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The two-norm spaces

hy
A ALEXIEWICZ (Poznan)

This is a report on work done jointly with Dr. Semadeni.

Suppose we are given a linear space X in which two norms || || and
I I, are defined; let the norm [ {[* be coarser than | | (this means that
[le,]] = 0 implies |lw,|* — 0). The triplet <X, || ||, || |[*> will be called two-
norm space. We introduce a notion of convergence: ¥, > @, Means
that sup|2,] < oo and lim|z,—m* = 0. A funectional &(z) defined

on X will be called y-linear if it is distributive and w, 2, implies

&(®y) — E(m,). The totality of the p-linear functionals will be denoted
by &,. Let us write further

(&, |I> = the space conjugate to (X, >,
(&%, || [I*> = the space conjugate to (X, || |*>;
thus
(£l = sup{|é(@):llolf < 1},
€]* = sup{|&(w)]: flof* < 1}
Obviously 5*C &Z,C &.
I need the following dafinitions:
The space <X, | ||, | II*> will be ealled y-normal if hmna}n—wo“* =0

implies |lz,ll < 11m|[w,,|1 The space will-be called y- oomplete 1f the follow-

ing condition m samsﬂed
if (@, —,,) 2> 0 88 Py, ¢~ o0, then there exists o, such that B> .

The structure of the space Z,. A trivial case of two-norm spaces
oocurs when the norms || || and || ||* are equivalent. Thon <X, || |, || [*>
reduces to a normad space and F* = &, = H. A parbial converse is true:

TanorEM 1. Let the space (X, || ||, [| |*> be y-normal and let Z* = E,.
Then the norms | || and || [|* are equivalent.

There exigt non-trivial examples of two-norm spacss for which

&, = . Such spaces will be called saturated. A special case of saturated
spaces is described by b
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TumoreM 2. Let <X, | ||, || II*> be a two-norm space and let the space
X,y be reflexive. Then the space <X, s N> 48 saturated.

We are able to establish a lot of necegsary and sufficient conditions
for a two-norm space to be saturated, for instance:

TurorEM 3. Bach of the following conditions is mecessary and suffi-
cient for <X, || I, | *> to be saturated:

(a) &* is dense in {5, ||,

(b) for every EcZ and & >0 there ewists o constant K such that

Eao) <et+Klel*  for o <1

Theorem 2 combined with the condition (a) of Theorem 3 admifs
a partial converge:

THEORBM 4. A Banach space (X, || ||> 48 reflewive if and only if for
every morm || ||*, coarser than | |, the space Z* is dense in {E, || ||).

A very useful tool for establishing in particular cases the general
form. of y-linear functionals is given by

TuroreM 5. Let (X, || [, || [*> bé y-normal. Then &, is identical with
the closure in the space {=,| ||> of the set E*; in other words the general
form of y-linear functionals is

(@) = lim &, (x)
n—00

It is easily proved that in non-trivial cases the convergence y can-
not be produced by a metric. So we may ask whether a topology can.
reach thig goal. The angwer is positive.

TaROREM 6 (of Wiweger). Let the space <(X,| |, | [[*> be y-normal.
Then there exists a convew linear topology u such that

(i) p-convergence is equivalent to the sequential u-convergence,

(ii) &, is identical with the set of distributive funotionals comtinuous
for the topology u.

In view of this theorem it could be expected that the y-linear fune-
tionals possess the extension property. This is, however, not the case.

One of the fundamental prineiples of functional analysis is contained
in the theorem of Banach stating that the limit of & convergent sequence
of continuous linear functionaly on a Banach space iy continuous. I
an analogous statement true for two-norm spaces? The angwer is ne-
gative: we know examples of y-complete y-normal spaces in which such
a theorem is not true. So we may ask for the sufficient conditions. Let
me write one of them:

(Z) For every #yeS = {x:|lz| <1} and ¢ >0 there exists a & >0
such that ¢S, |lo* < 8, implies & = 2, —2, With 2,, 23¢9, |l&,—®|* < ¢,
llea—20|*<< e.

with &ye 8%,  lm|é,—&] = 0.
N~y 00
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TaroreM 7. Let the space (X, || ||, || I*> be y-normal and y-complete,
and Tet it possess the property (). Then the limit of every convergent se-
quence of y-linear functionals is y-linear.

Fhis theorem and some gimilar ones play an important role as applied
to Moeplitz methods of summability. Concerning more details I refer
to the papers of Orlicz.

Duality theory. Let us confine ourselves in this section to y-normal
spaces. Tn the space 5* the morm | |[* is finer than Illl; so we ghall
call the space (&% [ | [> y-conjugate o <X, || I, fl I*>. The space
<E% | |% |l 1> is always y-normal and y-complete.

Now let us consider the second yp-conjugate space of <X, || I, || [*>-
Let us denote it by <Z, | |l || II*>; then % is the space conjugate to
(&% || I¥> or, what amounts to the same, it is conjugate t0 (8, , [ I*>-

Now let us consider the functional y(£) = &(») defined for &e &+
The canonical embedding » — Y, maps the space X into Z . moreover
'we have:

TEROREM 8. Let the space (X, | i, | |*> be y-normal. Then the cano-
nical embedding maps X into Z¥ with preservation of both norms, i.e.

ozl = llwll,  9ali* = lecl*.

The space <X, || ||, |l > will be called y-reflewive if the canonical
map of X is the whole of Z®.

TrmoREM 9. A y-normal space <X, || |, || I*> 4s y-reflewive if and only
if the ball 8 = {&: |z < 1} is compact for the topology (X, E%).

A lot of theorems analogous to the case of Banach space holds:

 TemoreM 10. Any y-closed subspace of a y-reflexive space i3 y-reflexive.

(A subspace Y C X is called y-closed if y,e¥, Y~ Yo, implies
YoeY.)

TrEoREM 11. The y-conjugate space of a y-reflexive space is p-reflemive.
If the y-conjugate space is y-reflezive, so is the primitive space, provided
it be y-complete.

We can also give a characterization of reflexiviby in terms of y-ref-
lexivity.

TrEOREM 12. A Banach space (X, || ||y 48 veflewive if there emists
a norm || |[* coarser than || || such that the space XLy 1> s saturated
and y-reflexive.

Extension of y-linear functionals. The y-linear functionals do
not possess in general the extension property. We know examples of
y-normal, y-complete two-norm spaces X, for which there exist y-closed
subspaces ¥ and y-linear funetionals on Y which qamuot be extended.
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onto the whole of X so as to remain y-linear. Some sufficient conditions
for extensibility are known.

TrroreM 13. Let <X, || I, || [*> be a y-reflexive subspace of & y-normal
space (X, | I, || [¥>. Then every y-linear functional on X, possesses @ y-linear
extension on X.

A universal space. Two two-norm spaces, <X, |, |l *> and
KX, [, 1% are called p-equivalent if there exists a distributive opera-
tion 7 from X onto ¥ which establishes an isometry of (X, | ||> and
Y, |I> and, at the same time, 7' is a homomorphist. between
<Xy |+ and <X, | [+ :

Let us congider the following example: suppose we are given
a linear space Z with a sequence [ J; of seminorms such that [@]; =0
for i =1, 2,... implies # == 0. Let Z, == {»: sup [#]; < oo}, [l = sup [«];,

) 4

[Jao]* :%2“7[&:} for weZ, Then <Z,, ||, |*> iz a y-normal space.

In particular, let ¢ denote the space of continuous functions & = x(1)
on the half-line 0<?t<oco with [2]; = sup{le(t)|: 0 <t<d}. Then
y-convergence in the space (U, | |, | |*> means uniform boundednoss
plus uniform econvergence on compact subsets of [0, oo).

THEOREM 14. Hvery y-normal two-norm space is y-equivalent to a sub-
space of o certain space <Z, | I, || [[*>.

The space (X, |||, | |I*> is called yp-separable if there exists a count-
able set dense for the convergence y.

THEOREM 15. Hwery y-separable space is y-equivalent o a subspace
of the space <O |11 | %>
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The group of invertible elements of a commutative
Banach algebra

by
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Tet f be continuous, complex-valued on & compact subget D of the
complex plane ¢. Then f has the form f = ae” where o is rational, and g
continuous on D. This classical theorem we generalize in a Banach algebra
manner (see 1, below). Reformulated as in 4 (below) it represents another
step along the path begun by Shilov [3] of finding algebraie invariants
of a commutative Banach algebra A (over €, with unit) depending only
on the space 4 of complex linear-algebra homomorphisms. In a sense,
Shilov shows that the eohomology group H'(4,Z) is isomorphic to the
subring of 4 generated by its idempotents; and we show that H(4, Z)
ig isomorphic to G/G, (see 4).

Notations: C, 4, 4 have always the meaning as above. * = C—{0}.
%(X,Y) is the space of continuous functions. If FC¥(X,C) then exF
= {exp (2nif): fe F}. If WCC" then Hol (W, ¥) are the holomorphic
Y-valued functions on W,Y¥Y =C or O* {f 0} is the set where
f#0. For bed and ded, ba(6) = 6(b).

1. LEMmMA. Let fe% (A, O*). Then there exists an acd, and a ge¥(4,0)
such that f = aue’. If f = bae" is another such representation, then b = aé’
for some ce A.

Wo shall deduce this from the following mere combination of two
theorems of EL. Cartan’s. For our notation we refer closely to [2].

2. ProprosItION. Let Py, ..., Py be polynomials in n complew variables,
and form

W = {|Py] < 1,..., [Pyl <1}.

Then there is & natural isomorphism of the multiplicative groups.

3. € (W, 0% /ex€(W, ) « Hol(W, 0%) /ex Hol{W, C).
We sketeh the proof. For the Stein manifold W we have the exact
gequence of gheaves ([2],27(11)) 0 —>Z — 0, = 0% -0, and the exact
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