7 we have
h(p')(w) =1 iff  S(x)p'e P,

it (S(@)p) € P,

iff  S(@)pé¢P,

it h(p)() =0,
it ((p)(e) =1,
it (kp)(2) =1.

o)
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8° T preserves S(o), o ¢ I'. For ped and » ¢« X¥ we have
h(S(o)p)(x) =1 it  S(x)S(o)p e P,
ift  S(zo)p e P,
iff  h(p)we) =1,
it (S(o)h(p)(2) =1.

4° 7 preserves A(M), MCI. Let ped and we X’ Db
. E: ¢ such
h{H(M)p) (w) =1, that is to say that

(8) S(@)T(M)peP.

In order to show that (@ (M)h(p))(x) =1, we let K be a support of p
such that K <m and we set J = M ~ K, so that

(9) A(J)p =A(M)p .

Let oel’ be such that ofI—J =a|I—J
Let o =g|l—J, o nz(E—dJ) =0
is biunique. Then by Lemma 2.3 in Wlli()l}l we let v = m,) ond el

(10) S(@)HA(J)p =H(cJ)S(o)p .

'NOY let o satisfy (5) and (7) with oJ instead of J and S(o)p instead of P
ie. let Qbesl%chthat olI— o = 67—,y and H(cJ)S(0)p e P iff S(0)S(0) eP’
By (8)-(10) it follows that pen

(11) S(po)p e P.

8 kD?ne y ¢ X* by the equations y| M = 00| M and y|I—M = z|I—M.
e K—1, then gok = ook and, since k¢ o, , 0wk = xk = yk. This
I{F}‘fves that y|K = gaJ.K. Since K supports p, we get by (11) S(y)' eP
us h(p)(y) =1 and since yI—M =2|T— M, we have (E[’(M) h’(p)) (mf)= 1:
Conversely, suppose that (W(M)h(p))(s)=1. To show that
S(z)A(M)p ¢ P, let y e X be such that YI—M =a|I—-M and h(p)(y) —i

Thus s( =P, 11 ]
vy (o7 = Renee ST < P But S)A(M)p = S)T(M)p

IThjs concludes the proof of 4°.
e e;ljg 21(:]1121; tgftgm?;ate Fhe proof ofITheorem 6.4 we still have to show
o ostonce of e function v: n—I" satisfying conditions (1)-(4). This
retic affair for which we need the elementary '

LeEMyA 6.5. 17 and ar 7 that é n=n,
n m ¢ cardinal Wumbe?s such

if w<n, and i .
n s and if for each < H Oy 18 a cardinal less tham m, st;b‘:n

{2 2a<n.

n<p
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Proof. We have m <1, for otherwise we would have by the hypo-
thesis, setting s =1, 1" <1, which is absurd. If m <n we have im-
mediately

Zﬂu <neg<n.

n<p

Now suppose m =1 and Y a, = 1. Then
n<p

_ ot n ,{v‘"n” ay B~
< 28 = =T = nwrLn <n,
N<H

a contradiction. (We have set successively s =a, and 5 = and used
the inequality n® < n for all s <n.)

This completes the proof of the lemma.

Leb now p<n and v: u—I' satisty (1)-(4) with p instead of n
and 7 ingtead of 7. For each 7 < u let K, be a support of p, of cardinality
<m. Then, by virtue of Lemma 6.5, Zyeptr Ky <. Similarly, for each
n < ulet I, be a support of S (z,)p, of cardinality <m. Then <L, <.
Hence I—( | K,w UL,) is of cardinality n, and ' can be extended

n<ptl <
to0 & mapping p +1-TI7 also satisfying the conditions (1)-(4). The existence
of v now follows by a simple application of the transfinite recursion
theorem, [8] p. 70, or of Zorn’s lemma.

This completes the proof of Theorem 6.4.

TuEoREM 6.6. Let A, X and ¢ be as in the previous theorem. Then
there exists am isomorphism of A into @ O° -valued functional algebra with
domain X.

Proof. This follows immediately from 2.6, 2.7, 4.4, and 6.4. QE.D.

Theorem 6.4 can in turn be easily deduced from Theorem 6.6, For
as it has already been hinted (after Theorem 6.3) a B-valued represen-
tation of 4 yields an O-valued representation when composed with
a sum-preserving homomorphism B~0. In the case where B=0"it
suffices to use the natural homomorphism B—~B|M, with M a principal
maximal ideal.

We may ask about improvements of Theorems 6.4 and 6.6, in two
natural ways. First, can the restriction to infinite degree be eliminated?
A negative answer has been given by one of us in [15]. Second, with the
assumption of infinite degree can these theorems be extended to equality
algebrag? That the answer is negative has been known for some yf?ams:,
and a proof may be found essentially in the paper [18] of Stominski.
Thus, in a sense, the present result is the Ppest possible. It is of interes't,
however, to ask whether or not the cardinality conditions stated in
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Theorem 6.4 can be improved. We note that in the case of a denumerable
locally finite algebra 4 we can take m = w, and that n = 2" is alwagys

a solution of the equation 2=
s<m
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A complete first-order logic with infinitary predicates
by
H. J. Keisler (Princeton N.J.)

Tt is well known that the first order predicate logie (with or without
an identity symbol) has the following two properties:

(%) each proof involves only finitely many formulas;

(#x) a set of formulas is consistent if and only if it is savisfiable (Godel
Completeness Theorem) (*). .

Tn this paper we shall (in § 1) introduce a formal system L W.h'lch
hag predicates with infinitely many argument placgs and qum%t%ﬁers
over infinite sets of variables, but which has only finitary propositional
connectives and no identity symbol, and which satisfies (+). The sys.tem L
iy patterned after the finitary first-order system. ¥, of Church in [11,
and our motion of satisfaction is the natural extension of Tarski’s de-
finition (e.g. in [26], p. 193). Our main result, the Completeness Theorem
(Theorem 3.1), is that I also satisties (sx) (*). The method.s of p.roof are
based upon the proofs of Henkin, and of Rasiowa and Sikorgki, of the
Godel Completeness Theorem.

Generalizations of the Lowenheim-Skolem Theorem and of. the
Compactness Theorem to L (in § 8) will follow eas:ﬂy Jf.rom 3.1. It s t(;
be expected that many of the other familiar apphcatmps of the Go%;s
Completeness Theorem to first-order theo}x;y of rtnodegs (;W)ﬂl eventually be

eneralized to the theory of models of the gystem . o
¢ In § 4 we shall givg gome examples which indicate the difficulties
encountered when one attempts to make various improvements of our
main result. .

In § 5 we shall introduce a more general f.ormal system L#_vivlh{ch
has, in addition to the expressions of I, functions and terms with in-

1) See [5], [9], [17], [20], and [21]. .

((2; The [ngaii :Lesults of this paper were announced in abstmgf dgﬂt.)m Toteness

() For an expository discussion of several applications of the ; elat:)d nlts
theorem, and for a historical account and references, we refer to [15]. I:r r(*) e 8]
concerning the infinitary logics of [27] — which do not Ahave propel Yt ot the theory
and [28]. We shall not here be concerned with the systematic developmen
of models for I in the spirit of [21] or of [25].
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