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In [2] Karl Menger obtained relation-theoretic generalizations of the
covering theorem for separable subsets of a topological space and the
covering theorem for compact subsets of a separable space by applying
the logic of relations to the proofs of these theorems given by Kuratowski
and Sierpiniski in [1]. Theorems II; and II, of [2] are intended to provide
the abstract version of the covering theorem for separable sets; however,
Theorem II, is not quite correct. It is our purpose to provide a correct
version (Theorem 1 and its corollary) and to show how this may be nsed
to obtain new, non-topological results: an interesting maximal prineciple-
for partially ordered sets (Theorem 2) and a condition guaranteeing that
% group and each of its subsets is finitely generated (Theorem 3). These
two applications indicate the broad scope of this relation-theoretic method.

We shall make use of some of the notions defined in [2] and which
are given below.

Let 4 and B be two non-empty sets and R a binary relation defined
between the elements of 4 and the elements of B so that for each a ¢ 4
there exists some b eB such that aRb. We define a relation -® between
the subsets of 4 and of B: If 4'C 4 and B'C B then 4’ R B’ if and only
if for each a € A’ there is some b ¢ B’ such that aRb. If A’C 4 and beB,
then A4’(b) will be the set of all elements a ¢ 4’ such that aRb.

Let <l be a family of subsets of 4 and 3 a family of subsets of B.
We shall say that a subset 4’ of 4 has the covering property (property M
of [2]) if every subset B’ of B such that 4’ R B’ contains a subset B’
such that both 4’ R B" and B” «“B. A subset 4’ of 4 hag the condensation
property (property CII of [2]) if in every subset A" of A’ such that 4" ¢ &
there is an element p such that for every b ¢ B, p Rb implies that A"'(b) é <i.

We shall employ the following hypotheses:

H,: If A’ and B’ are of the same power relative to K (by which we
mean that there is a one-fo-one correspondence y between A’ and B’ such
that if a e A, beB’, and y(a) = b, then aRb) and if A’ e <l then B’ ¢ 3.

H,: The empty set ¢ belongs to <l.

Hy: If A’ ecl and ae A, then 4" {a} belongs to <f.
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THEOREM 1. Under hypotheses My, H,, and H,, if A’ has the con-
densation. property, then A’ has the covering property.

COROLLARY. Under hypotheses Hy, H,, and Hs, if A’ has the conden-
sation property, then every subset of A’ has the covering property.

This theorem and its corollary correspond, respectively, to Theorem
11, of [2] and its corollary, with the exception that in [2] hypothesis H,
is not present. The following simple example shows, however, that if
we omit Hj, the conclusion of Theorem 1 need not hold. Let A = B = {a, b}.
Define the relation R by aRa and bRD, so that A“RB. Set <l = {p} and
B =1{p,{a}, {b}}. It is easy to verify that H, and H, are satisfied but not H,
and that 4 has the condensation property. Yet, there is no set B’ )3 such
that AR B’; ie., A does not have the covering property. Once we add
the hypothesis H,, as above, the proofs given in [2] carry through with
only minor corrections and, therefore, we shall not reproduce them here.

We now apply Theorem 1 to non-topological situations and prove
a maximal principle and a theorem on groups.

THEOREM 2. Let R be an ordering (i.e., an anti-reflexive, transitive,
binary relatton) of a non-empty set 8 with the following property: every
infinite subset 8' C 8 contains an element p such that if p Rs for any element
s e 8, then infinitely many elements of S’ are in the R-relation with s. Then
8 contains a maximal element (i.e., an element m such that mRs for no
element s e S).

Prooif. Apply Theorem 2 by letting 4 = A’ be the set of all elements
a € S such that for some se 8, aRs. If s e S—A4’, then s is a maximal
element. If A4’ is empty then every element of § is maximal. Suppose
that A’ is not empty. Let B = 8 and let the relation R of Theorem 2
be the ordering R of 8. Clearly A'“RB. Let <l be the family of all finite
(or empty) subsets of A’ and let 73 be the family of all finite (or empty)
subsets of B. Each hypothesis H;, H,, H, is satisfied. The property
assumed in Theorem 4 is equivalent to the condensation property. Hence,
by Theorem 1, § must have the covering property; i.e., whenever 4'RS’,
for any subset 8’C 8, there is a finite subset §’'C 8" such that A'RS".
In particular, since 4'°K S, there is a finite subset # C § such that A'RF.
Clearly ¥ is not empty. From FC A’ it would follow that fRf for some
element f ¢ F which, however, contradicts the assumption that R is anti-
reflexive. Therefore there is some m e F such that m e §— A’. This ele-
ment m is then a maximal element in 8.

In the group-theoretic application we denote, for any subset S of
a group G, by G:8 the subgroup of G generated by §. Every subset
& C @:8 (even if G’ is not a group) will be said to be generated by S.
If a subset G'C @ is generated by a finite subset of G’ then @ will be
called finitely generated.
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THEOREM 3. In order that each subset of a group G (in particular,
G itself) be finitely generated it is sufficient that each infinite subset G ca
contain an element p with the following property: If p e G:F, where ¥
is any finite subset of G, then G:F includes infinitely many elements of G'.

Proof. We shall apply the Corollary of Theorem 1 by letting 4 = &
and letting B be the family of all finite subsets of ¢, including the empty
set. Let <f = B and let “)J be the family of all finite subsets of B. As in
the previous theorem, each of the hypotheses H,, H,, and Hj is satisfied.
We now consider the case where 4’ = A and B’ = B. By aRb we mean
that @ e G:b. Thus 4”-RB’" means that 4" C | J G:b. (Here, of course,

beB"”

we mean the set theoretic and not the group theoretic union.) Hence,
A" KRB’ implies thath b generates 4’. The property assumed in Theo-
by

rem 3 is equivalent to the condensation property for the group @. There-
fore, by the Corollary of Theorem 1, G and each of its subsets has the
covering property; ie., if ¢ C G and < is any family of finite subsets
of @ such that ¢ C SL,CI? @: 8, then there exists a finite subfamily o' C o

such that G* _C_SLE_JY, G: 8. In particular, if < is the family of all finite subsets
of &', then & C SLEJJG:S. Hence there is & finite subfamily o’ C S such
that & _C_SLE:L G:8. It follows that G’ is generated by SQY’S. Since each
set § is finite and <’ is a finite family, Sy‘v;&' is finite and, moreover,

a subset of G'. Hence G is finitely generated. Thus a direct application
of the Corollary of Theorem 1 yields that each subset &' C @ (in particular,
G itself) is finitely generated.
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