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droite sont homéomorphes ([1], théortéme 4, p. 359), homéomorphie
pouvant étre obtenue aun moyen d'une fonction croissante.

La nécessité de la condition résulte de ce que tout ensemble de megure
compléte vérifie cette condition et ’homéomorphie ne modifie ni le iype,
ni la puissance de l'ensemble. Nous omettons la démonstration détaillée,
car elle ne présente pas de grandes difficultés (la démonstration omise
est analogue & celle qui ge trouve dans [1], au N° 276, p. 286 et N° 337,
p. 357-359).
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On the decomposition‘of 2-dimensional ANR-s into
a Cartesian product

by

H. Patkowska (Warszawa)

1. The object of the note Notations. A space X is said to
be topologically first if it contains ab least two points and is homeomorphic
with no Cartesian product of factors containing at least two points each.

Tt is known (see [1], [2], [5], [7], [8]) that the decomposition of a space
into topologically first spaces is in general not unique. Nevertheless,
in certain special cases this uniqueness holds. For instance, the decom-
position of an arbitrary polytope into topologically first spaces of di-
mension <1 is (disregarding the permutations of the factors and their
homeomorphisms) unique (see [4]). However, the problem posed by
K. Borsuk (see [3], p. 140), whether the decomposition of an arbitrary
space X into prime factors of dimension <1 is unique, remains still
unsolved.

The purpose of this paper is to show that this problem has a positive
solution provided that the space X is an ANR (i.e. a compact absolute
neighbourhood retract) of dimension <2. Namely, we prove the following

THEOREM. If X is an ANR of dimension <2 and if X is homeomorphic
with the Cartesian product X, x Xy x ... x Xu of some topologically . first
spaces, then the system Xi, Xy, .., Xo is (disregarding its permutations
and homeomorphisms) uniquely determined by X.

It is clear that the factors X, X, ..., X, must be ANR-sets of di-
mension <2 and that dimX = dim X, + dim X, +... +dim X,.

The following notation will be used in the sequel:

ordy, X will denote the order of the point 2, in the space X in the
sense of Menger-Urysohn.

X" will denote the set of the points of X of order = n.

If Q is a disk (i.e. a topological image of the circle || <1) and L
an are (i.e. a topological image of the interval 0 <o < 1), then ¢° and
I° will denote the interiors of these sets and @ and L' their boundaries.

If 4C X« Y, then Ay (respectively 4y) will denote the projection
of A into X (respectively into ¥), ie. the set of all points zeX (resp.
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yeX), so that there exists a point yeY (resp. ze X) such that
(w,y) e A.

The set (@) <« ¥, C X X ¥, where w,eX, Y,C Y, will be denoted
by. (2, ¥p).

2, Elementary lemmas.

Lemwma 1. Lei @ be a disk, D C Q a compactum such that every component
of it is a dendrite and that D contains no continuum of convergence (eon-
laining more than one point), and #, a point of D.

() If 2y€@® and D cuts every neighbourhood of =, in Q, then there
exisis an arec L C D such that 2, ¢ I°C Q°, L' C ",

(i) If 2y € Q" and there exist two ares Ly, L, C § such that z, = Iy~ I,
=Iin~L; and that D cuts Q between L,—z, and L,— 2y, then there emists
an are L CI" such that 2y« L' CQ', I° C @°.

Proof of (i). Suppose that 2, ¢ @° and that D cuts every neighbour-
hood of %, in Q. Considering the fact that D contains no continuum of
convergence (containing more than one point), one can eagily show that
the family A of all arcs contained in D with the end-points lying on @
Is at most countable. Moreover, it is clear that, if it is countable, then
the diameters of the ares belonging to it converge to zero. This implies
that the set C, being the union of Q° and all arcs of the family 4, is
a locally connected continuum.

Suppose that (i) does not hold. Then Z¢ C. Let @, denote the com-
ponent of @~ € containing #,. Since the continuum ¢ is disconnected
by no point, g, is a disk (see [6], p. 360, Theorem 4). Bach component
of @, ~ D has at most one point in common with the boundary of @,.
On the contrary, the set D would contain an arc I C @, whose end-points
Lie on Fr(Q,) C C. Then, by the definition of 0, this arc would be extended
to an arc with the end-points lying on @, contradicting the assumption
that Q,C Q—¢.

It follows that no component of J, ~ D cuts @
the disk @, is a neighbourhood of 2
contrary to our assumption.

Proof of (ii). Let #ely~2y, 2 eL,~2. By hypothesis there is
a component D, of D which cuts @ between # and 2. Then 2 e Dy ~ Q.
For otherwise L, u L, CQ— D, would be a continuum joining the points
2 and 2,. Since D, is a dendrite cutting the disk @, there exigts another
point 2 e Dy ~ Q. Hence, we may take for I the are joining the points
% and 2, in the dendrite D,C D.

In the sequel, we shall use the notion of local dendrite. This is a com-
pactum each point of which hag a neighbourhood which is a dendrite.

The class of local dendrites coincides with the clagss of 1-dimensional
ANR-g,

and consequently
which is not disconnected by D,
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For given spaces X and Y let us put:

(1) (X, X)y =[(X™M—X¥) % ¥] O [X x (T — 7%,
(2) (X, Y)z — (X[El_xlﬂl) % (le]__ Y[s]) ,
(3) (X, XYy = (X x Yy o (X« ™,

LevMA 2. Let Z be a Cartesian product of two local dendrites and let
2 € Z. Then:

(i) The point z, = (2, yo) belongs to the set (X, Y), if and only if there
exists no disk Q C Z such that 2, € Q°.

(1) The point 2y = (2, yo) belongs to the set (X, Y)g if and only if there
exist three disks Qq,Qn, Qs CZ disjoint except an are LC Qi ~ Qs ~ Q;
containing z, in its interior.

(iil) The point 2, = (@, y,) belongs to the set (X, Y), if and only if
it has neither of the properties mentioned in (i) and (ii).

Proof of (i). First, let 2, = (@, ¥,) € (X, ¥); and let ord, X =1,
ord,, ¥ > 1. Suppose, contrary to (i), that @ CZ is a disk such that
% e@°. Then o(%,@) =¢>0. By our assumptions, there exist two
dendrites D' C X and .D"” C Y such that s, e Int(D’), y, e Int(D""), Fr(D’)

= @, Fr(D") =Qlyi, 8(D'x D) < e. Let
n
D =Fr(D'xD") = (=, D) v _L_)l(D', i) -

This formula implies that D is a dendrite. Observing the properties of
the dendrites D’ and D"" we see that 2, e Int(D’' x D), @ C Z— (D’ x D).
Therefore, the dendrite D = Fr(D’ xD") cuts the space Z between z,
and Q. It follows that the set D ~ Q C@° cuts the disk @ between the
point 2z, € @° and the boundary @'. But it is false, because D ~ Q C @°
is a compactum whose components are dendrites.

Next, let 2, = (2, ¥,) ¢ (X, ¥);. Then ord;, X >1 and ord, ¥ > 1;
therefore there exist two arcs L'CX and I C Y such that z,eL",
Yo € L'"°. Now, putting @ = L' « L', we obtain the disk @ with the re-
quired property.

Proof of (ii) runs similarly to the preceding one. In fact, if 2z,
= (@, Yo) € (X, ¥),, then either ord,, X > 3 and ord,, Y > 2 or ord,, X > 2
and ord,, Y > 3. In either case the space Z containg three disks with
the required property. Conversely, if 2z, = (%, ¥,) ¢ (X, Y¥); and there
exist three disks @y, @,, Qs C Z whose common part is an are LC Q; ~
~ @5 ~ Q3 containing #, in its interior, then, in view of (i), z ¢ (J:Y y Y.
It follows that ord,, X = 2 and ord,, Y = 2. Therefore, there exist two
dendrites D'C X, D” CY such that x,eInt(D’), y,eInt(D"”), Fr(D’)
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=y Uy Fr(D) =31 U Yo, (D' x D) < plzg; (Qiv Q2w @) —L°]. Then
the set Fr(D’ » D) ~ (@ v @ w @5) contains at most one simple closed
curve and cuts §; w @, w Q5 between the point 2, and the set (91 v @3 « ) —
—I°, which is impossible.

The truth of (i) is an immediate consequence of the formula
(X, ¥), = X x ¥—(X, T)—(X, V),

This lemma characterises the subsets (X, Y),, where »=1,2,3,
of the space Z, which is a 2-dimensional ANR in an invariant manner,
i.e. independently of the fixed decomposition of Z into the Cartesian
product X 3 ¥. Hence, in the sequel we shall use the following notation:

(4) (X,%), =%, for »=1,2,3.

3. Some families of sets K and 8. In Sections 3-6 we shall
consider a fixed connected 2-dimensional ANR of the form Z = X' < ¥,
where X and Y are curves. It is elear that X and ¥ must be connected
1-dimensional ANR-sets.

In this Section we define two families R, S of subsets of the space Z.
In Sections 4-6 we shall give the proof of identity of these families
(see (7). Our Theorem, whose proof we ghall give in Section 8, is an
easy congequence of this fact.

DEFINITION OF THE FAMILY R. The set M C Z belongs to the family R
if and only if it has either the form (w,, ¥) or the form (X, y,), where
zp e X gy e YL

For each closed subset N of the space Z, let us denote by R|N the
family of all sets of the form M ~ N, where M ¢ K. Let us notice that:

(1R) Each two sets My, M, e R having at least two different common
points are identical.

(2R) If N = DNC Z,, then the family R|N constitutes a countable
covering of N by closed sets.

(1R) requires no proof. (2R) follows from the formula Z; = (X, ¥),
C(X® % ¥)u (X x Y) (see (3) and (4)) with regard to the countability
of X and Y™, which are the sets of the points of ramification of the
local dendrites X and Y.

The above definition of the family R depends explicitly on the de-
composition of the space Z into the Cartesian product X x Y. Conversely,
the definition of the family § has an invariant character, i.e. depends
only on some topological properties of the space Z. Ilowever, we shall
show that these families coincide.

DEFINITION OF THE FAMILY 8. The set 4 belongs to the family §
is and only if:
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(14) A is a connected local dendrite.
(24) AW~ A=A ~ 7,.
(34) A¥= 4 ~ Z,.
(44) There is a continuum F C Z such that the following conditions
are satisfied:
(i) 4 CInt(F).

(ii) 4 4s an drreductible cut of F, i.e. A s the common boundary in F
for every component of F— A.

(iii) If 2, is an arbitrary point of A and G an arbitrary component
of B'— A, then there ewists no disk Q C G such that z, € Q°.

(iv) If L is an arbitrary arc contained in A and @ an arbitrary com-
ponent of F— A, then there exists o disk QC G such that L =Q ~ ACQ".

(v) If 2, is an arbitrary point of A, G is an arbitrary component of
F—A, L, L,C A are arcs such that 2ye L ~ L§ and Q,,Q,C G are disks
such that Ly C Qy, L, C @y, then there is an arc Ly C @ ~ Q, such that 2, Ly,
Ly—2C Q% ~ Q5.

The following property is a consequence of the above properties of A:

(6A) If QC Z is a disk, then for each point 2z e Q° ~ A there ewists
an arc L C Q) ~ A such that z e L° C Q°. Moreover, if the disk Q is sufficiently
small, then it is possible to find an arc L satisfying the additional con-
dition L" C Q".

In fact, let @ C Z be a given disk and 2z € Q° ~ 4 a given point. Let F'
be a continuum satisfying conditions (i)-(v)#mentioned in (44). Replacing,
if necessary, the disk @ by a smaller one (containing # in its interior),
we can assume that @ CF and that thé set @ ~ A contains no simple
closed curve. Thern, (44) (iii) implies that the set @ ~ 4 cuts every neigh-
bourhood of the point z in Q. Hence, the assumptions of Lemma 1 (i) are
satisfied by the disk @, by the compactum D = @ ~ A and by the point 2.
Hence, there is an arc ZC D =@ ~ 4 with the required property. .

4. The inclusion R C §. Let M be a given set of the family R.
Without loss of generality we can assume that M = (z,, ¥), where @, ¢ X'
To prove that M e § it iy necessary to show (1.M)-(4M).

The properties (1M)-(3.M) follow at once from the form of the set M
and from the definitions of Z, = (X, ¥), and Z; = (X, ¥Y), (see (1) and (3)).
To prove (4M) let us put F =D’ x ¥, where D’ is a dendrite constituting
a neighbourhood of the point , (with respect to X). Of course, condi-
tions (i) and (ii) are then satisfied.

Let 2, = (%, ¥o) be a given point of M = (z,, Y) and G a given
component of F—M = (D'—a,) x ¥. Thep ¢ = &' x ¥, where ¢ is a com-
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ponent of D'—a,. Therefore ¢ is a dendrite such that w,e G — G,
This means that 2 = (%, %) € (&, ¥);, so that in virtue of Lemma 2 (1)
condition (iii) is satisfied.

Now, let ¢ =@ x Y be again a component of F—M and LC M
= (@, Y) a given arc. Then L = (%, L"), where L' =Ly C Y is an arc.
Let us denote by I/ any arc contained in &' such that w, e L. Now,
putting @ = L' x L', we obtain a disk @ with the property required by (iv).

Passing to (v), let us consider a point 2, = (w,, ¥,) € M, a component
G=@xY of F—M, two ares L; = (w,, Ln'), Ly = (2, Ls’) C M and two
disks Q,, @, C G such that 2z, e I ~ LS, L, CQ., L, CQ,. We can agsume
that the sets Iy, Ly, @1, Q. C & = @ x ¥ lie in a neighbourhood of ¢,
(with respect to () constituted by the Cartesian product G < &', where
@’ is a dendrite econstituting a neighbourhood of ¥, (with respect to ¥).

Since 2, ¢ M ~ @, and @, C @, in virtue of (iii) we have 2, ¢ Q;. Be-
cause z, ¢ L and I, C & x G, we see that 1, ¢ Lj”° and I C ¢*’. Therefore
the point y, cuts the dendrite ¢" between the two components of LY —y,.
Consequently, the dendrite (G, y,) cuts & x @’ between the two com-
ponents of IL,—z, = (y, I{ —%,). By this, since L; CQ, C & x G, the
compactum D; = (G, y,) ~ @, cuts the disk @, between the two com-
ponents of L,—z,. Hence, we may apply Lemma 1 (ii) to the disk @,
the compactum D, and the point z,. Then we find an arc IL,,C D,
= (G, o) ~ Q, such that z, e Ly, Lyo—2, C Q5.

By an analogous proceeding for the disk @, and the arc L,, we obtain
an arc Loy C (G, y,) ~ @, such that 2, eLsg, Loo—2,C Q5. Then we have
Ly = (L, yo),_"L-z,o = (Lo, Yo)y Loy Lae C _é_', @y € Ly ~ Lgy. Conge-
quently (since G is a dendrite such that ord, G' = 1) there exists an
arc Ly C Lig n Ly such that m,¢L”. Now, putting L, = (L, 1,), we
obtain an are L, with the properties required by (v). Thus, the proof
of the inclusion

(8)

is- complete.

RCS

. 5. Some pr.'operties of the sets of the family S. Throughout
t}m} §99t10n 4 will be a fixed set of the family §. We ghall give here the
definition of turning and Lemmas 3 and 4 related to this notion. Corollary 1,

arising from these Lemmas, will be used in Section 6 to prove the in-
elusion §C R. 4

DEFTNITFON OF TURNING. The point 2, = (z,,y,) belonging to an
arc TC A will be called a turning of this are if there exist two ares
J, K CI such that gy =J ~ K =J° A By Jy = (y,) and Kx = ().

Lemua 3. Bach are I C A such that neither of the projections Iy, Iy
reduces to a single point has turning.

icm°®
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Proof. Let I C A be a given arc with the above-mentioned property.
Since I ~ (A—A®) C I', we can assume, reducing this arc if necessary,
that IC A ‘

Since, in virtue of (34), 4™ C Z,, we see in view of (2R), that the
family RJjI covers the arc I. Let K ‘denote the subset of the arc I con-
sisting of those points which lie in the interior (with respect to I} of any
set of the family R||I. By (1R), the interiors of two different sets of the
family R||I are disjoint. Hence, each component of K is a component of
the interior of exactly one set of the family .R||I. By hypothesis the
arc I is not contained in any set of the family R. Therefore I—K = 0.

Consider the set N =I—K. Since N =N and N C Z,, in virtue
of (2R) we infer that the family R||N constitutes a countable covering
of N by closed sets. Hence, by Baire’s Theorem, there exist a point
2o = (ty, Yo) e N—1I', an arc I,CI and a set M,eR such that 2 eI5,
I, ~ N C M,. Let, for instance, M, = (z,, X). We are going to show that
the point 2, is a turning of the arc I.

Suppose that K,C I§ is a component of K. Then there exists a set
M e R such that K,C M. Since K;—K,CI,~ NC M,,.applying (1R)
we obtain M = M,. Hence K,C M,. It follows that every point of the
arc Iy = (I, ~ N)u (I, ~n K), except possibly those which belong to
a component of K containing a point of I;, lies in M,. Hence, the arc I,
iz covered by at most three sets of the family R. Since the point 2, € I§ ~
A~ N ~ 3, does not belong to the interior of M, = (w,, ¥), there iy another
set M, e R such that 2, = (2, ¥o) € M. Therefore M, = (X, y,) and the
point z, is a turning of the arc I,, as well of the arc ID I,.

Levma 4. No arc I C A may have a turning.

Proof. Suppose on the contrary that a point z, = (@, ¥o) e 4 18
a turning of some arc contained in A. Hence, there exist two ares J,
= (J1, %)y K1 = (%, K7) such that z =J, n K, =Jin K;. Let F be
a fixed continuum satisfying conditions (i)-(v) mentioned in (44). We
can assume, reducing these arcs if necessary, that J,, K, C D'x D" CF,
where D'C X, D" CY are some dendrites such that , e Int(D’), ¥,
e Int(D’’). Moreover, we can assume that the set (D’ x D) n A contains
no simple closed curve.

Since, in virtue of (34), # ¢ A® CZ, = (X, ¥);, we can assume
that ord,, D’ = 2 and ordy, D'’ > 3. Hence, there are an are J; C D' such
that Ji ~ Jbs = 2y =Ji ~Js and two arcs K3’, Ky C D" such that Ki'
WK=K/ ~"K{ =Kf ~K{ =y, =K{" ~n K ~ E;". Let

Q, = (J1 v J3) X (K3 ~ Ky).

O =Jix K,

We see that @,Q,CF are disks such that @ ~ @y = (J1, %) =J.C 4,
JyVE, CQin A, 2,e@1n Q5 Al
2*
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Let 8, denote the closure of the component of D' —ax, containing
Ji—z, and T4 the closure of the component of D" —y, containing Ki'—?/o-
Let 8, = (8}, @)y Ty = (Y, T%). Then, the dendrite §; v T, cuts D’ x D"
between the interior and the complement (with respect to D' x.D") of
S x T Since QF =dJ1° x Ki° C (8j—mp) x (TY — 1) = Int (81 % TY) and
Qo (Six TY) =[(J3 v J3) ~ S X [(Ks © E&) n T7] = (J1, Yo) = G2~ Qs
which implies that @,—@, C (D' x D")—(8ix T¢), the dendrite S, v T
cuts D' x D' also between QF and Q,— ;.

In order to obtain a contradiction we shall construct the disk @
and the are I such that L C Q C I’ x D", 2, ¢ I° ~ @, that the components
of L—z, will lie in Q¢ and @,—@, respectively and that @ ~ 4 C "

Then, the assumptions of Lemma 1 (ii) will be satisfied by the disk ¢,
the compactum D = (8, v T;) ~ @ and the point #,, because the set 1)
will cut the disk QC D' x D" between the two components of L-—z,.
Therefore, we shall find an are Iy C Q ~ (8, v T) such that # e In, L C @°.
This arc must be contained in the closure of one component of (S; v 14) —z2:
for instance let I, C T;. Then, by the definition of T, we see that L,
K,CT, #eL;i~n K; and ord, T; = 1, which implies that L{ ~ K7 # 0.
Since 9 C Q°, K, C 4, it follows that @° ~ A # 0. However, the disk @,
which we want to construct, will satisty the condition @ ~ A C@°, which
is a contradiction.

Now we pass to the construction of the disk ¢ and the arc L.
Let us consider the disk @, and let us recall that z,edy v K C Q) ~ A.
According to (54), each point 2¢Qf ~ 4 lies on an arc of A joining
two points of @;. Hence, considering a component of @,—4 —@i whose
closure contains 2,, we find a disk @, CQ; and an arc Iy, C @i, such
that Ly = Q10 A, 2geLfy. Then Q10— L1y CF— 4, because @Q,C@Q,CF.
Let G, denote the component of F— A containing @, p—ILye. Then we
have @, C Gy.

Since 2, € @5 ~ A4, in virtue of (54) there. exists an arc Lyo C @y ~ A
such that 2, e L3, C Q5. Further, by (44) (iv), there is a disk @ C G, such
that Lyp=@ ~ A C Q. Since the set D’ x D’ is a neighbourhood of #,,
we can assume that @ C D' x D", Thus, we have obtained the desired
disk Q.

Now, applying (44) (v) to the point z, ¢4, the component G, of
F—A, the arcs Ly, LyoC A and the disks Qi and @, we find an are
Ly C Qo ~ Q such that 2, e Ly, Ly—2, C Q70 ~ @° C QF ~ @°. Finally, denot-
ing by L the union of L, and that component of L,;—#, which lies ...
©2—@y, we obtain the desired arc L. Thus the proof is complete.

Lemmas 3 and 4 immediately imply the following

COROLLARY 1. For each arc I C A one of the projections Iy, Ty reduces
to a single point. ‘
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6. The inclusion 8§ C R. Let 4 be any set of the family §. It
will be proved that A has either the form (w,, ¥) or the form (X, y,),
where @, ¢ X7, y, e Y. Let I,C A be a fized arc. By Corollary 1, one
of the projections Io., Io, reduces to a single point. For instance, leb
Iy= (%) Let us choose a point 2, = (%, %) € I§ such that ord,, ¥ = 2.
Then we have ordg.X >3, because 2 e AP CZ, = (X , ¥); in virtue
of (34). We will prove that 4 = (x,, ¥).

Let 2 = (z, y) ¢ A. Choose two distinet points 2, = (@, ¥y), 2, = (%, ¥5)
e I,. Denote by I, and I, some arcs joining in A the point 2z with the
points 2, and 2, respectively. If x 7 m,, then neither of the projections
Iy, I,y can reduce to a single point. Therefore, we would have I, = (y)
= (y1); Loy = (¥) = (¥2), so that y, = y,, contrary to the assumption
that 2; % 2,. Hence x = 2,, which proves that A C (z,, Y).

By (44), the set A cuts some continuum ¥, which is its neigh-
bourhood in the space Z = X x Y. However, no proper subset of (z,, ¥)
has this property. Hence, A = (x,, ¥) ¢ B, which proves the inclusion

(6) SCR.
From (5) and (6) we immediately infer that
(7) The families R and 8 coincide.

7. Proof of the Theorem in the case where the space
X is connected. Let X be a connected 2-dimensional ANR. Suppose
that there exist two pairs of curves X', ¥’ and X", ¥’ and two homeo-
morphisms 2': X' x ¥ >X, b'': X" x ¥Y"'—+X such that #' (X' x ¥') =X
=p"(X"xXY") Let Z'=X'xY, Z'=X"xX", let Z,,Z,, where
v =1,2,3, be defined by formula (4), and let » =h'""* &',

First, let Z;=0. Then X'™ = 0 = ¥'™, Hence the space X is
homeomorphic with the square I' x I, the cylinder I' x 8, or the torus
812 8. These cases are topologically different, since in the first case
the set Z; (and also Zy = h(Z})) is connected, in the second case it is
not connected, and in the third case it is empty.

Next, let Z; # 0. Then either only one of the sets X™, ¥'™ ig non-
empty or both these sets are non-empty. In the first case the get Zj is
not connected, in the second case it is connected.

Let X'® 5 0, 7™ = 0. Since Z4 is homeomorphic to Z; and there-
fore has the same properties, we may assume that X'™ 0, ¥'® = 0.
Then, by the Theorem of Borsuk (see [3], p. 156), we have X’ﬁpX”
and ¥ = Y".

Finally, let X™ 20 s Y™ and therefore also X' 05 Y™ Let
R', 8" denote the families of subsets of the space Z’ defined as in No. 3, -
and let R, 8" denote the analogous families for the space Z”. Then,
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the homeomorphism b transforms the family 8 on 8" by their topological
character and, with regard to the identities B’ = 8" and R’ = 8" arising
from (7), it transforms the family R’ on RE”. Ilence, if ye Y fhen
R(X',y') is equal to (X", y") or (2", Y''). Suppose for instance that the

first case holds. Then, X' . X' 1t X’ tﬁ Y’ then h(z’, ¥') = (2", X",
so that ¥ o Y. Oh the other hand, if X' iop X t_hen also (by the to-
pological identity of the families 8’ = R’ and 8" = R"”)X"" .. Y"’; there-
fore again ¥’z Y. Hence, in all cases the pairs X, Y and X7, X"
are topologically the same, which completes the proof of our Theorem
in this case.

8. Proof of the Theorem in the general case. This proof
rung similarly to the one given by X. Borsuk (see [4], p. 148). Namely,
we associate with the topological type of any space X a certain poly-
nomial P(X) called the characteristic polynomial of X. This polynomial
i the sum of the polynomial P(C) corresponding to every component
of X (see ibidem).

Let X be a given ANR of dimension <2, which is homeomorphic
with the Cartesian product X; x X, x ... x X, of some topologically first
spaces. Then P(X)= P(X,):-P(X,):...-P(Xys). Let ¢ be a component
of X. By definition we put P(C) =1 if C is 0-dimensional (hence ¢ con-
tains only one point), P(C) = a; if C is 1-dimensional, P(C) == z;- m; if
C is a Cartesian product of two 1-dimensional spaces, and P(C) = #; if
C is a topologically first 2-dimensional set. By the preceding Section,
each P(C) is uniquely determined by (. We have

P(X) =D aaf o+ D bioa,
] 7
where a;;, b; are non-negative integers and ¢ is equal to 0 or 1.

It is easily seen that the space X is decomposable into a Cartesian

product of some topologically first gpaces if and only if the polynomial

P(X) is decomposable into a product. of some indecomposable linear
factors. Since this last decomposition iy unique, the decomposition X
=X; xX,x...x Xy is also unique. Thus our Theorem is completely
proved.
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