

Abstract covering theorems

by

A. Fine (Chicago)

In [2] Karl Menger obtained relation-theoretic generalizations of the covering theorem for separable subsets of a topological space and the covering theorem for compact subsets of a separable space by applying the logic of relations to the proofs of these theorems given by Kuratowski and Sierpiński in [1]. Theorems Π_1 and Π_2 of [2] are intended to provide the abstract version of the covering theorem for separable sets; however, Theorem Π_2 is not quite correct. It is our purpose to provide a correct version (Theorem 1 and its corollary) and to show how this may be used to obtain new, non-topological results: an interesting maximal principle for partially ordered sets (Theorem 2) and a condition guaranteeing that a group and each of its subsets is finitely generated (Theorem 3). These two applications indicate the broad scope of this relation-theoretic method.

We shall make use of some of the notions defined in [2] and which are given below.

Let A and B be two non-empty sets and B a binary relation defined between the elements of A and the elements of B so that for each $a \in A$ there exists some $b \in B$ such that aBb. We define a relation \mathcal{R} between the subsets of A and of B: If $A' \subseteq A$ and $B' \subseteq B$ then $A' \mathcal{R}B'$ if and only if for each $a \in A'$ there is some $b \in B'$ such that aBb. If $A' \subseteq A$ and $b \in B$, then A'(b) will be the set of all elements $a \in A'$ such that aBb.

Let \mathscr{A} be a family of subsets of A and \mathscr{B} a family of subsets of B. We shall say that a subset A' of A has the covering property (property M of [2]) if every subset B' of B such that $A' \mathscr{R} B'$ contains a subset B'' such that both $A' \mathscr{R} B''$ and $B'' \in \mathscr{B}$. A subset A' of A has the condensation property (property CII of [2]) if in every subset A'' of A' such that $A'' \notin \mathscr{A}$ there is an element p such that for every $b \in B$, p R b implies that $A''(b) \notin \mathscr{A}$.

We shall employ the following hypotheses:

 H_1 : If A' and B' are of the same power relative to R (by which we mean that there is a one-to-one correspondence γ between A' and B' such that if $a \in A'$, $b \in B'$, and $\gamma(a) = b$, then aRb) and if $A' \in \mathcal{A}$ then $B' \in \mathcal{B}$.

 H_2 : The empty set φ belongs to \mathcal{A} .

 H_3 : If $A' \in \mathcal{A}$ and $a \in A$, then $A' \cup \{a\}$ belongs to \mathcal{A} .

THEOREM 1. Under hypotheses H_1 , H_2 , and H_3 , if A' has the condensation property, then A' has the covering property.

COROLLARY. Under hypotheses H_1 , H_2 , and H_3 , if A' has the condensation property, then every subset of A' has the covering property.

This theorem and its corollary correspond, respectively, to Theorem Π_2 of [2] and its corollary, with the exception that in [2] hypothesis Π_3 is not present. The following simple example shows, however, that if we omit Π_3 , the conclusion of Theorem 1 need not hold. Let $A = B = \{a, b\}$. Define the relation R by aRa and bRb, so that $A\mathcal{R}B$. Set $\mathfrak{S}l = \{\varphi\}$ and $\mathfrak{B} = \{\varphi, \{a\}, \{b\}\}$. It is easy to verify that Π_1 and Π_2 are satisfied but not Π_3 and that A has the condensation property. Yet, there is no set $B' \in \mathfrak{P}$ such that $A\mathcal{R}B'$; i.e., A does not have the covering property. Once we add the hypothesis Π_3 , as above, the proofs given in [2] carry through with only minor corrections and, therefore, we shall not reproduce them here.

We now apply Theorem 1 to non-topological situations and prove a maximal principle and a theorem on groups.

THEOREM 2. Let R be an ordering (i.e., an anti-reflexive, transitive, binary relation) of a non-empty set S with the following property: every infinite subset $S' \subseteq S$ contains an element p such that if pRs for any element $s \in S$, then infinitely many elements of S' are in the R-relation with s. Then S contains a maximal element (i.e., an element m such that mRs for no element $s \in S$).

Proof. Apply Theorem 2 by letting A = A' be the set of all elements $a \in S$ such that for some $s \in S$, aRs. If $s \in S-A'$, then s is a maximal element. If A' is empty then every element of S is maximal. Suppose that A' is not empty. Let B = S and let the relation R of Theorem 2 be the ordering R of S. Clearly $A' \mathcal{R}B$. Let \mathcal{A}' be the family of all finite (or empty) subsets of A' and let \mathcal{R}' be the family of all finite (or empty) subsets of B. Each hypothesis H_1 , H_2 , H_3 is satisfied. The property assumed in Theorem 4 is equivalent to the condensation property. Hence, by Theorem 1, S must have the covering property; i.e., whenever $A'\mathcal{R}S'$, for any subset $S' \subseteq S$, there is a finite subset $S' \subseteq S'$ such that $A'\mathcal{R}S''$. In particular, since $A'\mathcal{R}S$, there is a finite subset $F \subseteq S$ such that $A'\mathcal{R}F$. Clearly F is not empty. From $F \subseteq A'$ it would follow that fRf for some element $f \in F$ which, however, contradicts the assumption that R is antireflexive. Therefore there is some $m \in F$ such that $m \in S-A'$. This element m is then a maximal element in S.

In the group-theoretic application we denote, for any subset S of a group G, by G:S the subgroup of G generated by S. Every subset $G' \subseteq G:S$ (even if G' is not a group) will be said to be generated by S. If a subset $G' \subseteq G$ is generated by a finite subset of G' then G' will be called *finitely generated*.

THEOREM 3. In order that each subset of a group G (in particular, G itself) be finitely generated it is sufficient that each infinite subset $G' \subseteq G$ contain an element p with the following property: If $p \in G: F$, where F is any finite subset of G, then G: F includes infinitely many elements of G'.

Proof. We shall apply the Corollary of Theorem 1 by letting A = Gand letting B be the family of all finite subsets of G, including the empty set. Let $\mathfrak{sl} = B$ and let \mathfrak{B} be the family of all finite subsets of B. As in the previous theorem, each of the hypotheses H1, H2, and H3 is satisfied. We now consider the case where A' = A and B' = B. By aRb we mean that $a \in G:b$. Thus $A'' \mathcal{R}B''$ means that $A'' \subseteq \bigcup_{b \in B''} G:b$. (Here, of course, we mean the set theoretic and not the group theoretic union.) Hence, $A''\mathcal{R}B''$ implies that $\bigcup_{b\in B''} b$ generates A'. The property assumed in Theorem 3 is equivalent to the condensation property for the group G. Therefore, by the Corollary of Theorem 1, G and each of its subsets has the covering property; i.e., if $G' \subset G$ and S is any family of finite subsets of G such that $G' \subseteq \bigcup_{S \in S} G: S$, then there exists a finite subfamily $O' \subseteq O$ such that $G' \subseteq \bigcup_{S \in \mathcal{S}'} G: S$. In particular, if \mathcal{O} is the family of all finite subsets of G', then $G' \subseteq \bigcup_{S \in S} G: S$. Hence there is a finite subfamily $O' \subseteq O$ such that $G' \subseteq \bigcup_{S \in \mathcal{S}'} G: S$. It follows that G' is generated by $\bigcup_{S \in \mathcal{S}'} S$. Since each set S is finite and O' is a finite family, $\bigcup_{S \in S'} S$ is finite and, moreover, a subset of G'. Hence G' is finitely generated. Thus a direct application of the Corollary of Theorem 1 yields that each subset $G' \subset G$ (in particular, G itself) is finitely generated.

References

- [1] C. Kuratowski and W. Sierpiński, Le théorème de Borel-Lebesque dans la théorie des ensembles abstraits, Fund. Math. 2 (1921), pp. 172-178.
- [2] K. Menger, An abstract form of the covering theorems of topology, Ann. of Math. 39 (1938), pp. 794-803.

Reçu par la Rédaction le 6.2.1962