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Proximity and generalized uniformity
by
E. M. Alfsen and O. Njastad (Oslo)

In his paper [11], p. 567, Yu. M. Smirnov raises the problem whether
every proximity structure admits a finest uniform structure compatible
with it. In the terminology of [2], p. 97, the problem concerns the existence
of a finest uniform structure within every p-equivalence class. This
question gains particular interest from the fact that such a finest structure
would determine a minimal completion among those determined by
uniform structures of a given p -class.

In another paper [12], p. 764, Smirnov claims that the answer to
the problem is negative and sketches a counter-example, which he later
([15], p. 1282) proves to be erroneous. TUp to now the question has been
open, as far as we know.

In the paper [12], p. 761, Smirnov defines the concept of a complete
proximity space without reference to any particular uniform structure,
and he proves that every proximity space admits a minimal completion
of this kind. Further investigations along the same lines have been
performed by S. Mréwka ([9], [10]) and S. Leader ([7], [8]). Thus
the general existence of a minimal completion is established, but the
1-1 correspondence between uniform structures and completions has
been lost.

In Section 1 of the present paper we give an (as we believe correct)
example of a proximity class of uniform structures without any finest
member.

In Section 2 we introduce a generalized notion of uniform structure
by replacing the intersection-axiom for enfourages by a less restrictive
axiom which only involves uniform neighbourhoods of sets and not the
entourages themselves. Our discussion is primarily based on A. Weil’s
axioms ([16], p. 8, [4], p. 131), but in an appendix to the paper, we sketch
how one could start out from Smirnov’s foundations in terms of coverings
([11], p. 572). Then the passage to generalized uniform structures would
consist in the replacement of a “general intersection-axiom” by a “finite
intersection-axiom’. After some introductory remarks we prove that for
generalized uniform structures the answer to Smirnovs problem is affir-
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mative, and we give an explicite characterization of those generalized
uinform structures which oceur as the finest member of their respective
p-classes. They are the fotal structures defined in § 2, and they woll play
a role in the theory which is in & certain sense dwal to the role played
by the totally bounded structures. We also show that the class of total
generalized uniform structures comprises all ordinary metrizable (or
pseudo-metrizable) uniform structures. The proof of this statement is
based on a lemma of Efremovié ([6], p. 190), and the theorem itself ig
in fact only a restatement of Smirnov’s Theorem 19 of [11], p. 570.

In Section 3 we point out that the p-equivalence relation between
generalized uniform structures is compatible with the complete lattice-
structure on the collection of generalized uniform structures, a result
which has no counterpart in the theory of proper (ie. not generalized)
uniform structures (cf. the example of § 1). By means of this result we
obtain new information concerning the interrelationship between proximity
continuity and uniform continuity. In particular we show that Efre-
mori¢’s theorem on the equivalence of metric uniform continuity and
metric proximity continuity ([6], p. 190), as well as the equivalence of
totally bounded uniform continuity and proximity continuity, proved
in [1], p. 357, both are specializations of the general characterization of
proximity continuity by means of uniform continuity.

In Section 4 we prove that every generalized uniform space can be
completed and also that the appearence of new completions corresponding
t0 non-proper uniform structures will reestablish the 1-1 correspondence
between (generalized) uniform strucutres and (proximity space) com-
pletions. Hence there is no more need for an independent treatment of
the latter. In particular, the minimal completion of a proximity space
(by Smirnov denoted the completion [12], p. 761) is obtained by com-
pletion of the finest generalized structure compatible with the proximity
structure.

1. A p-eqivalence class of uniform structures not pos~
sessing any finest member. We shall need an auxilliary result to
which we shall also make references in the subsequent sections. It is
related to Lemma 1 of [11], p. 568. ’

Lemma. Let U, be the (totally bounded) coarsest umiform structure

of & p-equivalence class P of uniform structures om a set S. If V is a subset
of 8x 8 for which:

(1.1) ACV(A) (P), forall ACS s
then we also have
(1.2) A€V A UNA) (P), for all UeU,, ACS.
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Proof. We may assume U ={J(d;x 4;) where {di}ier,..n I8
i=1

a p-covering of § (conf. [1], p. 354, Theorem 1). First we verify (1.2)
for » = 2, and then we proceed by induction.
1. For n =2 we have

[VAUHA) =V A THAd—4y) W[V A THA—4,) [V A UI(A A4~ 4y)
—[V(Ad—4) A AT V(Ad—4y) ~ AT UV (d A 4y~ 4y) .

By use of distributivity and after some reduction, this transforms to
WAllA)=FA)nl4d vV (d )]l uT(4d~4)].
Now we observe that the following relations hold:
A—4,CC4,EU(C4,) = 4,,
AnNA4, E€V(AnA4).

Combining these two statements by means of elementary properties
of the relation € (cf. formula (1.4) of [1], p. 354) we obtain:

A=(A—A) U (A ~A)CA LT(AAA4).

(1.3)

Similarly we prove:
AC A, UV(4A A A4y,

Applying these two relations to (1.3) and using elementary prop-
erties of the relation “€”, we obtain the desired conclusion:

AC[VATIA).

2. For #n > 2 we apply the formula of [3j by which we can write

N
U=NTU:

i=1 _
where U; = (Bl xB!) u (BixBj) and {Bi, B} is a p-covering for every 1,
i=1,..,N, and N =2"

Proceeding by induction with respect to N and making use of the
statement just proved, we obtain the validity of the general formula (1.2),
q.e.d. ’

TEEOREM 1. Let 8 be a set admitiing two partitions {Ai}i=1s,..,
{Bj}j=1,... such that A;~AB;+ @ for ¢,j=1,2,..., and let U, V be the

o0
uniform structures defined by the single entourages U = .UI(A”(A‘) and
i

(14)

V= @ (Byx Bj), respectively. Then there is mo finest umiform structure
=1

in the p-class of sup (WUu, V). (For the definition of WU, V., see [1],
p. 354.)
16*
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Proof. 1. We first prove that sup(U, V) is of a strictly finer
p-class than sup(U,, Va). (For the definition of ““finer”, resp. “coarser”
p-class, cf. [2], p. 102.)

The structure sup(U, ) is defined by the single enfourage

Un¥ =l By x (4i o By
1,f=1
TUsing the explicite characterization ([1], p. 354) of U, and %Y,,
we conclude that sup (., V,) has a fundamental system of enfourages
of the form i

(1.8)

(1.5)

W= U
m=l,M
n=L...,N

[(Bn ~ Fu) X (Bm ~ Fy)]

where {Bm}m=1,..nr and {Fply=,.. .y are such finite partitions of § that
each By, is a union of sets A;, and each F, is a union of sets B;.
Now we consider the set

¢=00U4) B

Evidently the relation G € G subsists relatively to sup (%, V). We
shall prove that the similar relation is inexact relatively to sup (U, V).

Let W be any entourage of the type (1.6). Among the sets Ep there
is at least one, say Ep,, which contains more than one A; as a subset.
In particular, let A;C En,, A;CEn, and 4 <4,. Among the sets F,
there is just one, say F,,, which contains B;,.

Let 2 € A;, ~ By, and y € 4;, AB;,. Then z¢ G, y ¢ CG and

(@, Y) € (Bmg ~ Fuy) X By n Fr)JCW.
Thus
yeCEnW(@.

Since W was arbitrary, this means that GquG relatively to
$up(Uory Va)-

2. We assume that the p-class of W = sup(U,, V.) possesses
a finest uniform structure ', and we consider the structures

WU = sup (U, V) == sup(U, W), V' =sup(V,U,) = sup(V, W).

Clearly U, V' are of p-classes finer than 9, and it follows by the
lemma that they are also of p-classes coarser than 9. Hence U’ and '
are both of the same class as 9. Thus they are coarser than 0, and
so sup(U’, V') is coarser than 9”. Hence sup(W’, V") is of the same
class a8 W and W'.

On the other hand

sup (U, V') = sup(U, V).
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Hence sup(U’, V') should be of a strictly finer p-clags than 97, in
virtue of the first part of the theorem. This contradiction accomplishes
the proof.

2. Generalized uniform struetures. We shall study collections
Q) of sets VC 8 xS satisfying the customary requivements to uniform
structures except the intersection axiom which is replaced by a less
restrictive condition involving only intersections of uniform set-neigh-
bourhoods V(4). More specifically, the collection <)V of entourages ¥V of
a generalized uniform structure satisfies the following requirements:

(G.T.1) 4= {(x, z)lzeS} C‘;’ﬂ v,
€)'

(GU.2) UeV, UCTV=V ).
(G.U.3) For all U eV there exisis a VeV such that V=V1CT.
(G.U4) For all U eV there exists a V ¢V such that V2C U.

(G.U.B) If Ay, ..., An C 8 and Ty, ...
exists a single entourage U € )? such that

, Un €V are arbitrary, then there

UA)CTU(ds) for i=1,..,n.

The relation 4 € B is defined in the usnal way (cf. [1], p. 353), and
it is easily seen to satisfy the requirements (P.1)-(P.6) of [1], p. 354.
Hence we conclude:

PropoSITION 1. The generalized uniform structures determine proximity
structures and hence also topologies in the same way as (proper) uniform
structures do. The topology associated with a generalized uniform structure
is completely regular whenever the structure is separaiing in the sense of

(G.U1) 4d4=NOV.

Ve

Now we may define the relation of p-equivalence for generalized
structures in the same way as for (proper) uniform structures ([2], p. 97).
In the sequel we shall use the term ‘p-equivalence class” or briefly
‘‘p-class® to mean a p-equivalence class of generalized uniform structures,
unless otherwise is stated. We also define the order relation (‘“finer”,
“‘coarser”) between generalized uniform structures in the customary way.

A generalized uniform structure U on § will be said to be toially
bounded if the entire space § is a tofally bounded set with respeet to U,
ie. if it is possible for every entourage V of QU to find a finite covering
{4ih<i<n of 8 such that 4;x A;CV, i=1,...,n (ef. [1], p. 356).

The Theorems 1, 2 of [1] remain valid for generalized uniform strue-
tures. More specifically, we shall have the following
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THEOREM 2. Every p-equivalence class of generalized uniform struc-
tures contains a coarsest member U, which is a proper uniform structure
with a base consisting of the sets:

n
(2.1) U (Asx 4y,
where {Ashei<n 8 S0OMe p-covering of 8 (cf. [1], p. 353).

Furthermore U, is the only totally bounded, generalized wniform structure
of the class.

Proof. 1. It follows from Theorems 1, 2 of [1] that the sets (2.1)
form a Dbase of a totally bounded uniform structure which is the coarsest
proper uniform structure of the class. We shall prove that 9, is coarser
than any generalized uniform structure <% of the class as well.

Let V be some set of the form (2.1). By the definition of a p- covering
there exist sets B;, 1 =1,...,n, such that B;€ 4; for ¢ =1,..,n and

S = U B;. Since U is supposed to be a member of the given p-class,

i=1
there exist entourages Ui, ¢ =1,..,#%, of U such that UyB;)C 4; for
i =1, ..., n. In virtue of axiom (G.U.5) there exists a single entourage U
of U such that U(B;)C 4; for i =1, ..., n.

Hence:

vc Q[U(B,) x U(B)IC ) (Aix 4 =V .

=1
Thus we have proved U to be finer than 9,, q.e.d.

2. To prove ‘U, to be the only totally bounded generalized structure
of the class, we may proceed as in the second part of the proof of Theo-
rem 2 of [1], since the infersection axiom of proper uniform structures
was not involved in that proof.

COROLLARY. If a generalized wniform structure is totally bounded,
then it is mecessarily a proper uniform structure.

The introduction of generalized uniform structures enables us to
obtain a new result which is in a certain sense a dual to Theorem 2. To
tacilliate the formulation and proof of this result, we introduce the follow-
ing notation: A subset V of §x § is said to be entourage-like relatively

to a proximity structure on § if it admits a sequence {Vy}peys,. of sym-
metric subsets of S x 8 such that:
(2.2) ViCV, Vi CVa, ACVLA) forall ACS

. and » =1,2,..

We shall say that a subset V of S x§ is entourage-like relatively
to a proximity class of generalized uniform structures, or relatively to

icm

Proximity and generalized uniformity 241

a single such structure, if it is entourage-like relatively to the associated
proximity structure. Clearly every enfourage of a generalized uniform
structure is entourage-like. Generalized uniform structures for whiech the
reverse statement holds, i.e. for which every enfourge-like set is an entou-
rage, will be said to be total.

THEOREM 3. Every p-equivalence class of generalized uniform struc-
tures contains a finest member UWU,, and the entourages of U, are exractly
the enfourage-like sets of the given p class. By definition, U, is the only
total structure of the class.

Proof. Let < be the collection of all entourage-like sets relatively
to the given p-eclass. Clearly, every entourage ¥ of 9, belongs to ),
and )V satisfies the requirements (G.U.1)-(G.T.4). To prove that
satisfies (G.U.5), we assume A,...4,C 8 and U,...Up eV. By the de-
finition (2.2) we conclude that 4; € Ui(4;)for ¢ =1, ..., n. Being a member
of the p-class in question, %, must contain entourages Vi, i=1,..,n,

such that Vi(dy) C Uy(ds) for i=1,..,n Now V= 0171 is still an

entourage of the proper uniform structure . Hence V € Q) and so the
relations V' (4;) C Uj(4;) for i =1, ..., n yield the validity of (G.U.5).

Thus we have proved 97 to be the collection of entourages of a gener-
alized uniform structure 9, which clearly must be of a p-equivalence
class finer than the given class. It follows from the definition (2.2) that U,
also is of a p-class coarser than the given class, and hence it must belong
to it. U, is obviously the finest member of this class since every enfourage
of any other member must be enfourage-like, and so belong to V.

If the collection of entourages of a generalized uniform structure %
is the union of the collections of enfourages of a family {U,},er of struc-
tures, then we shall simply say that 2 is the union of {U,},er. A uniform
structure which can be defined by means of a single pseudo-metric (“‘écart”
in the terminology of [5], p. 9), will be termed pseudo-metrizable. It is
classical that a uniform structure is pseudo-metrizable if and only if
it admits an enumerable base.([5], p. 15).

THEOREM 4. The finest generalized structure U, of a given p-equiva-
lence class P is equal to:

(1) The union Uy, of all generalized uniform structures of the class P.

(2) The uwion U, of all generalized uniform siructures of classes coarser
than P.

(8) The union Uz of all proper umform structures of the class P.

(4) The union U, of all proper uniform structures of classes coarser
than 2.

(5) The union Us of all pseudo-metrizable uwiform structures of classes
coarser than P.
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Proof. 1. Using the set-theoretic inclusion sign with the obvious
meaning, we can write:

U T U T U C Y,

The first relation follows from the fact that U, itself is a generalized
uniform structure of the class . The second relation is trivial, and the
third relation follows from the fact that every eniourage of any structure
of a class coarser than ? must be entourage-like relatively to P.

2. Leaving aside the less trivial characterization (3) for a moment,
we can write:

U CUsCUCU, .

The first relation follows from the fact that if ¥ is an entourage-like
set with a defining sequence {Vy,}y=1s.. (¢f. (2.2)), then the sets ¥, will

form a base of a pseudo-metrizable uniform structure for which ¥ is an
entourage. The remaining two relations are trivial.

3. Trivially U CU,. To prove the reverse relation, we assume T to
be some enfourage of U,. By the characterization (4), there exists some
proper uniform structure 947 of a p-class coarser than 9, such that V
is an entourage of W.

Since ) is of a class coarser tlian P, we have

(2.3) AEW(4) (P),

whenever AC S, and W is an enfourage of ).

Now we eonsider U’ = sup (W, WU,), i.e. the coarsest proper uniform
structure finer than both 9¢ and U,,. (Here U, is defined as in Theorem 2
relatively to the class ? in question.) In virtue of the lemma to Theorem 1
" and the formula (2.3) we shall have:

ACU A WI4) (),

whenever A C 8, U is an entourage of U, and W is an enfourage of .
This means that 9’ is of a coarser p-class than ?. But as U’ is finer
than U, it is also of a finer class than ?, and so U’ « P. Hence P contains
& proper uniform structure, ', for which V is an entourage, and so we
have proved U, C%YV,, q.e.d. (Of. Theorem 18 of [11].)

COROLLARY 1. If there ewists a finest structure among the proper
uniform structures of a p-equivalence class, then this struciwre is equal
to U,.

Proof. Application of the characterization (3) of Theorem 4.

COROLLARY 2. There ewists a finest structure among the proper unijorm
swfructures of a p-equivalence class if and only if ils collection of entourage-
like sets is closed with respect to finite intersections.
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Proof. The condition of the Corollary ensures that . is a proper
uniform structure.

COROLLARY 3. There exist iotal, generalized uwiform structures which-
are not proper uniform structures.

Proof. The structure 9, of the proximity class of sup{Us, V)
in Theorem 1 must be such a structure.

Our next theorem is based on a lemma due to Bfremovié ([6], p. 190).
For the sake of completeness we sketch the proof. The theorem itself
corresponds to Theorem 19 in [11], p. 570.

LEMMA. For a given set 8 we assume U and W io be such symmetric
subsets of 8 x 8 that W*C U. Then every sequence {(&n, Yn)in=1s,.. 00 8 X 8,
for which (zn, yn) € U for n =1, 2, ..., admits a subsequence {ZTny, Yn)} x=1.2...
such that (®n,, Yn,) € W for k,1=1,2, ...

Proof. For every n we define two sets By, Cn of natural numbers:

By = {m| (@n, ym) « W},

Clearly (yp,¥q) € W2 whenever p,qeBy,. Hence we must have
(g, yp) € W2 whenever p, ¢ e By, for otherwise (a,, y,) e W*C U contrary
to the hypothesis. Thus if B, is infinite for any #, then {Zm, Ym)Imes, is
a subsequence with the desired property.

Similarly we prove that if Cy is infinite for any =, then {(zn, Ym)}mec,
is a subsequence with the desired property.

Hence we have only to consider the case in which B, and C. are
finite for every n. Then we denote the first natural number strictly greater
than # and all members of all sets Bp and Cm, m =1,2,...,7n, by the
symbol ¢(n), and define n, =1, n, = @(ny), and generally ny.: = ¢(n)-
Then the sequence {(%n, Ym)}e=12,... Will have the desired property.

THEOREM 5. Hvery uniform structure U defined by a single pseudo-
metric o, is total.

Proof. Let U be an entourage-like set relatively to U. By definition
there exists another entourage-like set W such that WC U.

If U were not an enfourage of 9, then there would exist a pair of
elements (x,, y») with the following properties for every n:

Cn = {m| (Zm, Yn) € W} .

1 .
(2.4) 0(#nsYn) < n? (@n, yn) €T .

By the lemma we can extract a subsequence {{Zn,, ¥ne)lr-12.. such
that (2n,, Yn,) ¢ W for all k,1=1,2,... Now we define X = {&s,| k=1,2,..}
Y = {ya| k=1, 2, ..} obtaining W(X)C C¥, and hence X € CY.

On the other hand, we may apply the first relation of (2.4), giving
VunlX) ~n Y s @ for all n. (Here Vi, denotes the entourage consisting
of all (z, y) for which ¢(z,y) < 1/n, as usual.) This statement contradicts
the relation X € CY, and so the proof is accomplished.
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§ 3. Compatibility of p-equivalence and lattice operations
for generalized uniform structures. We recall that a proximity
class P, on a set § is said to be coarser than another proximity class
P, on S provided the (unique) totally bounded uniform structure U,
associated with ?;, is coarser than the corresponding structure 9,
associated with 2, ([2], p. 102). This definition corresponds to the similar
definition for proximity spaees ([11], p. 557), which simply states that

(3.1) ACB (P)=>AEB (D).
From the above definition we immediately deduce the following:
ProrosITION 2. The collection of p-classes on a set S is organized
to a complete lattice by the order relation ‘‘finer-coarser”.

The lattice-supremum of a family {P,}..p of p-classes on § will be
denoted by the customary symbol VL/F P,. Similarly we denote the lattice-

infindum by the symbol A 2,. For the lattice operations on the collection
verl

of proper uniform structures we keep the notations sup U, inf 9, re-
yeI yer
serving the symbols '\ U,, A 9, for the corresponding operations on
yeI' yel’

the collection of generalized uniform structures. (For the existence and
explicite characterization of the latter operations, cf. Theorem 6 and
the formula (3.2) below.)

Remark to Proposition 2. V 2, is the p-class containing the
vel

totally bounded uniform structure sup C)[c,,y where ‘lZ,,,y denotes the totaly
yel'

bounded uniform structure associated with ?, for each y ¢ I. An explicite
characterization of \/ 2, in terms of the relation “€” may be obtained
yer

7
from the formula (2.6) of [1], p. 359. However, we shall not need. such
a characterization in the sequel.

THEOREM 6. The collection of generalized uniform structures on a set S
is organized to a complete lattice by the order relation “finer-coarser”, and
the p-equivalence-relation is compatible with this lattice structure in the
sensethat \/ U, (resp. A\ U,) is of the p - dlass \/ P, (vesp. \ P,) whenever U,,

yer yer yer yel'
v el, are generalized wniform structures of p-classes 2,, y e I'.
Proof. Let U,, y  I'be generalized uniform structures of p-classes 2,

y eI, and let U, denote the totally bounded uniform structure of the
p-clags P = \4 Py. Let Y denote the set-theoretic union of the systems
YE.

of entourages of all U,, y e I" and of U,. We shall prove that 9 is the
system of entourages of a generalized uniform structure which is the
coarsest structure finer than all U, v eI
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Evidently the requirements (G.U.1)-(G.T.4) ave satisfied. To verify
(G.TU.5) we assume 4;C 8 and U;eW for ¢ =1, ..., n. For every fixed 4
the subset U; of 8§ x 8 will either be an entourage of some U, y e I', or
of U,. Since the structures U, y e I', ave all of p-classes coarser than 2,
we shall have 4; € Ugd;) relatively to 7 in any case. Consequently
there exist entourages V; of U, such that Vi(4;) C Uy A4;) fori=1,2,..,n.
Now the intersection ¥ = ¥, n ... ~ V,, will be an entourage of U, as well,
and hence we have:

VeW; V(4)CUfdsy) for i=1,..,n.

Thus we have proved that ) is the system of entourages of a gener-
alized uniform structure “ on S.

The structure 7 is evidently finer than all 9, y e I". To see that U
is coarsest generalized uniform structure with this property, we assume
that ' is some other generalized uniform structure finer than all U,
v T, and wé only have to prove that U’ is finer than .. This however,
follows from the fact that %’ must be of a p-class finer than all 7, and

hence finer than 2. Thus we can write U = \ U,.
vel

It follows directly from the definition of *)7 that U =\ 2, is of
yel
the p-class P =\ 2,.
yerl
Finally the existence of A %, and the fact that A -, is of the
vel yel
p-class A P,, can be obtained by duality from the statements just
yer

proved.

Remark. From the proof of Theorem 6 we conclude that Vrfll,,

(73
can be expressed explicitely by the following formula in which U, is
the totally bounded wuniform structure of \/ .7, (and in which we use
yel

the concept of “set theoretic union” of uniform structures in the meaning
defined ahead of Theorem 4):

VU, =W o U U, .
pel’

ver

(3.2)

From the 'compa,tibﬂity of the p-equivalence-relation and the lattice
operations for generalized uniform structures, we immediately obtain
a series of alternative characterization of the ordering between p-classes:

COROLLARY 1. The statement (3.1) is equivalent to each of the following:

(1) For all U, e P, there exists a Uy e Py such that Us is coarser than Ws.

(2) There exists a U, e P, and a Uy e Py such that Uy is coarser than Us.

(3) For all W, P, there exists a W, « P, such that U, is coarser than U,.
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(4) The finest member WU, of Py is coarser than the finest member A,
of P

(5) The coarsest member WU, of PP s coarser than the coarsest member U,
of Ps. ’

Proof. The first three statements follow from general charac-
terizations of the order relation for congruence classes modulo a lattice-
congruence in terms of representatives of the classes. The fourth statement
follows from the first statement and implies the second. The fifth state-
ment follows from the third statement and implies the second.

Let P, and P, be proximity classes on the sets §; and §,, respectively,
and let  be a mapping of 8, into S,. We recall that f is said to be p-con-
tinuous (w.r. to P, and P,) if the following implication holds

(3.3) A EB (P)=]T"(4) €[ (B) (7).

We now observe that if 9 is a generalized uniform structure on S,,
then so'is the inverse image by f on S,. Hence uniform continuity may
be defined for generalized uniform structures in the same way as for
proper uniform structures. Clearly the inverse images of p-equivalent
structures are p-equivalent, and the inverse image of a totally bounded
structure is totally bounded. By means of Corollary 1 above, we may
then give a series of alternative characterizations of p-continuity.

CoROLLARY 2. The statement (3.3) is equivalent to each of the following:

(1) For every U, e P, there exists a U, e Py such that [ is uniformly
continuous relatively to U, and U,.

(2) There emists a U, € P, and a U, € P, such that | is uniformly con-
tinous relatively to U, and U,.

(3) For every U, e Py there exists a WUy e Py such that [ is uniformly
continuous relatively to Uy and U,.

(4) 1 s uniformly continuous relatively to the finest structure Uy, in Py,
and the finest structure U, in Py.

(5) 1 is unmiformly continuous relatively to the coarsest structure U,,
in Py and the coarsest structure U,, in P.

The statement (5) of Corollary 2 is the characterization given in [1],
p. 357, while (4) is essentially that of [8], p. 206. Combining the state-
ment (4) of Corollary 2 with Theorem 5, we obtain the following result
which was originally proved by Efremovié as one of the first theorems
in the theory of proximity ([6], p. 190).

COROLLARY 3. A mapping | from a (pseudo-) meiric space into
a (pseudo-) metric space is p-continuous if and only it it is untformly con-
HnuUous.
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§ 4. Completion. For the sake of simplicity we restrict ourselves
to study separating (cf. (G.U.1')) generalized uniform structures. (For
the non-sepavating case, c¢f. “Remark” in [2], p. 101.) A set S provided
with a generalized uniform structure U will be termed a generalized
uniform space and will be denoted (S, 9U%). The concepts of a regular filter,
Cauchy-filter, complete space, and completion is defined in the customary
way (ef. [2], p. 97, [4], p. 145).

We remark that all generalized uniform structures of the same
p-class will possess the same regular filters, and the Theorems 1, 2 of [2]
remain valid for generalized structures.

Defining the concept of a base in the obvious way, we can state the
following:

PrOPOSITION 3. Ewvery generalized uniform structure U on S adwmits
a base of entourages which are closed in the product topology on 8 X 8,
when S is provided with the topology associated with U.

The proof is similar to the corresponding proof for proper uniform
structures, cf. [4], p. 141. That proof actually involves the intersection
of two entourages U and W, but only to ensure the existence of a base
of symmetric sets. In our case this follows from (G.U.3).

THEOREM 7. Lei f be a function defined on a dense subset A of a gener-
alized uniform space (8, U), taking values in o separated, complete, gener-
alized wniform space (8',U"), and assume f to be uniformly continuous.
Then | can be extended to a uniformly continuous function f defined on the
entire space S. .

The proof is similar to the corresponding proof for proper uniform
structures and makes use of the existence of a base of closed entourages
a$ established in Proposition 3. For details ef. [4], p. 151.

In the sequel 9 shall denote some fixed generalized uniform structure
on a set S, and we shall use the symbol § to denote the collection of all
regular Cauchy-filters of the generalized uniform space (8, ). To every
entourage V of U we assign a subset V of 8§ x S defined by the formula:
(£.1) (FyQ) eV (O e F A QICx OCT].

For every Cauchy-filter 7 and every entourage V of i we define the
(non-empty) subset QF of § to be the union of all those C¢F which are
small of order V (i.e. for which C x CCV).

For every subset A of § and every entourage V of U we define:

(4.2) VIA]=65%.
Fed
LevyA, If V, WeU, ACS8 and
W(V[A]) CV(VLA])
then W) ).
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Proof. Let F e W(A), ie. there exists a Qe A and a C eF A @ such
that ¢ x CCW.
The filter ¢ will contain a set B which is small of order ¥ and is
a subset of C. Hence BCQF, BC (. By the definition (4.2),
BCV[A].

Let e C and y €« BC ¢ be arbitrary. Then (z,y) e ¢ x C CW, and
s0 % ¢ W(B). Hence we have ¢ C W(B), and so:

CCW(B)CW(V[A].

By the assumption of the Lemma this entails
(4.3) CCV(VLA].

Let p, ¢ be two points of § such that:

peVIAl, qeVICP¥(A)]

By the definition (4.2), there exist subsets D, D, of § small of
order V such that p e Dy, q € Dy, and such that D, belongs to some filter 7,
of A and D, belongs to some filter 9, which is not in V3(4). Hence
¥y, Ug) ¢ 73. Thus we have (p, q) ¢V, since otherwise D, ~ D, would
belong to 9, ~ U, and be small of order V3, giving (9%,, ¥,) € 73, Otherwise
stated, ¢ ¢ V' (p), and so we have verified that:

VICVs(A)] ~AV(VIA]) =@ .

By the definition (4.2), this means that V(V[A]) admits no subset D
small of order V, belonging to any % ¢ ﬁ(ﬁ). Hence we have proved. the
implication
(44) DxDCV, DCV(V[A]), DeAel=>UAeTPA).

The original filter F contains a set D such that Dx DCV and DCC.
By (4.3) we have D CV(V[A]), and hence by (4.4) F e V3(4), q.e.d.

‘We are now able to state and prove the completion theorem for
generalized uniform spaces in a form which brings out clearly the relations

to the compactifications of the associated proximity spaces (Cf. [2],
p. 103, [11], p. 556.)

THEOREM 8. Let U be a separated, generalized uniform structure on
a set 8, and let P be the associated prowimity siructure (or prozimity class).
Then the generalized uniform space (8, U) admits a completion determined
uniquely up to a uniform homemomorphism. Moreover, the prozimity
space (8, P) associated with the unijorm space (8, W) of the completion,
may be interpreted as a prowimity-subspace of the proximity space (S, )
of the compactification of (S, P).

icm°®
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Proof. 1. As before, we denote the collection of all regular Cauchy-
filters by §, and we introduce the notation U for the collection of all
sets V of the form (4.1) where ¥ is an entourage of Q. It is easily verified
that the requirements (G.U.1), (G.U.3), (G.U.4) are satisfied for 9. To
verify (G.U.3), we consider A;CS, (A',-e'ﬁz, i=1,2,..,n First we
choose Vi such that V%CU; and hence 7%CT; for i=1,2,...,u.
Sinee the requirement (G.U.5) is known to be satisfied for the original
unpiform structure, there must exist an entourage W of 9 such that

W (VLA CV(VL4) ,

i=1,..,mn.
By the lemma this entails
WldycPHA)Cc Oy, i=1,..,n
and hence (G.U.5) is satisfied.

Thus we have proved that G2 is a base of entourages for a generalized
uniform structure on 8.

As usual we define the embedding function & of 8 into § by writing
E(x) = F, where F, denotes the neighbourhood-filter of z. Now the
uniform bicontinuity of & and the density of £(8) in § can be proved
just as in the case of proper uniform structures ([4], p. 163, [2], p. 99).
Finally, the uniqueness follows from Theorem 7.

2. We know that the set § of the compactitication of (8, ?) may
be interpreted as the set of all maximal regular filters, Cauchy or not
(cf. [2], p. 102). Hence § C 5. We also recall that the embedding function
of the compactification coincides with the function & defined above.

Let ¥ be the generalized uniform structure induced on § from the
(unique) uniform structure on (S, ), and let 7 be the proximity structure
induced on § from (§,?). We recall that the sets V where ¥ denotes
enfourages of the coarsest uniform structure ¥, compatible with ?, form
a base of entourages of G (cf. [2], p. 101). From this we immediately
conclude that ¥ is coarser than ¥, and hence 9 is coarser than 7.

To prove the converse, we consider a subset 4 of § and an entourage U
of the form (4.1) of the structure . Let ¥ be some entourage of the same
form such that 73 C 0.

From the relation

VIA] eV (ViA]) ()

we conclude that there exists an entourage W of U, such that:

WA CV(V[A] .
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Hence we may apply the lemma once more, giving
WA CTF A CUA).

From this we conclude that 7 is finer than ’:D, and so the proof is
accomplished.

From the second part of Theorem & we conclude:

COROLLARY. If P is a p-class on 8, then for every U e P the canonical
embedding & of (8,U) into the completion (8, Uy will be proximity-home-
omorphism of (8, P) into the prowimity space (8, P) associated with (8, W),

In the paper [12], Yu. M. Smirnov has defined the concept of com-
pleteness for proximity spaces. His definition is based on the ‘‘uniform
-8-coverings” which correspond to the “entourage-like sets” in our theory.
It actually requires convergence of every filter which is a Cauchy-filter
with respect to all the uniform structures defined by the defining sequence
{Vphi=1z2... of an entourage-like set (cf. part 2 of the proof of Theorem 4).

A completion of a proximity space may then naturally be defined
@8 & p-homeomorphic embedding onto a dense subspace of a complete
proximity space.

Our next results show that the theory of completion of proximity
spaces is covered by the theory of completion of generalized uniform
spaces.

From Theorem 3 we immediately get the following:

PROPOSITION 4. Let P be a proximity structure on S, and U, the finest
generalized uniform structure compatible with P. Then (8, P) is a complete
provimity space if and only if (§,U.) is o complele generalized uniform
space.

THEOREM 9. Let (8, P) be a prowimity space, let WU be some generalized
uniform structure compatible with P, let & be the camonical embedding of
{8, U) into the completed space (8, W), and let P be the p-structure on §
associated with U. Then (£,8,7) isa completion of the prozimity space (8, P).

In fact every completion of (8, P) can be obtwined in this way by a suitable
«choice of U.

Proof. } Let i, be the finest generalized uniform structure com-
patible with 2. Since U, is finer than ¥, it will possess less regular Cauchy-

filters, and so (8, U2,) is also complete. Hence (8, 7) is a complete proximity

8pace, and. & will be a proximity homeomorphism in virtue of the Corollary
to Theorem 8.

‘ 2. Let (£, 8,7) be some completion of (S, ), and let G2, be the
%‘Jnest generalized llniform strueture compatible with 9. We define the
Inverse image of U, by & (the ¢“§-restriction” of ‘f&,) in the usual way

icm
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and denote it 2. Let P e the proximity structure associated with 9.
By definition, £ is a uniform homeomorphism relatively to % and U,
Hence it follows from the statement (3) of Corollary 2 to Theorem 6 that &
is a proximity homeomorphism relatively to 7' and . However, £ is
Dy definition a proximity-homeomorphism relatively to ? and P, and
g0 P = P. Thus we have proved that 9 is compatible with . (Note
that 7 need not be the finest structure 9, compatible with 2.) Now £ is
a uniformly bicontinuous mapping of (§, ) onto a dense subset of (8, L.,
and by Proposition 4 the latter space is complete. Hence U is a generalized
uniform structure with the desired properties.

COROLLARY. For every completion (&, 8, P) of a proximity space (8, P)
we may interprete (S, f}’) as prozimity subspace of the proximity space 8, P
of the compactification of (8, P). In particular (8, P) admils & maximal
completion determined by the coarsest structure U, compatible with P, and
in this case the extended space equals (8, D) itself. Similarly (8, P) admils
a minimal completion determined by the finest structure U compatible
with P.

Proof. Application of Theorem 8, 9 and the fact that coarser struc-
tures within the same class possesses more regular Cauchy-filters (cf. also
Theorem 3 of [2], p. 103).

The minimal completion described in the Corollary, was studied by
Smirnov, without the use of our generalized uniform structures [12], [15].
He termed it the ecompletion of the given proximity space.

Appendix. In his work [11], p. 562, Yu. M. Smirnov has applied
and axiomatic foundation of uniform structures different from that of
A. Weil, on which the present paper has been based. It is not difficult
to modify Smirnov’s axioms such as to define generalized uniform struc-
tures instead of proper uniform structures. One only has to replace the
“intersection axiom?®, stating that the product «Apf of any two cover-
ings a, § in the fundamental system I' of coverings again shall belong
to I', by the less restrictive requirement that the product anp of any
two finite coverings a, § in I" again shall belong to I'. The proof that this
modified system of axioms really defines generalized uniform structures
is not essentially different from the equivalence proof in Smirnov’s
paper [11], p. 572. (By Smirnov this proof is ascribed to A. Kodetkov.)
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Totality of uniform structures with linearly ordered base
.
: E. M. Alfsen and O. Njastad (Oslo)

According to [2] a uniform structure is said to be fofal if it is the
finest member of its p-equivalence class, i.e. if it is finer than any other
uniform structure with the same uniform set-neighbourhoods. (The above
form of the definition, specialized to proper uniform structures, is the
third characterization of totality in Theorem 3 of [2]. For the notion
of p-equivalence, cf. also [1], p. 97.) "

Yu. M. Smirnov has proved that every metrizable uniform structure
is total [5], p. 570 (cf. also [2] Theorem 4). In the present paper we prove
that every uniform structure with a linearly ordered base is total. The
method of proof is a transfinite extension of a technique which goes back
to Efremovié (proof of Lemma 1 of [£], p. 190).

Lemma 1. Every well-ordered set B contains a cofinal, well ordered
subset C such that every proper segment of C has strictly smaller power than C
and every cofinal subset of C has the same power as C.

Proof. Let y be the smallest cardinal of any cofinal subset of B.
If y =1, then B contains a last element b, and we shall be through with
C = {b}.

For y >1 the set I of ordinals of cardinality strictly less than y
contains non-void proper segments I, = {f|fel,f < a}, and I, has
cardinal strictly less than y for every a e I, whereas I itself has cardinal z.

Let p be some one-one mapping of I into a cofinal subset of B. The
set p(I,) can not be cofinal in B for any « € I since it has cardinal strictly
less than . Let ¢(a) denote the least upper bound of ¢(Z,) in B for every
ael. Clearly ¢ is a non-decreasing mapping of I onto a cofinal subset
O=g(I) of B. Moreover, C is well ordered (in the ordering induced from B),
sinee it is the image of the well-ordered set I by the non-decreasing map-
ping ¢. The cardinal of ¢ cannot exceed y since O = p(I); hence by the
cofinal nature of C it must equal to y.

Now we assume that D is some proper segment of €. It follows from
the non-decreasing nature of ¢ that F = ¢~1(D) is a proper segment of I.
Hence the cardinal of ¥, and hence also of D = ¢(F), must be strictly
less than 7. Thus we have proved that the cofinal well-ordered subset €
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