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K. H. Hofmann* (Tiibingen) and F. B. Wright** (New Orleans, La.)

1. Introduction. Let 4 be any Boolean ring, and let G be a group
of automorphisms of A; for an element ¢ e A and an element g ¢ @, we
denote the image of & under g by as. The set a® = {a : g« @} is called
the orbit of a (under G). The group G is said to be pointwise periodic
(on A) if every orbit is a finite set, and a pointwise periodic group is said
to be periodic (on A) if there is an upper bound to the size of the orbits.
(A group, all of whose elements have finite order, is sometimes called
periodie. We shall eall such groups torsion groups.) By the duality theory
of M. H. Stone [6], any Boolean ring is isomorphic to the Boolean field
of open compact sets in some locally compact, totally disconnected,
Hausdorff space X. Following Stone, we shall call such spaces Boolean
spaces, and, following Halmos, we shall the space X associated with
a Boolean ring the dual space of the ring. Stone has shown that there
is a natural isomorphism between the group of all automorphisms of
a Boolean ring and the group of all homeomorphisms of its dual space.
Consequently, for any group G of automorphisms of 4 there is an iso-
morphic group I" of homeomorphisms of X. The notions of pointwise
periodicity and periodicity for I" have an obvious meaning.

The special case of a cyclic group has received some attention. More
precisely, if ¢ is an automorphism of A, and if y is the dual homeomorphism
of X, then the following is known:

(a) The automorphism g is periodic if and only if y s periodic; this
is an immediate consequence of the isomorphism given by Stone.

(b) If y is periodic, then, trivially, it is pointwise periodic.

(¢) If y is pointwise periodic, then g is pointwise periodic; this result
is due to A. D. Wallace [7], extending a theorem of Hall and Schweigert [2].

The converses of (b) and (¢) are not, in general, valid. Counter-examples
will be found below; the failure of the converse of (¢) seems not to have
been noticed. )

* Research supported by the National Science Foundation;
** Research Fellow of the Alfred P. Sloan Foundation.
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It @ is an arbitrary group of automorphisms, with dual group I
of homeomorphisms, then the situation is more complex. The following
assertions are then valid:

(i) If @ is periodic, then I' is periodic,

(i) If I is periodic, then, trivially, it is pointwise periodic.

Statement (i) will be proved below, and an example will be adduced
to show the failure of the converse. The analogue of (c) can be proved
only under an additional hypothesis:

(iii) If I' is pointwise periodic and if X has a Hausdorff orbit space
under I'y then G is pointwise periodic.

This will be proved below in a manner somewhat similar to Wallace’s
proof in the cyclic case. Examples show that the assumption of a Haus-
dorff orbit space cannot be dropped. An equivalent formulation, in
dynamical terms, is the following:

(iii') If I' is pointwise periodic and locally weakly almost periodic,
then G 1is pointwise periodic.

The converse of each of these fails, even if the group is a countable,
abelian, torsion group in which every element has order 2.

It thus appears that the weakest hypothesis which can, in general,
be imposed in this situation is that the antomorphism group @ be pointwise
periodic on the Boolean algebra 4. It is somewhat surprising that, if 4
is assumed to be a Boolean o-algebra, this hypothesis is equivalent to
the strongest of all possible ‘‘periodicity”” assumptions about @, namely,
that @ is a finite group. In topological terms, this is the assertion that
@ pointwise periodic and locally weakly almost periodic group of homeo-
morphisms of a Boolean ¢-space is necessarily a finite group. (In particular,
these apply to complete Boolean algebras and extremally disconnected
Boolean spaces.) As might be expected, the proof of this is somewhat
long, and is quite combinatorial in character.

A classic result of Montgomery [5] asserts that a pointwise periodic
homeomorphism of a connected locally Euclidean space is necessarily
periodie. Our results may be regarded as a fairly complete analysis of
what can happen at the other end of the topological spectrum; that is
when the space is totally disconnected. In particular, Theorem VII mzuyi
be considered as the analogue of Montgomery’s theorem.

2. Preliminaries. If 4 is a Boolean ring, we shall write X = A*
to denqtehthat the (locally compact) Boolean space X iy the dual space
of 4. Similarly, we shall, for any locally compact Boolean space X, write
A =.X* to denote the Boolean algebra of all compact open sets of X.
If gis an a..utomorphism of 4, we denote the corresponding homeomorphism
7 by wiiting y =¢* and g = »* If G is a group of automorphisms of 4,
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and if I' is the corresponding group of homeomorphisms of X, we write
I' = G* and G =I'*. The compact open set U which corresponds to
an element o of 4 will be denoted as U = a*. The image of an element -
@ ¢ A under ¢ € @ will be denoted by af; the image of a point z ¢ X under
y e I''will be written yz. If a e 4, g € &, U = a*, y = g*, then (a?)* = y—1U.

If @ is a group of automorphisms of A, the orbit of an element a ¢ A
is the set a® = {a9: ¢ € G}. The cardinal number of the orbit of a is called
the order of a, and will be denoted by o(a). The group @ is said to be
pointwise periodic if o(a) is finite for every a e 4, and is said to be periodic
if it is pointwise periodie and if the orders are bounded. An element a e A
is called an invariant element if o(a) =1; that is, if a# = a for all ge G.
For each element ae A, we let G, = {ge@: af =a}, and we call this
subgroup the fiz subgroup of G. The order of a is then equal to the index
(G:Gy) of Gy in G.

The same terminology and notation will be applied to a group of
homeomorphisms of X, with one exception: A point # ¢ X will be called
a fiwed point it yz = o for all y eI\

The concept embodied in the first definition will play a fundamental
role throughout this paper.

2.1, DEFINITION. If G is a group of automorphisms of a Boolean
algebra A, an element ac A is called an orbital atom if, for any ge@,
asha #0 implies a? = a.

Orbital atoms do not, in general, exist. For pointwise periodic groups,
however, they are abundantly present.

9.9. PROPOSITION. If G is a pointwise periodic automorphism group
of A, then every non-zero element a in A can be written as a disjoint union
of a finite set of mom-zero orbital atoms.

Proof. The set a¢ is finite, and generates a finite subring of A. This
subring is completely atomic and its atoms are permuted by G. The atoms
of this ring are therefore orbital atoms, and every element is the disjoint
union of such orbital atoms.

2.3. PROPOSITION. (i) Any invariant element is an orbital atom.

(i) The intersection of two orbital atoms is an orbital atom.

(i) If @ b # 0, and if a is an orbital atom, then Gy C Go; in partic-
ular, if G is pointwise periodic, then o(a) divides o(D).

Proot. (i) and (ii) are trivial; we prove (iil) as a sample of the cal-
culations used repeatedly with orbital atoms. If 3% = b, then a’Aa = bIAD
=b # 0, so that o = a.

2.4. DEFINITION. If @ is a pointwise periodic group of automorphisms
of A, we define, for any element a < A, the element @ = sup a.
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We note explicitly that this supremum exists, since the set a¢ ig
finite when @ is pointwise periodic. (The meaning of the mapping a4 +a
when @ is not pointwise periodic is discussed in [8].)

92.5. PROPOSTIION. Let G be pointwise periodic.

(i) An element a is invariant if and only if o = a.

(ii) If a is invariant, then and = aAD for any b e A.

(iif) If BC A is o subset of A such that infB = ¢ exists in A, then
for any element ae A, we have ane =aAL, provided that B consists of
invariant elements.

B Proof. (i) is obvious, (ii) follows from the distributive law, and
(iif) follows from (ii).

3. Pointwise periodicity. This section is devoted to establishing
statements (i) and (iii) in the introduction.

3.1. PROPE)SITION. Let G be a pointwise periodic group of automorphisms
of a Boolean ring A, and suppose that the order of any orbital atom of A. is
< g, for some natural number q. Then the dual group I' = G* is a periodic
group of homeomorphisms of X = A*, and the order of amy point in X
is <{.

P%'oof. Any‘ compact open set in X is the disjoint union of a finite
collectl.on of orbital ators, by 2.2. (A compact open set U C X is called
an orbm{a,l atom foz: I'if U = a* where o is an orbital atom in 4.) Hence
the‘ orbital atoms in X form a basis for the topology of X. Let # be a point
which has at leas.t q d_ilﬁerent points @ =y, yy2, ..., yoo in its orbit.
'}Ther.x all of the pomts‘ yi 7%y t,§ =1, ..., ¢, are different from z provided
¢ # 4. Her}ce we can find a sufficiently small neighborhood Uy of %, which
is an orbital atom, such that Uy~ iUy =0, i,f=1,..,¢q i+
Then the intersection U of all the Uj; is an orbital atom and a neigh-
bo_rhood of @ such that U~ y;U =0 for i,j=1,..,q, i #4. Bub
ﬂ].l‘s contradlf:tﬁz. the fact that U does not admit ¢ disjoint translates.
This contradiction proves the proposition.

As an immediate corollary, we have the following result:

ving !AI‘BEot h];’:]gt I.d IflG i a Ipieriodic group of automorphisms of a Boolean
, its dual group I' = G* is a periodi 2
o o o o 2 periodic group of homeomorphisms
o In the fifth section of t]:‘le Paper, we give an example to show that
1—,]16 c;nverse does ‘not.; hold, in general. The example will, in fact, show
fat b‘mla,y be periodic on X and @ pointwise periodic so that the orders
of orbital atoms are bounded, while @ is still not periodic (see 5.4.).
3.2. LEMMA. Let X be any topological space, let © e X, and let U be

a family of compact meighborhoods of © suc
] h that : =
Then U is a neighborhood basis for x. “ AT =,
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Proof. Let ¥ be any open neighborhood of #. If no element W of
Q¢ is contained in V, then the filter basis {W\V: W €U} of compact
sets has a non-void intersection which is in the complement of V, and
therefore does not contain z. This is a contradiction.

3.3. Tmnva, Let X be any topological space, let ¥ be any topological
T,-space and let = be a continuous mapping of X onto Y. Let x be a point
in X for which the following conditions are satisfied:

(i) m(x) has a basis U of netghborhoods such that n='U s compact
for each U eU;

(i) ='w(z) = {w}.

Then the family {n—1T: U U} s a neighborhood basis for .

Prooi. Because of 3.2, it suffices to show that N a~'U = {z}. Suppose
y # @ By condition (ii), n(y) # =(x). Since Y is a Ty-space, there is
a U e such that w(y)¢ U. Then y ¢ a—*U.

3.4, Tmvma. Let X be a locally compact Boolean space, and let I' be
a pointwise periodic group of homeomorphisms of X. Suppose that, for
each x ¢ X, there is a neighborhood basis of compact open sets U having
the property that y € Iy implies yU = T. Then the collection of all compact
open sets which are orbital atoms form a basis for the topology of X. Moreover,
if the orders of all points in X divide a fized natural number g, then the
orders of all orbital atoms divide g.

Proof. Let #¢X, and let U be an arbitrary neighborhood of z.
Let 1 =y, ¥ay -, ¥n be @ system of representatives for the left cosets
of I, in I. Then y;# #  for all i =2,...,n. Let ¥ be a neighborhood
of z contained in U such that ¥V AV =@, { =2, ..., n. Let W be a com-
pact open set in V containing x, such that y e T, implies yW = W. Then
W is an orbital atom. For if 6 = y;y, y e I, is an arbitrary element of I'
such that oz # @, then 4 = 1, since ys =«. But now oW = y;W does
not intersect W because ;¥ does not intersect V. The remainder of the
Jemma is obvious since the intersection of two orbital atoms is an orbital
atom, and since the order of an orbital atom divides the order of any
of its points.

3.5. LemmaA. Let T’ be a pointwise periodic group of homeomorphisms
of a locally compact Boolean space such that the orbital atoms form a basis
for the topology of X. Then any compact open set in X is the union of a finite
collection of orbital atoms.

Proof. Cover a compact open set with orbital atoms contained
therein, and reduce to a finite covering.

Suppose now that I"is any group of homeomorphisms of a topological
gpace X. The collection of orbits {Iw: z € X} forms a partition of X into
equivalence classes. The quotient space ¥ of X modulo this equivalence
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relation forms a topological space called the orbit space of X under I'
This space is not, in general, even a T;-space. In case I" is a pointwise
periodic group on a T,-space X, the orbits are finite, and hence the orbit
space is a 7T;-space. We shall give an example in section 5 below of
a pointwise periodic I" operating on a compact Boolean space X which
has an orbit space which iz not a Hausdorff space.

3.6. DEFINITION. 4 group I' of homeomorphisms of & topological space
X will be called a group with separated orbits if the orbit space of X under I'
is @ Hausdorff space.

‘We shall consider conditions which guarantee that I" has separated
orbits in the last section.

3.7. LeMMA. Let X be a compact Boolean space, let I' be a pointwise
periodic group of homeomorphisms of X with separated orbits, and let x
be a fized point of I. Then « has a neighborhood basis of compact open
invariant sets.

Proof. Let = be the projection mapping of X onto the Hausdorft
orbit space Y. If U is any neighborhood of =(z) in ¥, then =»—'U ig
a neighborhood of # in X, and therefore contains a compact open neigh-
borhood V of z. The saturation I'V = n—'=V is open. On the other hand,
@V is compact since = is continuous and, since ¥ iy & Hausdorff space,
aV is closed in Y. Thus a~'aV is closed in X, and therefore is compact.
Consequently, U contains a compact open neighborhood #V of % (z) whose
counter-image n~—'xV is compact in X. The hypotheses of 3.3 are satistied,
and the collection z—*aV, where V is a compact open neighborhood of =,
is the required basis of invariant neighborhoods.

For the case of a cyclie group, this result has been established by

Wallace [7] for locally compact spaces. The same comment applies to
the following:

§.8. PROPOSITION. Let X be a compact Boolean space, and let I' be
& pointwise periodic group of homeomorphisms of X with separated orbitls.
Then the set of orbital atoms is a basis for the topology of X. I f I is periodic
then the orders of the orbital afoms are bounded. ,

Plroof. Let 2 ¢ X; then « iy a fixed point for the group I,. By 3.7,
there is a neighborhood basis of compact open sets invariant under Iy.
Then, by 3.4,  has a neighborhood basis of orbital atoms. The orders
of orbital atoms are bounded if points have bounded order.

TeEOREM IL If I is a pointwise periodic group of homeomorphisms
of a czm_pact .Bool_ean space X with separated orbits, then the dual group
@ =TI* is pointwise periodic on the dual Boolean algebra A = X*.

. Pl‘?oof. Let U be any compact open set; U is the union of a finite
collection Uy, ..., Uy of orbital atoms (3.5). The number of translates
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yU; of each is finite, and hence the total number of all the sets
p U v ynUny Y1y ooy yn € Iy is finite. Any translate of U is one of
these sets.

This result establishes statement (iif) of the introduction. We note
that it has been proved only when X is compact, or equivalently, if
the Boolean ring has an identity (is & Boolean algebra), where Wallace [8]
was able to prove this for a cyclic group on a locally compact Boolean space:

mamoreM III (Wallace). If I' is a cyclic pointwise periodic group
of homeomorphisms of a locally compact Boolean space X, then its dual
group G = I'* is pointwise periodic on the dual Boolean ring A = X*.

This theorem obviously remains true if “gyelie” is replaced by
“finitely generated abelian”.

We have also established somewhat more than Theorem III, in that
we are able to give an analogous statement to (a) of the introduction.
The following terminology is convenient:

3.9. DErFINITION. Let G be a pointwise periodic group of automorphisms
of a Boolean ring A. Then & is said to be atomically periodic if the orders
of the orbital atoms are bounded. :

TaEOREM IV. Let G be a group of automorplisms of a Boolean algebra A,
let X = A*, and let I' = G* be the dual group of homeomorphisms. If G
is pointwise periodic and atomically periodie, then I' is periodic. If I' is
periodic and has separated orbits, then @ is pointwise periodic and atomically
periodic.

This follows at once from Proposition 3.1 and 3.8, and Theorem II.

The assumption that I' has separated orbits cannot be omitted in
the above theorems, as the example (5.4, below) shows. More preecisely,
the following is true:

TamorEM V. Let @ be a group of automorphisms of a Boolean algebra A
and let I' be the dual growp of homeomorphisms on the compact Boolean
space X = A*. If I' is pointwise periodic, then G is pointwise periodic
if and only if I' has separaied orbits.

Proof. We need only show that if both I" and @ are pointwise periodic,
then I' has separated orbits. Let «,y ¢ X have disjoint orbits, and let U
and U’ be disjoint npeighborhoods of these orbits, respectively._ Such
neighborhoods exist because X is normal. We will show the exist(’ence
of an invariant compact open neighborhood Z of which i8 con?:a.med
in U; analogously, there will exist a similar neighborhood of y in U
Projecting these neighborhoods into the orbit space Y by the projection =
will yield disjoint neighborhoods of = (w) and 7(y), which will prove the
theorem.

Let {y,@, p1@, ..., yo®} be the orbit of =, where y, = 1. By 2.2, we
can select orbital atoms Vy, ..., Vau such that y:@ eV;CU,i=0,1,..,n
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It W;=y7V;, then W; is an orbital atom and a neighborhood of g,
Let W = () Wi; then W is an orbital atom (2.3), and @ € W. If I is the
i=0

fix group, then I, W = W, since W is an orbital atom. Now let Z = I'W.
Then Z is clearly invariant, and I'W = (yplz v . ) W =W o p W o
U ... u pyWC U. This accomplishes the proof.

4. o-rings. Throughout this section, A will be a Boolean o¢-ring;
that is, any countable subset of 4 has a least upper bound and a greatest
lower bound. The dual space X = A* of such a Boolean ring will be called
a o-space. These spaces are characterized by the property that the union
of a countable collection of compact open sets has a compact open closure.
Everything we say here applies, in particular, to complete Boolean algebras,
or to extremally disconnected Boolean spaces (every open set has a com-
pact open closure).

For this section, we shall always assume that G is a pointwise periodic
group of automorphisms of 4. Our task is to prove that @ is then
necessarily a finite group.

4.1. PRoOPOSITION. Let H be a countadle set of non-zero orbital atoms. If
b =inf B, then b is an orbital atom, and if b +# 0, then o(b) Zsup{o(a): a e E}.

Proof. If bALY + 0, then none of the elements a,va’, where a,, a ¢ &,
can be 0. In particular, aAa? # 0 which implies a == a9, for each a e E.
In turn, b =b5°. Then b =13 implies @ =4’ for all ae X, and hence
@y C Q4. Therefore o(b) = o(a) for each a ¢ H.

The notation introduced in the next definition is of considerable
utility in the subsequent analysis.

_4.2. DEFINITION. Two elements a and b are said {0 be separated if
anb=0. A subset E is separated if each pair in B is separated.
It follows at once from 2.5 that o and b are separated if and only
if aAb =0, so that this is a symmetric property.
4.3. ProPOSITION. Let E be a countable separafed set of mon-zero
elements of A, with.b = supB. Then o(b) > sup{o(a): a ¢ E}.
Proof. Let a ¢ E, and suppose that b = b”. Then GAb = aAb’. Since

E is separated, then GAb = a, and, after transforming by g, aAb’ = o’
This proves the proposition.

4.4. PROPOSITION. Let {an} be a separated sequence of nom-zero orbital
atoms. Then the orders of the elements in the sequence are bounded.

Proof. Since & is pointwise periodic, the order of sup ay is finite;
by 4.3, this order is an upper bound.

4.5. PROPOSITION. Let {an} be a decreasing sequence of orbital atoms.
Then the orders of the elements in the sequence are bounded,
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Proof. Suppose that the orders of the a, are unbounded. Then there
exists a subsequence ang =Db; such that o(b) >3, 0(bir1) =3 0(by),
i=1,2,.. We shall define inductively a sequence g,,gs,... of group
elements so that the element ¢ of A defined by setting ¢ = b, vbZvbfy
cannot possibly have finite order. This contradiction will prove the prop-
osition.

Set ¢, = 1. Since o(b,) >
that the elements

3, we can choose group elements g,, g5 80
by, b2, BF°

are disjoint. Let b, = b‘{"’?. By induction we can select a sequence g, =1,

G2y Gsy +ey Juy - 80 thatb

(i) b{71+1 < b}‘_.z R

(ii) PHADE L =0,

for § =2, 3,... We have in fact done this for § = 2; if we suppose that

g; has been defined for 2 <j<n-+1, n>1, we can choose g,+2 becanse

6(bs) >3- 0(bu-1). A repeated application of (i) gives
(i) b < bR, 1<k <n—2.
Since

PEEADET =0,
by (i) with § =%-+1, we have
PIHALEN =0, 1<h<n—2.
Since bp+1 < by—1, then s <
and therefore we have e

bﬂ,"“/\b”“'—o, <k<n—2

y (i) with § = n, we have b iIAbI, = 0, so that

b0n+1 A bn—l —
Hence we have shown that

(iv) BIHA (BRVOEY ... Vi) =0  for m=1,

Since byt < bi, We have also ghown thab
n+l /\ (b(h n > 1 R

Since ¥ < b"" s, and since b, =
DIEIADy = 0. Thus the sequence

g T3
by, b8, B e

vb?,") =0,

2 ig disjoint from bf, we also have

is disjoint.
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Now seb ¢ = b VIEVDEY ..., and suppose that ¢’ = ¢ for some g e @.
If 3 by, then b Ab{ =0, since b, is an orbital atom. Therefore

W =bA =blAe = BIA(bVBREVEEY ...)
= (bIABE)V(BIABE)V ...

By (iii), we have B < bf’, k< 1. Since dPAbY =0, we have BIAb{
= BIADBADE = b{ADP. Unless this reduces to 0 = 0 it asserts the absurd
equality of two orbital atoms of different order. Hence we must have
bIADE = 0. A simple induction continues this argument, and shows that
bIAb% =0 for all n. Since this implies that b{ = 0, which is impossible,
we must conclude that b =b,. In other words, ¢’ =¢ implies b = b,.

Suppose that we have shown that ¢’ = ¢ implies b?” =b,1<i<n
£ we set d = bIvbILy ..., then disjointness and ¢’ = ¢ imply &7 = d
If 30 £ bi%, then we can show, just as before, that biii"Abi =
and that b#Y < bP3vbisy ... Intersecting with 5% and applymg
(iv), we obtain bIFIABIEE = b AbRE. Again, this must reduce to
0 =0, so that BI°ADIYS =0, and B < btV bV ... Repeating the
argument of the above paragraph, we have

bﬂn+lﬂ — bﬂnﬂ

Hence ¢ =¢ implies by =bi*, n=1,2,.. In other words, G,
C ¢2'Gs,gn for all n. Therefore of (bn)]o(e) for all n. Since o(by) >co as
n oo, this confradicts the hypothesis that o{c) is finite, and completes
the proof.

4.6. PROPOSITION. There is no sequence of non-zero orbital atoms with
unbounded orders.

Proof. It suffices to show that any such sequence {a,} contains

a subsequence with bounded orders. We define a triangular matrix by
setting

Gun =an for m=1,2,..,
Onm = O A @1 AOmizA .. A@n  for m<mn.
Then any is an orbital atom, and G, = GnAGmiiA .. Alm, by 2.3 and 2.5.

IEn< ', and m < m', then GumAlnm = Gym; TOT GumAGrime
A s AOn A A oo A == G A B oo
from the definition:

= O A Gp 1A
Ay = Oy The following are obvious

mLn<n
m<m' <n

implies
implies

Onem < Ona -
Onm < dnm?
By 2.3, o{am) = o0(ay) divides o(anm) for all m < n, provided @m, # 0.
Tharefore, _1f for at least one m, the decreasing sequence {@um: n = m,
m+1, ..} is not finally zero, the sequence {aun} = {a,} is of bounded
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order, since {aum: % =m,m-+1,...} is of bounded order, by lemma 4.5.
Suppose now that all the columns are £nally zero. Let s(m) be the smallest
row index such that au., =0 for all n > s(m). We define by recursion
two functions f and g from the natural numbers to the natural numbers:

1) =91)=1;
f(n) =s(g(n—1)), Ajmym 7 0} .

Note that g(n) is well-defined, since aym1 =0 and aymyim) = dsm 7 0.
It is clear from the definition that f and g are strictly inereasing functions.
We put bn = @jmym. Then {b,} is a sequence of orbital atoms, and
0(Gjmyzimy) = 0(aymy) divides o(bs). But the sequence {bs} is in fact a sep-
arated sequence. For, suppose n < n', then buAbw = Grmgm Adzmigory=
= tymnemy DY an oObservation akbove. But f(n') =f(n-+1) =s(g(n)), so
that aymyem = 0. Separated sequences of orbital atoms have, however,
bounded orders, by 4.4. Hence {as,} is a subsequence of the {a,} of bounded
order. This accomplishes the proof.

4.7. PROPOSITION. Let G be a group of aufomorphisms of a Boolean
o-ring. Then, if G is pointwise periodic, G is atomically periodic.

This is another way of expressing the previous result. At this point,
we may pause to take stock of the situation. For a cyclic group @, our
proof is complete. For we may take the subring 4, of 4 consisting of all
elements having an order which divides n! This is an increasing sequence
of subrings. It is is not eventually constant, then there exist elements
of increasing order, and hence there exist orbital atoms of increasing
order, which contradicts 4.6. For the non-cyclic case (not to mention
the non-abelian case), it is not clear that there exist orbital atoms of
increasing order. Secondly, we note that 3.1 and 4.7 together immediately
imply the following result:

4.9. PROPOSITION. If G is a pointwise periodic group of automorphisms
of a Boolean c-ring, then the dual group I' = G* is periodic on X = A*.

4.9, Levmma. Let {a;} be a separated sequence of orbital atoms. Let
G; = Gy, be the group of all elements leaving a; fiwed. Then the collection
{G;} of groups is finite.

Proof. Let a = supa;. Then o =¢ if and only if af = a;, since

¢g(n) =min{m':

the a; are separated. (Compare the proof of 4.3.) Hence Gy = ﬁ G;. Let
i=1

H;=G,~@ ..~ G Since all of the groups G; have finite index

(G:G;) = o(as), the groups H; have finite index (Poincaré; see [4], p. 62).

The intersection @, = ﬁH@- has finite index (G:@;) =o0(a). Therefore
=0

there is an integer §j such that H; = Hj;1q = ... Thus G =G~ ... n Gy,

and the coset space GG, has only a finite number of elements. If there
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were infinitely many different groups Gy in the collection {G}, then
there would have to be infinitely many coset spaces Qiny/Fa, which is
impossible.

The center of action now shifts to the space X.

4.10. TEmma. Let X be a locally compact Boolean space, and let I’
be a pointwise periodic group of homeomorphisms of X such that the orbital
atoms form a basis for the topology of X. Then, for each point x ¢ X, there
is a neighborhood U of @ such that y ¢ U implics I, C Iy,

Proof. Let U be an orbital atom which is a neighborhood of 2 such
that pu =  implies yo ¢ U; such a set U exists because the orbital atoms
form a base, and becanse points have finite orbit. Let y e U; if yy =y,
then y~1U ~ U # @. Since U is an orbital atom, U = y~'U. This implies
yw € U, and by the choice of U, this implies yz = 2.

4.11. DerizirioN. Let X be amy topological space, and let I' be any
group of homeomorphisms of X. Define, for @,y ¢ X, the relation v <y
to mean there exists an element y e I' such that Iy C y—Tyyp.

4.12. Tevma. The relation < defined in 4.11 is a partial order on X,
and © <y implies yz < yy for any y el
The obvious proof of this may be omitted.

4.13. LEMMA. Let X be o locally compact Boolean space, and let I'
be a pointwise periodic group of homeomorphisms of X such that the orbital
atoms form. a basis for the topology of X. For any x < X, the set {y e X:
y <@} is open.

Proof. Let y < «; there is an element y eI' such that Ii-,C I5.
By 4.10, there iy a neighborhood U of y such that z e U implies I, C I},.
Then 2 ¢ U implies I',~1,) C ;. This finishes the proof.

4.14. Lrevwa, Let I' be a periodic group of homeomorphisms of a locally
compact Boolean space, such that the orbital atoms form a basis for the
topology of the space. Then there exist minimal points in the partial order
of 411, and the set M of all minimal poinis is open, and invariant under I'.

Proof. Since I" ig periodic, there is a natural number g such that
the order (I:I%) of any point « divides ¢; hence there are minimal groups
in the collection of all {I;: # ¢« X}. The set M of all points @, whose group
I’z is minimal, is the set of all minimal points. By 4.13, M is open, and
by 4.12, M is invariant under I

4.15. Tiemuma. Let I' be a periodic group of homeomorphisms of a locally
compact Boolean space X, such that the orbital atoms form a basis for the
topology of X. Let {I'y: i €I} be a collection of minimal groups in the family
{Io: @ € X}, such that each class of conjugates in the family {Iy: o< M}
contains precisely one member of the class {I'y: ¢ ¢ I}. For each iel, let
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M;={weM: I; =y yy for some yeI}t. Then, for each i eI, the sel
M; is open and closed in M, is invariant under I'y and M =\ J M.
iel

Proof. The family {M;: ¢ eI} is clearly a decomposition of M into
pairwise disjoint sets, each invariant under I'; to prove the lemma it is
therefore sufficient to show that each set M; is open. Let = ¢ M;, then
Iy = y~yy, for some y eI. By 4.10, there is a neighborhood U of 2
such that y e U implies I, C Iy = y~U;y. By the minimality of the groups
I, these must be equal.

4.16. Levwma. Let A be a Boolean o-ring, let G be a pointwise periodic
group of automorphisms of A, let X = A* and I' = G*. Then the family
{M;: eI} of 415 is finite.

Proof. By 2.2, the orbital atoms form a basis for the topology of X.
By 4.8, I' is periodic on X. Assume, by way of contradiction, that there
is a sequence Iy, of different groups in {I: ¢ e I}. The set My, i3 open;
let @n € My, such that Iy, = Iy, . Then there exists an orbital atom
U, which is a neighborhood of z, and which is contained in M;p), and
which has the property that yx, # %, implies px, ¢ Un. The invariance
of the sets M;u shows that the family {U,} is a separate sequence of
orbital atoms, such that their fixed groups form an infinite family of
different groups. This contradicts 4.9. The proof is complete.

4.17. LEMMA. Let A be a Boolean o-ring, let G be a pointwise periodic
group of automorphisms of A, let X = A* and I' = G*. Then the collection
{Iy: e X} is finite.

Proof. By 4.16, {M;: i eI} is a finite family, and M is their union.
If I'; is a minimal group in the family {I;: y € X} then it is a conjugate
of one of the finitely many groups {I3: % e I}. Each one of these groups
has only finitely many conjugates. Hence the collection of minimal groups
in {I'y: @ € X} is finite. Every group in this collection contains a minimal
one, and the number of groups containing a given minimal group in the
collection is finite, since the minimal groups have finite index. Conse-
quently the entire collection must be finite.

4.18. PROPOSITION. Let X be a locally compact Boolean o-space, let
A =X* let I be a group of homeomorphisms of X, and let @ =I*. If
G s pointwise periodic on A, then I' is o finite group.

Proof. By 2.2, the orbital atoms form a basis for the topology of X,
and by 4.8, the group I' is periodic on X. The intersection (N {{3: # ¢ X}
of all the fixed groups of points in X is a finite intersection, by 4.17,
and therefore has finite index in I' ([4], p. 62). On the other hand, this
intersection is the group of all elements that leave every point in X fixed.
Only the identity homeomorphism does this (ie., any homeomorphism

g*
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group is effective). Thus I has finite index over the identity subgroup,
and is therefore finite.

We have therefore completed the proof of the following result, which
is the principal theorem of this paper:

THROREM VL. Let A be a Boolean o-ring, and let G be a group of auto-
morphisms of A. Then the following statements are mutually equivalent:

(i) @ 15 a finite group;
(i) G is a periodic group on A;
(iti) @& is a pointwise periodic group on A.

COROLLARY VI.1. A pointwise periodic group of homeomorphismsw of
a locally compact Boolean o-space is a torsion group.

Proof. Bach element of such a group generates a cyclic subgroup,
which indueces a eyclic pointwise periodic automorphism group (Theorem
II), which is, in turn, finite (Theorem VI).

COROIIARY VI.2. Let A be a Boolean o-ring, X a locally compact
Boolean o-space, @ a finitely generated, solvable group of automorphisms
of 4, and I" a group of homeomorphisms of X. If A = X* and G =TI,
then the following statements are equivalent:

(i) @ is a finite group;
(i) I' 48 & finite group;
(iii) @ 48 periodic on A;
(iv) I" 48 periodic on X;
(v) @ s pointwise periodic on A;
(vi) I' 48 pointwise periodic on X.

Proof. It is sufficient to show that (vi) implies (i). By Corollary VI.1,
@ is a torsion group. We prove that a finitely generated solvable torsion
group is finite. Let &, &, ..., 6%, @* = (1} be the sequence of suc-
cessive commutator groups of &.. We prove our assertion by induction
on k. The group G/G(k’ is & homomorphic image of @, hence is a finitely
generated solvable torsion group. The kth commutator subgroup of
/6" is trivial. By inductive hypothesis, G/¢® is a finite group. Now,
by Schreier’s theorem ([4], Par. 36, II), the subgroup G®, being of finite
index, is finitely generated. But G™ is abelian and, being a finitely gener-
ated torsion group, is therefore finite. Since both ¢/G® and G are finite,
G i8 finite. This completes the proof. (The authors are indebted to B. Hup-
pert for this proof.)

In the case the o-ring has an identity (is a o-algebra), we have
proved the following: :
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TeeorREM VII. Let A be a Boolean o-algebra, X a compact Boolean
o-space, G a group of automorphisms of 4, and I" a group of homeomorphisms
of X. If A =X* and G =TI, then the following statements are mutually
equivalent:

(i) G is a finite group;

(i) I' 4s finite group;

(iil) @ 4s periodic on Aj

(iv) I' is periodic on X and has separated orbiis;

(v) @ is pointwise periodic on A;

(vi) I' is pointwise periodic on X and has separated orbiis.

This follows at once from an application of Theorem II.

5. Examples and counter-examples. This section is devoted
to showing why the assumption that A is a o-ring is needed to prove
the results of section 4, and to showing that the converses of Theorems I
and IT do not hold. We also obtain one or two interesting consequences
of the results of section 4.

5.1. That a homeomorphism of a compact Boolean space can be
pointwise periodic without being periodic has long been known; we include
an example only for completeness. Let Pascal’s triangle be regarded as
@ discrete space, and let X be the one-point compactification. Let y» be

the transformation which maps the symbol (n) onto the symbol (7.:1)

for j < n, which maps (:) onto (g), and which leaves oo fixed. Then y
is pointwise periodic, but not periodie.
5.2. The dual algebra 4 of the space X in 5.1 is the algebra of all

finite subsets and their complements in the discrete triangle; the dual
of y is a pointwise periodic automorphism of 4 which is not periodic.

5.3. If the space X is taken to be the Stone-Cech compactification
of the triangle, rather than the one-point compactification, the trans-
formation y has an extension to X which must, by section 4, have points
of infinite order, since X is now extremelly disconnected.

5.4. Let X be the space of all integers compactified by adding —co
and co. The permutation g; = (—4%,4) which interchanges —i and ¢, and
leaves all other elements fixed, is a homeomorphism, for all i =1,2, ...
The subgroup I' of the full automorphism group generated by gy, ¢s, ...
is an abelian group isomorphic to the vector space with countably infinite
dimension over the field of two elements. All orbits contain either one
or two elements, so that I' is periodic. The group I'™ = G on the ring
of compact open sets is not even pointwise periodic. Let V be the interval
[—o0, —1], which is a compact open neighborhood of —oco. For any two
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integers ©,§ such that ¢,j>1, ¢ # §, the transforms ¢,V and g,V are
different.

The two points —oco and co have no small invariant neighborhoods.
The orbit space ¥ of X under I" is not a Hausdorff space because the
images of —co and oo in ¥ cannot be separated. All orbital atoms are
single points, and all have order one or two.

This example serves many purposes. It shows how drastically the
converse of Theorem I fails. It shows that the assumption of separated
orbits in Theorem ITI is not redundant, and that Theorem V is not vacuous.
It also shows that Lemma 3.7 fails without the assumption of separated
orbits.

If the points — oo and oo are identified at the outset, another example
of some utility is obtained. We now have an orbit space which is Hausdorff,
The group I"is periodic on X, and the dual group G' = I'* is now pointwise
periodic on A = X* Moreover, all orbital atoms have order <2. However,
it is clear that @ is not periodic on 4, since the set {—mn,...,0, .., n}
has order 2". This shows that the failure of the converse of Theorem I
does not lie in the lack of separation of orbits.

b5.5. Let A; be the ¢-dimensional vector group over the field of two
elements. Let X be the one-point compactification of the disjoint union
of the 4;. Let I' be the restricted direct sum 4, +4,+... acting on X
in such & fashion that 4; leaves all points fixed except the points of 4;,
where it acts by translation. Then I is pointwise periodic but not periodic,
since the order or the identity in A, is 2°. The example is an analogue
of 5.1, where the group is now a countable abelian torsion group of ex-
ponent 2.

5.6. Let X; be a set consisting of 2¢ different points A1y eeny Qg
bir, -..; bu, and let X be the disjoint union of the Xy 1=1,2,.. Let I
be the group generated by the following two permutations of X:

1 = {Gr1b11) (g1 by ) (dgy Byy) oo ’
Ya = (ay) (bn)(“zia'zz)(bmbzz)(“ﬂaszaaa)(ba1bszbas)--~

The orbits are the sets X;, and hence I is pointwise periodic but not
pentodic. This is & 2-step metabelian group, and is, in particular, solvable.
r Is, in fact, the extension of a vector group of countably infinite di-
mengion over the field GF(2) by an infinite cyclic group.) This example
shows~ that the hypothesis that X is a o-space in Corollary VI.2 is essential.
It X is compactitied by adding a single point invariant under I, one sees

that com?a,etness has nothing to do with this. (The authors are indebted
to H. Wielandt for this example.)

5.7. PROPOSITIOI.\I. Let X be a totally disconnected compact topological
group, and let {Us: i eI} be a basis for neighborhoods of the identity con-
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sisting of compact open subgroups. Then the Boolean algebra A of compact
open subsets of X 4s generated by the sets {Ux: 1 eI, z e X}, and any sub-
group I' of X induces a pointwise periodic group of automorphisms of A.

Proof. Let U be any compact open set in X. Then for each z ¢ T,
there is a neighborhood Uy, 4(x) € I, such that Uyya is contained in U.
Since U is compact and is covered by these translates, there is a finite
set of points @y, ..., 2x such that U = Ugey2; v .. U Uiy2s. Thus A
is generated by the indicated sets. Let I' be any subgroup of X, acting
by right translation. Since all the sets U; are subgroups, they are orbital
atoms in 4 under G = I'*. Since they are open subgroups, they have
finite index. Hence all the U; have finite orbits, which implies that every
compact open set is a wnion of finite collection of translates of the Uj.

CororrARY VI.3. The space of a compact totally disconmecied group
i8 o o-space if and only if the group is finite.

Since every locally compact totally disconnected group contains
a compact open subgroup, and since a compact open subspace of a ¢-space
is a o-space, it follows that if the space of a locally compact totally dis-
connected group is a o-space, then the group is discrete, hence finite.

CoROLLARY VI1.4. A compact o-space is a product space of a collection
of finile sets if and only if it is finite.
Proof. All such products admit a group structure.

These two corollaries apply in particular to extremally disconnected
spaces.

5.8. Let X be the group of all p-adic integers and I' the cyclic sub-
group generated by the integer 1. Then all orbits of I" are infinite, but
the group induced on 4 = X* ig pointwise periodic, by 5.6. This shows
that the converse of (¢) in the introduction does not hold in general.

5.9. Let X be an infinite product of the groups with two elements,
and endow X with the Tychonoff topology. Let X = I'. Then all orbits
in X are infinite, although @& = I'* is poiuntwise periodie, by 5.6. Thus
the converse of (iii) in the introduction does not hold, even for a countable
abelian torsion group of exponent 2.

6. Separated orbits. The problem of determining when a group
of homeomorphisms has separated orbits is part of a more general problem
in the theory of transformation groups. In this section, we give a very
brief account of some conditions sufficient for this. Details and references
may be found in [1]; we follow the terminology of this reference.

Let I" be an effective topological transformation group acting on the
topological space X. TFor each @ ¢ X, let I'z denote the orbit of z, and
let T denote the closure of the orbit of #. Assume that the collection
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{Tw: e X} is a partition of X. If ¥ denotes the quotient space of X
by the relation, and if = denotes the projection of X onto Y, then =
is a contimuous open mapping ([1], p. 16, Remark 2.30), and Y is
o Ty-space.

Consider now this general setting: Suppose that X is a topological
space, ¥ is a T;-space which is the quotient of X by some equivalence
relation (with closed equivalence classes), and = is the projection of X
onto Y. If X is a locally compact Hausdorff space, if # is a closed mapping
and if the equivalence classes are compact, then Y is a locally compact
Hausdorff space ([3], p. 148). If = is also open and X is a Boolean space,
then Y is also a Boolean space.

The case which interests us here falls under these conditions. If I
is a pointwise periodic group of homeomorphisms of locally compact
totally disconnected Hausdorff space X, where I" has the discrete topology,
then the orbits are finite, ¢ fortiori compaet, and the projection is open.
We are therefore interested in determining when the projection is a closed
mapping.

This has a solution in the more general setting. For the purpose
of formulating the solution, we introduce the following terminology,
following [1], p. 32, Remark 4.12 (H).

6.1. DEFINITION. Let I' be a. topological group acting effectively on
a fopological space X. The group I"is said to be locally weakly almost periodic
if, for each point x ¢ X and each neighborhood U of x, there exists a neigh-
borhood V of & and a compact subset A of I' such that I'VC AU.

For locally compact Hausdorff spaces, there is the following charac-
terization of this notion ([1], p. 33, Theorem 4.17), which we reformulate
in the language of this paper.

6.2. PrOPOSITION. Let X be a locally compact Hausdorff space, and
let ' be a topological group acting effectively on X. Then the following
statements are pairwise equivalent:

(i) I s locally weakly almost periodic on X;
(ii) for any poini x ¢ X and any neighborhood U of w, there ewists
a neighborhood V of & such that the orbit of V under I' can be covered by
a finite number of translates of U,
(ifi) the collection of sets {I'w: @ e« X} forms a partition of X having

compact equivalence classes, such thai the projection of X onto the orbit space ¥
8 a closed mapping.

Now, let us suppose that I' is a pointwise periodic group of homeo-
morphisms of a compact Hausdorff space X. If I" has separated orbits,
then the orbit space ¥ is a compact Hausdortt space and the projection
w of X onto ¥ is & closed mapping. Conversely, if # is a closed mapping,
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then, since orbits (equivalence classes) are compact, the earlier remarks
of this section show that the orbit space ¥ is a compact Hausdorff space.
In other words, if I" is a pointwise periodic group of homeomorphisms
of X, then a necessary and sufficient condition that I' have separated
orbits is that the projection = be a closed mapping. This, together with
6.2, gives the following:

6.3. PROPOSITION. Let I be a pointwise periodic group of homeomorphisms
of a compact Hausdorff space X. Then I" has separated orbits if and only
if I' is locally weakly almost periodic.

In view of this, we can rephrase our principal results as follows:

TeeoREM II'. If I' is a pointwise periodic and locally weakly almost
periodic group of homeomorphisms of a compact Boolean space X, then
the dual group G = I'* is pointwise periodic on the dual Boolean algebra
A = X*,

THEOREM IV'. Let & be a group of automorphisms of a Boolean algebra
A, let X = A%, and let I' = G* be the dual group of homeomorphisms. Then
G is pointwise periodic and atomically periodic if and only if I' is periodic
and locally weakly almost periodic.

THEOREM V'. Lei G be a group of automorphisms of a Boolean algebra A,
and let I" be the dual group of homeomorphisms on the compact Boolean space
X = A* If I' is pointwise periodic, then @ is pointwise periodic if and
only if I' is locally weakly almost periodic.

THEOREM VII'. Let A be a Boolean o-algebra, X a compact Boolean
o-space, @ a group of automorphisms of 4, and I' a group of homeomorphisms
of X. If A = X* and G = I'*, then the following are mutually equivalent:

(i) @ s finite group,

(ii) I'" s a finite group,

(iii) G is periodic on A,

(iv) I' is periodic and locally weakly almost periodic on X,

(v) @ is pointwise periodic on A,

(vi) I' is pointwise periodic and locally weakly almost periodic on X.
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Perfect transfinite numbers

by
P. Zvengrowski (Chicago, Ill.)

1. Introduction. The well-known concept of a perfect (finite)
number can easily be extended to include transifinite ordinal numbers
provided some care is taken to take account of the non-commutativity
of addition and multiplication of ordinals. This is done as follows.

1.1. DEFINITION. An ordinal number is left perfect if and only if
it is equal to the sum of its proper left hand divisors, arranged in increas-
ing order. )

Right perfect is similarly defined. As an example, » has the proper
left hand divisors 1,2,3,..., and 14+2-+3+... = w, 30 o is left perfect.
For finite ordinals, it is clear that the concepts of left perfect, right perfect,
and the usnal concept of perfect coincide.

In this paper it is proved that there are no transfinite right perfect
ordinals, and all transfinite left perfect ordinals are determined to within
certain questions of finite arithmetic (see Section 4).

2. Triangular numbers. In this section we develop certain
properties of triangular numbers which will be needed later. All variables
a,d, o, ... will denote ordinals.

2.1. DEFINITION. T'(a) =:Z g, all summations being understood to

<a "

be taken in increasing order.

T(a) is simply the triangular number associated with a. The func-
tion T is obviously inereasing and continuous. We wish to determine
T(p) explicitly whenever p is a prime component of addition.

2.2. LEMMA. Let g be a prime component of addition, [, be a mnon-
decreasing set of ordinals defined for ¢ < o. Then for any p < o we have

£ Zq: = Zw
B<y<e ¥<e

Proof. B < ¢ implies ¢ = f+po. The {, are non-decreasing, hence
2 ip < 5B
F<p

Similarly, 3 £, Slo—B) ={pe, say
pg<e
§ Lo =Ca0+0.

p<y<e
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