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The power of the continuum and some propositions of
plane geometry

by
R. O. Davies (Leicester)

Introduction. In 1951, Sierpitski [5] announced the equivalence
for n =1,2 of the hypothesis

(Ha) 2N < 8
to the following proposition of elementary geometry:

(Pn) Buclidean (n+ 2)-dimensional space con be decomposed into n+2
sets By (6 =1,2,...,n+2) such that each line parallel to the coordinate axis
0X,; intersects B; (4 =1,2,..,n+2) in only a finite number of points.

The proof for # = 1 was published by Sierpinski ([6]; [7]; [8], p. 397),
and a proof for every positive integer n by Kuratowski [3]. The object
of the present paper is to establish the equivalence of the hypothesis (Ha)
to a corresponding proposition of elementary plane geometry:

(Qn) The Euclidean plane can be decomposed into n-+2 sets BEj
(i=1,2,..,0+2) such that, for some n+2 directions 0; in the plane,
ecach line in the direction 0; intersects By (i =1,2, ..., n+2) in only & finite
number of points.

Bagemihl proved [1] that (Q,) = (H,), and I have recently [2] proved
that (H,)=(Q). Thus proposition (Qi), the question of whose validity
was Taised by Sierpifski ([6]; [8], p. 399), is already known to be equiv-
alent to (H,), in other words to the eontinuum hypothesis.

Proof that (Qs)= (Hz). Suppose if possible that (Qq) is true and (Ha)
false; then
(1) 1< g < 8y < e < Npgr < 2%

TUsing transfinite induction and the axiom of choice, it is easy to prove
the following:

If O is any plane set of power a < 2%, 6 any direction in the plane
and b any cardinal number satisfying a <b < 9% then we can construct b
disjoint sets, each of which is congruent to C by a translation in the direction 6.
If C* denotes the union of these b disjoint sets, it follows that C* is of power b,
but lies on a straight lines in the direction 6.
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TUsing these results and (1), it is clear how to construet by induction
a sequence of n -3 plane sets Cy, Cy, ..., Opye, Where C, consisis of a single
point, and for i=1,2,...,n+2 the set C; is the union of s;_; disjoint
sets each a tramslation of the set Cy_y, but lies on ;s straight lines (one
straight line, if © = 1) in the direction 6;.

The set Cnyo lies on s, straight lines in the direction 6,.., and each
of these lines intersects the set F,,., of proposition (Q.), in only a finite
number of points; consequently, Cy» intersects By.s in at most s, points.
However, Cy.. is the union of ,.; disjoint sets each congruent to Crtrs
and therefore at least one is free of points of Epis; let €.y denote one
such set.

The set C,4; (being a translation of C,.,) lies on &,_; straight lines
in the direction .1, and each of these intersects the set H,., in only
a finite number of points; consequently, O, intersects H,,, in at most
Nu-1 points, However, Cp,, is the union of », disjoint sets each congruent
to On, and therefore at least one is free of points of i1 let O denote
one such set.

Continuing like this, we obtain a decreasing sequence of sets

Chnn 20 0. D0,

where Ci_; is congruent to C;_; and is free of points of B; (i =1, 2,..,n+2).
It follows that the set Cj consists of a single point which does not belong
to any of the sets E;, and this is a contradiction.

It may be observed that the above proof is rather similar to Mazur-
kiewicz’s proof [4] that the plane is not the union of a finite number of
eurves.

. ?root that (H,)=(Qu). We shall prove that the hypothesis (H,)
implies the following proposition, more general than (Qan):

Given any n+2 directions 0; (i = 1,2,...,n+2) in the plane, no two
of which are parallel, the plane can be decomposed into n+2 sets B; such
that each line in the direction 0; intersecis E; (4 — 1,2,...,n+2) in only
a finite number of poinis.

The proof is based on the same idea as [2].

We shall call a line special if it is in one of the divections 6;, and we
s.ha]l call a set N of special lines a metwork it whenever two of the special
lines through a point » belong to ¥ so do all the special lines through p.

Lemva 1. If M is any infinite set of special lines, then the smallest
network N conlaining M is a set of the same power as M.

. Proof: Let ./]I have power m >x,. The power of the set of points
of mtersee.tlon.of lines of A does not exceed that of the Cartesian square
of I, which is m? = m. Hence the set f(M), defined to consist of I
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together with all special lines through these points of intersection, also
has power m. Clearly N¥ = M © f(II) u f(f(M)) u ... and has power >m
and < §p-m =m.

LeMMA 2. If m is a non-negative integer, then every network of power Sm
can be ordered by a relation <3 with the following property:

(IIm) For any element | there exist only a finite number of systems of
m+1 elements b, ..y Lygs Such that 1,1, ..., lny1 are concurrent and

o1 = ln 2. 34,3 1.

Proof. We shall use induction on m. (Of course the result holds
vacuously unless sm < 2%.)

If N is a network of power &,, then N can be ordered by some re-
lation <= as an infinite sequence

=k,

and for any element I = k; of N there exist only a finite number of elements
1, ¢ N for which I, < I, namely the elements %, ..., k;~;. This establishes
Lemma 2 for m = 0.

Now suppose that it is true for some integer m > 0, and let N be
any network of power Nmy1. Then there exists a transfinite sequence

Fory Koy vy Kay oo (1 <0< 0pta)

of type wmi1, Where wm,: is the least ordinal of power Smi1, composed
of all the elements of N. For each ordinal o, wm < a < wn+1, denote
by N (a) the smallest network containing all the elements &, for 1 < o < a
Then N(a) is of power sm, and consequently can be ordered by a re-
lation <, with the property (ILa).

Given any element k¢ N, let us denote by a(k) the least ordinal «
(0m < @ < wpe1) for which & e N(a). Given any two elements g, h of N,
let us write g = % if either a(g) < a(h), or a(g) = a(k) = a, say, and
g <4 h. Tt is easy to see that this relation < provides an ordering of N;
we shall prove that it has the property (IIn:).

In fact, let e N and let I, ..., lnse be & system of m—+2 elements
of N such that 1,1, ..., lns2 are concurrent and

@

Then we have

a(lmte) < a(lms) < oo < a(b) < all) -

Imse 2l =2 e 24 21,

(3)
From the first inequality in (3) it follows that N (a(lnt2)) C N (a(lm+)),

and consequently L. belongs to N{a(ln+1)) as well as lmH‘ . Since N(a(lm41))
is a network, it therefore contains all the special lines through the


GUEST


280 R. 0. Davies
point of intersection of ln+: and ln+2, and in particular ZeN(a(lmH)) and
a(l) € a(lps1). From (3), we deduce that

allmsr) = . = a(ly) = a(l) .

Thus, setting a = a(l), all the lines I,1,...,lnt1 belong to N(a), and
(in view of (2))
=2l <.

Zm+1 ‘ia .

Since the relation <, ordering N («) has the property (IIn), there
exist for each I only a finite number of such systems 1,...,l,y: (with
1,1, ey lmys concurrent). Finally, for each such system there exist only
a finite number of special lines I,.» through their point of intersection,
and our result follows for m-1.

We now proceed to the construction of the sets E;. The set of all
special lines in the plane is a network, and the hypothesis (H,) implies
that it is of power < 8y; it follows that it is of power sy, for some positive
integer m < n, and therefore can be ordered by a relation < with the
property (IIn). It is easy to see that such a relation possesses also the
property (II,). If p is any point of the plane, we assign p to the set E; if

(4) {0 2p(8) (s=1,..,04+2; 84,

where p(60) denotes the line through p in the direction 6. It is obvious
that every point of the plane is thereby assigned to one of the sets Fj.

Our proof will be complete when we have shown that each line I
in the direction 6; intersects E; in only a finite number of points
(¢=1,2,..,n4+2). Let p be any point in the intersection I~ E;; then
1 =p(6;), and (4) holds. Hence if the n+1 lines p(6s) (s=1,...,2+2;
s #1) are denoted by 1, ...,l,4; In a suitable order, then 1,7,..., 1L
are concurrent and

lppr = e R4 3T

Since there exist only a finite number of such systems 7, ...,l,+1, there
are only a finite number of points in the set I ~ H;, as required.
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