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A characterization of the exponential and logarithmic
functions by functional equations
by
M. Kuczma (Krakéw)

As is well known (ef. e.g. [1]), the functions ¢ and logex can be
characterized by means of the functional equations in two variables:

plz+y) =@ ply)
and

p(zy) = @)+ o),
respectively. The purpose of the present note is to characterize these

functions with the aid of the following functional equations in a single
variable:

@ p(22) = [p(®)F
and
&) pla?) = 2p(@),

and some additional conditions.
At first let us notice that a function continuous at the point z = 0,
satistying equation (1) and the eondition

3) @(0)=1,

must be strictly positive. In fact, it is evident from (1) that ¢(z) > 0.
Tf there were an %, such that ¢(x,) = 0; then, according to (1), we would
have

which, on account of the continuity of ¢(x) at zero, would imply ¢(0) = 0
and contradict condition (3).

Thus ¢(z) > 0, and we may take the logarithms of both sides of
equation (1). Setting ¢*(x) = logg(s) we see that the function ¢*(z)
satisfies the functional equation

(4) »(2a) = 2¢(x) .
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Equations (2) and (4) are particular cases of the Sclhroder equation,
(5) olf(@)] = sp(x), s+#0,

(f(») and s given, ¢(z) to be found). We now turn to the study of this
equation and prove two theorems which, when specialized (1) to equa-
tions (4) and (2), yield the desired characterization of the exponential
and logarithmic functions.

) THEOREM 1. If the function f(z) is of class C* in an interval {a,Db),
f(@) #= o, f'(m) >0 in (a,b), f(a) = a, and f'(a) =s, then jor any number
a # 0 there exists at most one function ¢(x) of class C' in <a s ) satisfying
equation (5) and the conditions ’

(6) pla)=0, ¢@)=a.

Sim'il.arly, if the function f () is of class Ot in an interval (@, >, f(2) == =,
f({o) >0 in (a,d), {(b) = b, and §'(b) = s, then for any number a £ 0 there
exists at most one function @(w) of class C in (a, b> satisfying equation (3
and the conditions ’ fuing equation ()
(7 el) =0, ¢'b)=a.

Proof. We shall prove only the first part of the theorem; the proof
of the second part is quite analogous.

L_et Pi() and @y(2) be two functions of class ¢ in {a, b), satistying
equation (5) and condition (6). Then their derivatives satisfy the equation
(8) olH(@)] = 7o/ (@

(@) =577 (@)
From. the f»ssun‘lption a ;z: 0, conditions (6) and the continuity of the
functions <pf~(m).(z =1, 2). it follows (by an argument similar to that used
:ﬁet?e bt§g1nn1?g) geff this paper) that gj(z) 0 in <a, b). Consequently
unction y(2) = ei(2)/ei(z) is continuous in b isties the
functional sqmetion {a, b) and satisfies the
Y @)] = y(o).

I’? ‘follows (cf. [8]) that y(x) = const, and thus, taking into account con-
dmogs (6), we obtain ¢(x) = ®s(x), which was to be proved.

Rem‘ark. It 37_4-.‘.L, then every solution of equation (3) in {a, b)
gnust fl'l].ﬁl the condition ¢(a) =0 (this follows immediately from (5)
on setting ¢ = a). If, however, s = 1, then a golution of equation (5)
?n <“Z b) may assume an arbitrary value at # = a. And it is evident that
in this case, the theorem remains valid when condition (6) is replacet{

. : .
(*) For equation (4) corresponding theorems have been proved by Oeconomou [6],

but, as far as we kn g r
ot oW, these results have not been used to characterize the exponential
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by the condition @(a) = @,, where ¢, is an arbitrary constant (and, simi-
larly, in (7) @(b) = @,). To see this, it is sufficient to apply the previous
argument to the function ¢(x)—¢(a). On the other hand, the restriction
a % 0 is essential. We shall show, however, that if there ewists a solution
ool@) of equation (5), fulfilling the condition @i(a) = o 7= 0, and if ¢(x)
is a solution of (5) satisfying the condition ¢(a) = ¢'(a) = 0, then @(x)
is identically zero.

In fact, let () be a solution of equation (5) (of class C') such that
g(a) = ¢'(a) = 0. Then the function g,(x)—@ () also satisties equation ()
and @i(a)—¢'(6) = a. But on account of what has just been proved
ol@) — @ (z) = (), 1.e. p(z)=0.

Tt can happen, however, that all the solutions of equation (5) which
are of clags C! in (a, b) (under our conditions there are infinitely many
such solutions; cf. [2]) fulfil the condition

lim ¢'(z) =0.

a0
Tn particular, this is the case if
Iim n—s"___ =0
LA )]
{(f'(x) denotes the »th iterate of the function f(x)).

The condition f'(a) = s, occurring in the hypotheses of the theorem,
may seem restrictive. But it is evident from relation (8) that this con-
dition is necessary for the existence of a solution p(x) of (5) such that
¥'(a) # 0.

The requirement for ¢(x) to be of class (' is necessary to ensure
uniqueness. As has been proved in [3], under the conditions of theorem 1
equation () has an infinity of solutions continuous in <a,d); in fact
every function go(#) continuous in an interval (@, f{(#,)> (% e(a,b)) and
fultilling the condition @ff(®,)] = sps(z,) can be uniquely extended to
a solution of (5) continuous in <a, b) (ef. [3]). The requirement of class C*
for solutions, however, can be replaced by the condition of convexity.

TEEOREM 2. Under the conditions of theorem 1 equation (5) has at
most a one-parameter family of comvex solutions (%) in (a, b).

(2) Or coneave. If @ (x) is a convex solution of (5), then —p(x) i8 & concave solution

of (5), and conversely.
We say that the function g(z) is convex if it satisfies the inequality

p(lz+ (1—Ay) < lp@)+(1-Dey), 1e(0,1), =z, yela,b).

“This definition implies the continuity of a convex function.
19*
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Proof. Let us assume that f(z) is of class C* in (a, D), f(a) = a,
f/(a) = s; the proof in the other case is quite similar.

If ¢ =1, then all solutions of equation (3) must be constant on the
set of points of the form (o) (for any w, € (a, b)), and consequently, in
this case, the only convex solutions of (5) are the constant ones. Thus
in the sequel we assume that s 7= 1. We may also leave out of the con-
siderations the trivial solution ¢(x) = 0.

Let ¢ (2) be a convex solution of (5) in (a, b). Thus ¢ () is differentiable
almost everywhere in (a,d). Moreover, let us notice that, according
to (B), if ¢(x) is differentiable at the point 2, then it is also differentiable
at the point f(x,). Hence it follows that the function ¢'(x) satisfies equa-
tion (8) for all # for which it is defined.

For every z e (a, b), the limit

¥ (2) 2 Tim ¢/(£)
§-+x—0
exists; p(z) is a monotonic function in (@, b) and satisfies equation (8)
in (a,b). Consequently w(z) has a constant sign in an interval (a, a,)
C(a, ), and has no zeros in (a, a,). (Otherwise y(#) would have to be
identically zero in a neighbourhood of a, and then, being a solution of (8),
would vanish identically in (a, b). Then y(z) would be constant, which
implies that either s =1, or ¢(x) = 0. However, both these cases have
been. excluded.)
The funetion u(#)2|y(x)| satisties the functional equation

8

9 ulf (2)] = 7@ (@)

Thus the function A(x) ¥flogu(x) is monotonic in (@, @) and satisfies
the equation

(10) s

Alf (@)]— ) =10gm,

Te(a,a).

. 8
Now, lim logm == 0, and thus, as we have shown (3) in [4] (cf. also [5]),

z->a+0
equation (10) has at most a one-parameter (with an additive constant)
family of solutions monotonic in (a, a,). Tt follows (in view of the fact
jnhat each solution of equation (8) is uniquely determined by its values in the
1n‘F-erva1 (@, ay)) that there can exist at most a one-parameter (with a multi-
p}lcative constant) family of monotonic functions y(z) satisfying equa-
tion (8). Thus ¢'(z) is determined up to a multiplicative constant, except
on at most a set of measure zero; and the function ¢ (w)—which, being

(*) In [4] and [5] the results concern the case f(b) = b, but they are also valid
(and the proofs are quite analogous) in the case where fla) = a.
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convex, is absolutely continuons—is determined up to two constants
(multiplicative and additive) in the whole of (a, b). But since s # 1, the
additive constant can be determined from the fact that ¢(z) satisfies (5).
This completes the proof.

CorOLLARY. Under the conditions of Theorem 2, every convex solution
of equation (B) is of class C'.

Proof. The function w"(a:)ﬂ:ef lim ¢'(£) is also a monotonic solution
x40

of equation (8) and equals y(z) almost everywhere in (a, b). Since the
monotonic solution of (8) is unique up to an additive constant, p*(wx)
= p(z), which means that ¢'(x) is continuous in (a,d).

From theorems 1 and 2 and from the equivalence of equations (1)
and (4), proved at the beginning of the paper, the following charac-
terizations of the exponential and logarithmic functions result immedia-
tely:

THEOREM 3. The function g(x)= e* is the unique funmclion which is
of class O in 0, co), satisfies equation (1) and fulfils the conditions

p(0) = @(0) =1.

Similarly, the function ¢(z) =Inwz is the wnique function which is
of class C* in (1, o), satisfies equation (2) and fulfils the condition

g1y =1.

Remark. In the above theorem the intervals <0, co) and (1, oo}
may be replaced by the intervals (— co,0) and (0,15, respectively.

TEEOREM 4. The function @(x) = ¢ is the only fumction which s
logarithmicaly convex in (0, co), satisfies equation (1) and fulfils the con-
dition @(1) =e. .

Similarly, the function ¢(z) = Inx is the only function which is concave
in (1, oo), satisfies equation (2) and fulfils the condition p(e)=1.

Remark. In the above theorem the interval (0, co) with the con-
dition ¢(1) = e, and the interval (1, co) with the condition ¢(e) =1,
may be replaced by the interval (— oo, 0) with the condition ¢(—1) = €7,
and the interval (0,1) with the condition ¢(e™) = —1, respectively.
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A note on c*-algebras
by
W. Narkiewicz (Wroclaw)

-

A p*algebra is an abstract algebra A = («f, F) satisfying the fol-
lowing conditions: .

(i) If a e <f and a is not an algebraic constant, then the set {a} is a set
of independent elements.

(il) If {@y, -, an} is a set of independent elements and {ay, ..., Gni1}
is not a set of independent elements, then a1 belongs to the subalgebra gener-
ated by {ay, ..., an}. (Independence is to be understood in the sense of
E. Marczewski. See [1], [2])

Some properties of v*-algebras have been developed in [3]. Here we
shall prove a strengthening of theorem IT of {3].

Let U be any algebra. By 4™ we denote the set of ail algebraic
functions of n variables, and by A™® we denote the set of all funetions
of 4™ depending on at most k variables.

TaroreM. If A= (s, F) is an n-dimensional v*-algebra, and
A® — AGY, then there exist a group G of transformations of the set <l and
a subset <l,C 1. containing all fized points of the transformations from @
such that G(<ly) C iy, and moreover every algebraic function of n variables
is of the form:

F(@yy oy @) =g(@:) for ge Gand 1<i<n,
or
F(Zyy ey Ta) = @ for aed,.

In view of theorem IT of [3] it suffices to prove that A™ = 4™V,
whence the theorem results at once from the following

Lewnea. If U is an v*algebra, k=3, AP = 4%, and Gm¥ > %+1,
then A%FY = gF+00,

Proof. Suppose that the set Flan ,A(“l’k) is non-void, and let
fed¥HD 4FLR . Hence the set {f(@1y vy @ata)s B2y - Trta} in the al-
gebra A®Y i independent, and thus this set generates the whole al-
gebra A%, There exists an F e A% guch that

a1y = F({ (@1 ooy Barr)s Loy ooos i) .
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