The power of the continuum and some propositions of plane geometry by ## R. O. Davies (Leicester) **Introduction.** In 1951, Sierpiński [5] announced the equivalence for n=1,2 of the hypothesis $$(\mathbf{H}_n)$$ $2^{\aleph_0} \leqslant \aleph_n$ to the following proposition of elementary geometry: (P_n) Euclidean (n+2)-dimensional space can be decomposed into n+2 sets E_i (i=1,2,...,n+2) such that each line parallel to the coordinate axis OX_i intersects E_i (i=1,2,...,n+2) in only a finite number of points. The proof for n=1 was published by Sierpiński ([6]; [7]; [8], p. 397), and a proof for every positive integer n by Kuratowski [3]. The object of the present paper is to establish the equivalence of the hypothesis (\mathbf{H}_n) to a corresponding proposition of elementary plane geometry: (Q_n) The Euclidean plane can be decomposed into n+2 sets E_i (i=1,2,...,n+2) such that, for some n+2 directions θ_i in the plane, each line in the direction θ_i intersects E_i (i=1,2,...,n+2) in only a finite number of points. Bagemihl proved [1] that $(Q_1) \Rightarrow (H_1)$, and I have recently [2] proved that $(H_1) \Rightarrow (Q_1)$. Thus proposition (Q_1) , the question of whose validity was raised by Sierpiński ([6]; [8], p. 399), is already known to be equivalent to (H_1) , in other words to the continuum hypothesis. **Proof that** $(Q_n) \Rightarrow (H_n)$. Suppose if possible that (Q_n) is true and (H_n) false; then (1) $$1 < \aleph_0 < \aleph_1 < ... < \aleph_{n+1} \leqslant 2^{\aleph_0}.$$ Using transfinite induction and the axiom of choice, it is easy to prove the following: If C is any plane set of power $\mathbf{a}<2^{\aleph o}$, θ any direction in the plane and \mathbf{b} any cardinal number satisfying $\mathbf{a}<\mathbf{b}\leqslant2^{\aleph o}$, then we can construct \mathbf{b} disjoint sets, each of which is congruent to C by a translation in the direction θ . If C* denotes the union of these \mathbf{b} disjoint sets, it follows that C* is of power \mathbf{b} , but lies on \mathbf{a} straight lines in the direction θ . Using these results and (1), it is clear how to construct by induction a sequence of n+3 plane sets $C_0, C_1, \ldots, C_{n+2}$, where C_0 consists of a single point, and for $i=1,2,\ldots,n+2$ the set C_i is the union of κ_{i-1} disjoint sets each a translation of the set C_{i-1} , but lies on κ_{i-2} straight lines (one straight line, if i=1) in the direction θ_i . The set C_{n+2} lies on \aleph_n straight lines in the direction θ_{n+2} , and each of these lines intersects the set E_{n+2} , of proposition (Q_n) , in only a finite number of points; consequently, C_{n+2} intersects E_{n+2} in at most \aleph_n points. However, C_{n+2} is the union of \aleph_{n+1} disjoint sets each congruent to C_{n+1} , and therefore at least one is free of points of E_{n+2} ; let C'_{n+1} denote one such set. The set C'_{n+1} (being a translation of C_{n+1}) lies on \aleph_{n-1} straight lines in the direction θ_{n+1} , and each of these intersects the set E_{n+1} in only a finite number of points; consequently, C'_{n+1} intersects E_{n+1} in at most \aleph_{n-1} points. However, C'_{n+1} is the union of \aleph_n disjoint sets each congruent to C_n , and therefore at least one is free of points of E_{n+1} ; let C'_n denote one such set. Continuing like this, we obtain a decreasing sequence of sets $$C'_{n+1} \supset C'_n \supset ... \supset C'_0$$ where C'_{i-1} is congruent to C_{i-1} and is free of points of E_i (i = 1, 2, ..., n + 2). It follows that the set C'_0 consists of a single point which does not belong to any of the sets E_i , and this is a contradiction. It may be observed that the above proof is rather similar to Mazur-kiewicz's proof [4] that the plane is not the union of a finite number of curves. **Proof that** $(H_n) \Rightarrow (Q_n)$. We shall prove that the hypothesis (H_n) implies the following proposition, more general than (Q_n) : Given any n+2 directions θ_i (i=1,2,...,n+2) in the plane, no two of which are parallel, the plane can be decomposed into n+2 sets E_i such that each line in the direction θ_i intersects E_i (i=1,2,...,n+2) in only a finite number of points. The proof is based on the same idea as [2]. We shall call a line *special* if it is in one of the directions θ_i , and we shall call a set N of special lines a *network* if whenever two of the special lines through a point p belong to N so do all the special lines through p. LEMMA 1. If M is any infinite set of special lines, then the smallest network N containing M is a set of the same power as M. Proof. Let M have power $m \ge s_0$. The power of the set of points of intersection of lines of M does not exceed that of the Cartesian square of M, which is $m^2 = m$. Hence the set j(M), defined to consist of M together with all special lines through these points of intersection, also has power m. Clearly $N = M \cup f(M) \cup f(f(M)) \cup ...$ and has power $\geqslant m$ and $\leqslant \mathbf{s_0} \cdot m = m$. **LEMMA 2.** If m is a non-negative integer, then every network of power s_m can be ordered by a relation \prec with the following property: (Π_m) For any element l there exist only a finite number of systems of m+1 elements l_1, \ldots, l_{m+1} such that l, l_1, \ldots, l_{m+1} are concurrent and $$l_{m+1} \prec l_m \prec ... \prec l_1 \prec l$$. Proof. We shall use induction on m. (Of course the result holds vacuously unless $\kappa_m \leq 2^{\aleph_0}$.) If N is a network of power κ_0 , then N can be ordered by some relation \prec as an infinite sequence $$k_1 \prec k_2 \prec \ldots$$ and for any element $l=k_i$ of N there exist only a finite number of elements $l_1 \in N$ for which $l_1 \prec l$, namely the elements k_1, \ldots, k_{i-1} . This establishes Lemma 2 for m=0. Now suppose that it is true for some integer $m \ge 0$, and let N be any network of power κ_{m+1} . Then there exists a transfinite sequence $$k_1, k_2, \ldots, k_a, \ldots$$ $(1 \le a < \omega_{m+1})$ of type ω_{m+1} , where ω_{m+1} is the least ordinal of power κ_{m+1} , composed of all the elements of N. For each ordinal α , $\omega_m \leqslant \alpha < \omega_{m+1}$, denote by $N(\alpha)$ the smallest network containing all the elements $k_{\alpha'}$ for $1 \leqslant \alpha' \leqslant \alpha$. Then $N(\alpha)$ is of power κ_m , and consequently can be ordered by a relation \prec_{α} with the property (Π_m) . Given any element $k \in N$, let us denote by $\alpha(k)$ the least ordinal $\alpha(\omega_m \leqslant \alpha < \omega_{m+1})$ for which $k \in N(\alpha)$. Given any two elements g, h of N, let us write $g \prec h$ if either $\alpha(g) < \alpha(h)$, or $\alpha(g) = \alpha(h) = \alpha$, say, and $g \prec_{\alpha} h$. It is easy to see that this relation \prec provides an ordering of N; we shall prove that it has the property (Π_{m+1}) . In fact, let $l \in N$ and let l_1, \ldots, l_{m+2} be a system of m+2 elements of N such that l, l_1, \ldots, l_{m+2} are concurrent and $(2) l_{m+2} \prec l_{m+1} \prec \ldots \prec l_1 \prec l.$ Then we have (3) $$\alpha(l_{m+2}) \leqslant \alpha(l_{m+1}) \leqslant \dots \leqslant \alpha(l_1) \leqslant \alpha(l).$$ From the first inequality in (3) it follows that $N(\alpha(l_{m+2})) \subseteq N(\alpha(l_{m+1}))$, and consequently l_{m+2} belongs to $N(\alpha(l_{m+1}))$ as well as l_{m+1} . Since $N(\alpha(l_{m+1}))$ is a network, it therefore contains all the special lines through the point of intersection of l_{m+1} and l_{m+2} , and in particular $l \in N(\alpha(l_{m+1}))$ and $\alpha(l) \leq \alpha(l_{m+1})$. From (3), we deduce that $$a(l_{m+1}) = \dots = a(l_1) = a(l)$$. Thus, setting a = a(l), all the lines $l, l_1, ..., l_{m+1}$ belong to N(a), and (in view of (2)) $$l_{m+1} \prec_{a} \ldots \prec_{a} l_{1} \prec_{a} l$$. Since the relation \prec_a ordering N(a) has the property (Π_m) , there exist for each l only a finite number of such systems l_1, \ldots, l_{m+1} (with l, l_1, \ldots, l_{m+1} concurrent). Finally, for each such system there exist only a finite number of special lines l_{m+2} through their point of intersection, and our result follows for m+1. We now proceed to the construction of the sets E_i . The set of all special lines in the plane is a network, and the hypothesis (H_n) implies that it is of power $\leq n_i$; it follows that it is of power n_i for some positive integer $n \leq n_i$, and therefore can be ordered by a relation n_i with the property (Π_n) . It is easy to see that such a relation possesses also the property (Π_n) . If p is any point of the plane, we assign p to the set E_i if $$(4) p(\theta_s) \prec p(\theta_i) (s=1,...,n+2; s \neq i),$$ where $p(\theta)$ denotes the line through p in the direction θ . It is obvious that every point of the plane is thereby assigned to one of the sets E_i . Our proof will be complete when we have shown that each line l in the direction θ_i intersects E_i in only a finite number of points (i=1,2,...,n+2). Let p be any point in the intersection $l \cap E_i$; then $l=p(\theta_i)$, and (4) holds. Hence if the n+1 lines $p(\theta_s)$ $(s=1,...,n+2; s \neq i)$ are denoted by $l_1,...,l_{n+1}$ in a suitable order, then $l,l_1,...,l_{n+1}$ are concurrent and $$l_{n+1} \prec \ldots \prec l_1 \prec l$$. Since there exist only a finite number of such systems l_1, \ldots, l_{n+1} , there are only a finite number of points in the set $l \cap E_i$, as required. ## References - [1] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Zeit. f. math. Logik u. Grundl. d. Math. 7 (1961), pp. 77-79. - [2] Roy O. Davies, Equivalence to the continuum hypothesis of a certain proposition of elementary plane geometry, Zeit. f. math. Logik u. Grundl. d. Math. 8 (1962), pp. 109-111. - [3] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), pp. 14-17. - [4] S. Mazurkiewicz, Sur la décomposition du plan en courbes, Fund. Math. 21 (1933), pp. 43-45. - [5] W. Sierpiński, Une proposition de la géométrie élémentaire équivalente à l'hypothèse du continu, C. R. Acad. Sci. Paris 232 (1951), pp. 1046-1047. - [6] Sur quelques résultats nouveaux concernant l'hypothèse du continu, Rend. Mat. e Appl. (5) 10 (1951), pp. 406-411. - [7] Sur quelques propositions concernant la puissance du continu, Fund. Math. 38 (1951), pp. 1-13. - [8] Cardinal and ordinal numbers, Warszawa 1958. ## LEICESTER UNIVERSITY Reçu par la Rédaction le 27. 4. 1962