

## The power of the continuum and some propositions of plane geometry

by

## R. O. Davies (Leicester)

**Introduction.** In 1951, Sierpiński [5] announced the equivalence for n=1,2 of the hypothesis

$$(\mathbf{H}_n)$$
  $2^{\aleph_0} \leqslant \aleph_n$ 

to the following proposition of elementary geometry:

 $(P_n)$  Euclidean (n+2)-dimensional space can be decomposed into n+2 sets  $E_i$  (i=1,2,...,n+2) such that each line parallel to the coordinate axis  $OX_i$  intersects  $E_i$  (i=1,2,...,n+2) in only a finite number of points.

The proof for n=1 was published by Sierpiński ([6]; [7]; [8], p. 397), and a proof for every positive integer n by Kuratowski [3]. The object of the present paper is to establish the equivalence of the hypothesis  $(\mathbf{H}_n)$  to a corresponding proposition of elementary plane geometry:

 $(Q_n)$  The Euclidean plane can be decomposed into n+2 sets  $E_i$  (i=1,2,...,n+2) such that, for some n+2 directions  $\theta_i$  in the plane, each line in the direction  $\theta_i$  intersects  $E_i$  (i=1,2,...,n+2) in only a finite number of points.

Bagemihl proved [1] that  $(Q_1) \Rightarrow (H_1)$ , and I have recently [2] proved that  $(H_1) \Rightarrow (Q_1)$ . Thus proposition  $(Q_1)$ , the question of whose validity was raised by Sierpiński ([6]; [8], p. 399), is already known to be equivalent to  $(H_1)$ , in other words to the continuum hypothesis.

**Proof that**  $(Q_n) \Rightarrow (H_n)$ . Suppose if possible that  $(Q_n)$  is true and  $(H_n)$  false; then

(1) 
$$1 < \aleph_0 < \aleph_1 < ... < \aleph_{n+1} \leqslant 2^{\aleph_0}.$$

Using transfinite induction and the axiom of choice, it is easy to prove the following:

If C is any plane set of power  $\mathbf{a}<2^{\aleph o}$ ,  $\theta$  any direction in the plane and  $\mathbf{b}$  any cardinal number satisfying  $\mathbf{a}<\mathbf{b}\leqslant2^{\aleph o}$ , then we can construct  $\mathbf{b}$  disjoint sets, each of which is congruent to C by a translation in the direction  $\theta$ . If C\* denotes the union of these  $\mathbf{b}$  disjoint sets, it follows that C\* is of power  $\mathbf{b}$ , but lies on  $\mathbf{a}$  straight lines in the direction  $\theta$ .



Using these results and (1), it is clear how to construct by induction a sequence of n+3 plane sets  $C_0, C_1, \ldots, C_{n+2}$ , where  $C_0$  consists of a single point, and for  $i=1,2,\ldots,n+2$  the set  $C_i$  is the union of  $\kappa_{i-1}$  disjoint sets each a translation of the set  $C_{i-1}$ , but lies on  $\kappa_{i-2}$  straight lines (one straight line, if i=1) in the direction  $\theta_i$ .

The set  $C_{n+2}$  lies on  $\aleph_n$  straight lines in the direction  $\theta_{n+2}$ , and each of these lines intersects the set  $E_{n+2}$ , of proposition  $(Q_n)$ , in only a finite number of points; consequently,  $C_{n+2}$  intersects  $E_{n+2}$  in at most  $\aleph_n$  points. However,  $C_{n+2}$  is the union of  $\aleph_{n+1}$  disjoint sets each congruent to  $C_{n+1}$ , and therefore at least one is free of points of  $E_{n+2}$ ; let  $C'_{n+1}$  denote one such set.

The set  $C'_{n+1}$  (being a translation of  $C_{n+1}$ ) lies on  $\aleph_{n-1}$  straight lines in the direction  $\theta_{n+1}$ , and each of these intersects the set  $E_{n+1}$  in only a finite number of points; consequently,  $C'_{n+1}$  intersects  $E_{n+1}$  in at most  $\aleph_{n-1}$  points. However,  $C'_{n+1}$  is the union of  $\aleph_n$  disjoint sets each congruent to  $C_n$ , and therefore at least one is free of points of  $E_{n+1}$ ; let  $C'_n$  denote one such set.

Continuing like this, we obtain a decreasing sequence of sets

$$C'_{n+1} \supset C'_n \supset ... \supset C'_0$$

where  $C'_{i-1}$  is congruent to  $C_{i-1}$  and is free of points of  $E_i$  (i = 1, 2, ..., n + 2). It follows that the set  $C'_0$  consists of a single point which does not belong to any of the sets  $E_i$ , and this is a contradiction.

It may be observed that the above proof is rather similar to Mazur-kiewicz's proof [4] that the plane is not the union of a finite number of curves.

**Proof that**  $(H_n) \Rightarrow (Q_n)$ . We shall prove that the hypothesis  $(H_n)$  implies the following proposition, more general than  $(Q_n)$ :

Given any n+2 directions  $\theta_i$  (i=1,2,...,n+2) in the plane, no two of which are parallel, the plane can be decomposed into n+2 sets  $E_i$  such that each line in the direction  $\theta_i$  intersects  $E_i$  (i=1,2,...,n+2) in only a finite number of points.

The proof is based on the same idea as [2].

We shall call a line *special* if it is in one of the directions  $\theta_i$ , and we shall call a set N of special lines a *network* if whenever two of the special lines through a point p belong to N so do all the special lines through p.

LEMMA 1. If M is any infinite set of special lines, then the smallest network N containing M is a set of the same power as M.

Proof. Let M have power  $m \ge s_0$ . The power of the set of points of intersection of lines of M does not exceed that of the Cartesian square of M, which is  $m^2 = m$ . Hence the set j(M), defined to consist of M

together with all special lines through these points of intersection, also has power m. Clearly  $N = M \cup f(M) \cup f(f(M)) \cup ...$  and has power  $\geqslant m$  and  $\leqslant \mathbf{s_0} \cdot m = m$ .

**LEMMA 2.** If m is a non-negative integer, then every network of power  $s_m$  can be ordered by a relation  $\prec$  with the following property:

 $(\Pi_m)$  For any element l there exist only a finite number of systems of m+1 elements  $l_1, \ldots, l_{m+1}$  such that  $l, l_1, \ldots, l_{m+1}$  are concurrent and

$$l_{m+1} \prec l_m \prec ... \prec l_1 \prec l$$
.

Proof. We shall use induction on m. (Of course the result holds vacuously unless  $\kappa_m \leq 2^{\aleph_0}$ .)

If N is a network of power  $\kappa_0$ , then N can be ordered by some relation  $\prec$  as an infinite sequence

$$k_1 \prec k_2 \prec \ldots$$

and for any element  $l=k_i$  of N there exist only a finite number of elements  $l_1 \in N$  for which  $l_1 \prec l$ , namely the elements  $k_1, \ldots, k_{i-1}$ . This establishes Lemma 2 for m=0.

Now suppose that it is true for some integer  $m \ge 0$ , and let N be any network of power  $\kappa_{m+1}$ . Then there exists a transfinite sequence

$$k_1, k_2, \ldots, k_a, \ldots$$
  $(1 \le a < \omega_{m+1})$ 

of type  $\omega_{m+1}$ , where  $\omega_{m+1}$  is the least ordinal of power  $\kappa_{m+1}$ , composed of all the elements of N. For each ordinal  $\alpha$ ,  $\omega_m \leqslant \alpha < \omega_{m+1}$ , denote by  $N(\alpha)$  the smallest network containing all the elements  $k_{\alpha'}$  for  $1 \leqslant \alpha' \leqslant \alpha$ . Then  $N(\alpha)$  is of power  $\kappa_m$ , and consequently can be ordered by a relation  $\prec_{\alpha}$  with the property  $(\Pi_m)$ .

Given any element  $k \in N$ , let us denote by  $\alpha(k)$  the least ordinal  $\alpha(\omega_m \leqslant \alpha < \omega_{m+1})$  for which  $k \in N(\alpha)$ . Given any two elements g, h of N, let us write  $g \prec h$  if either  $\alpha(g) < \alpha(h)$ , or  $\alpha(g) = \alpha(h) = \alpha$ , say, and  $g \prec_{\alpha} h$ . It is easy to see that this relation  $\prec$  provides an ordering of N; we shall prove that it has the property  $(\Pi_{m+1})$ .

In fact, let  $l \in N$  and let  $l_1, \ldots, l_{m+2}$  be a system of m+2 elements of N such that  $l, l_1, \ldots, l_{m+2}$  are concurrent and

 $(2) l_{m+2} \prec l_{m+1} \prec \ldots \prec l_1 \prec l.$ 

Then we have

(3) 
$$\alpha(l_{m+2}) \leqslant \alpha(l_{m+1}) \leqslant \dots \leqslant \alpha(l_1) \leqslant \alpha(l).$$

From the first inequality in (3) it follows that  $N(\alpha(l_{m+2})) \subseteq N(\alpha(l_{m+1}))$ , and consequently  $l_{m+2}$  belongs to  $N(\alpha(l_{m+1}))$  as well as  $l_{m+1}$ . Since  $N(\alpha(l_{m+1}))$  is a network, it therefore contains all the special lines through the



point of intersection of  $l_{m+1}$  and  $l_{m+2}$ , and in particular  $l \in N(\alpha(l_{m+1}))$  and  $\alpha(l) \leq \alpha(l_{m+1})$ . From (3), we deduce that

$$a(l_{m+1}) = \dots = a(l_1) = a(l)$$
.

Thus, setting a = a(l), all the lines  $l, l_1, ..., l_{m+1}$  belong to N(a), and (in view of (2))

$$l_{m+1} \prec_{a} \ldots \prec_{a} l_{1} \prec_{a} l$$
.

Since the relation  $\prec_a$  ordering N(a) has the property  $(\Pi_m)$ , there exist for each l only a finite number of such systems  $l_1, \ldots, l_{m+1}$  (with  $l, l_1, \ldots, l_{m+1}$  concurrent). Finally, for each such system there exist only a finite number of special lines  $l_{m+2}$  through their point of intersection, and our result follows for m+1.

We now proceed to the construction of the sets  $E_i$ . The set of all special lines in the plane is a network, and the hypothesis  $(H_n)$  implies that it is of power  $\leq n_i$ ; it follows that it is of power  $n_i$  for some positive integer  $n \leq n_i$ , and therefore can be ordered by a relation  $n_i$  with the property  $(\Pi_n)$ . It is easy to see that such a relation possesses also the property  $(\Pi_n)$ . If p is any point of the plane, we assign p to the set  $E_i$  if

$$(4) p(\theta_s) \prec p(\theta_i) (s=1,...,n+2; s \neq i),$$

where  $p(\theta)$  denotes the line through p in the direction  $\theta$ . It is obvious that every point of the plane is thereby assigned to one of the sets  $E_i$ .

Our proof will be complete when we have shown that each line l in the direction  $\theta_i$  intersects  $E_i$  in only a finite number of points (i=1,2,...,n+2). Let p be any point in the intersection  $l \cap E_i$ ; then  $l=p(\theta_i)$ , and (4) holds. Hence if the n+1 lines  $p(\theta_s)$   $(s=1,...,n+2; s \neq i)$  are denoted by  $l_1,...,l_{n+1}$  in a suitable order, then  $l,l_1,...,l_{n+1}$  are concurrent and

$$l_{n+1} \prec \ldots \prec l_1 \prec l$$
.

Since there exist only a finite number of such systems  $l_1, \ldots, l_{n+1}$ , there are only a finite number of points in the set  $l \cap E_i$ , as required.

## References

- [1] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Zeit. f. math. Logik u. Grundl. d. Math. 7 (1961), pp. 77-79.
- [2] Roy O. Davies, Equivalence to the continuum hypothesis of a certain proposition of elementary plane geometry, Zeit. f. math. Logik u. Grundl. d. Math. 8 (1962), pp. 109-111.
- [3] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), pp. 14-17.
- [4] S. Mazurkiewicz, Sur la décomposition du plan en courbes, Fund. Math. 21 (1933), pp. 43-45.

- [5] W. Sierpiński, Une proposition de la géométrie élémentaire équivalente à l'hypothèse du continu, C. R. Acad. Sci. Paris 232 (1951), pp. 1046-1047.
- [6] Sur quelques résultats nouveaux concernant l'hypothèse du continu, Rend. Mat. e Appl. (5) 10 (1951), pp. 406-411.
- [7] Sur quelques propositions concernant la puissance du continu, Fund. Math. 38 (1951), pp. 1-13.
  - [8] Cardinal and ordinal numbers, Warszawa 1958.

## LEICESTER UNIVERSITY

Reçu par la Rédaction le 27. 4. 1962