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p(t) < f(1) <o(t) itberall aut D,

1
p) 'f[‘Pa(t)~fP1(i)]dt<£.

Vermoge der Korrespondenz zwischen den stetigen Funktionen auf
K, und den Bohrschen fp. Funktionen mit Exponenten aus A beweist
man nun mithelos den

SA1Z 1. Damit eine B-Klasse eine R-fp. Funliion enthdlt, ist notwendiy
und hinreichend, daf die entsprechende u-Klasse eine nach Riemann in-
tegrierbare Funlktion enthalie.

Um sich klarzumachen, welchen Platz die R-fp. Funktionen wunter
den bekannten Typen von verallgemeinerten fp. Funktionen einnehmen,
bemerke man zuerst, dal jede Bohrsche fp. TFunktion trivialerweise
auch E-fastperiodisch ist und daf eine fp. Funktion von Stepanoff nicht
E-fastperiodisch zu gein braucht. Wohl aber gilt der leicht beweisbare

SArz 2. Bine R-fp. Funktion ist fir jedes p =1 WF -fastperiodisch,
d. h. der Limes eimer Folge trigonomeétrischer Polynome mit reellen Bapo-
nenten nach der Norm

@l ] 1p

{timsup +- j P

Die R-fp. Yunktionen erscheinen bei der Untersuchung gewohn-
licher Bohrscher Funktionen, es gilt nimlich der

8412 3. Wird o.(y) =1 oder 0 gesetet, je nachdem man y < « oder
y > o hqt und ist f eine fp. Funktion von Bohr mit Buxponenten aus A,
80 ist die Funktion aa(f(t)) fiir jedes o bis auf eine hochstens abadhlbare
Menge R-fastperiodisch mit Baponenten aus A.

Satz 3 erhdlt man am leichtesten durch einen Umweg. iiber das
Kompaktum K,.

Es ist beinahe evident, daB die Grenzfunktion f einer gleichmifig
auf D konvergenten Folge {f,} von R-fp. Funktionen selbst R-fp. ist.
Dartiber hinaug gilt aber
' S‘L\TZ 4, Kon.'uergiert die Folge {f,} auf D gleiochmdifig und sind die
Funktionen f, mit R-fp, Funkiionen B-diquivalent, so ist es die TLimes-
Sfunktion auch.
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Measure algebras on locally compact groups: a case
history in functional analysis

by

E. HEWITT (Seattle, Wash.)

The study of function algebras as such and of abstractions arising
therefrom appeared only at a comparatively late period in the develop-
ment of functional analysis. The fundamental work of Hilbert, F. Riesz,
Hahn, and others had already produced the famous examples of normed
linear gpaces that every student is familiar with today; Banach had
axiomatized the theory of these spaces into the very important class of
spaces that bear his name; Banach and other workers had established
the fundamental facts of the theory of Banach spaces and applied them
to many important problems in analysis: all of this before anyone appar-
ently thought of studying algebras that are also topological structures.

Algebrag that are Banach spaces and in which |yl < l|o|lly]] are
called Banach algebras [Hopmuposannsie Kogbya in Soviet terminology].
The general theory of these algebras is the creation of I. M. Gel'fand,
who in his famous 1941 memoir [3] defined Banach algebras, established
their basic properties, and pointed the way for the future development
of the subject. His axiomatic development was anticipated by several
writers. In 1936, Nagumo [18] and Yosida [31] gave independently thé
definition of a Banach algebra. Yosida used it to prove that a locally
compact multiplicative subgroup of a Banach algebra is a Lie group.
In 1938, Mazur [17] defined real normed algebras and proved that a real
normed division algebra is the real number field, the complex number
field, or the quaternions.

Ag is so frequently the case, the general theory of Banach algebras
was preceded by the analysis of a number of special examples of Banach
algebras. The first study of an infinite-dimensional algebra with an
accompanying topological structure seems to have been v. Neumanp's
work [19] on rings of bounded linear operators in Hilbert spaces. In the
years sinee v. Neumann’s work, this theory has grown into a vast and
complicated field. It is not subsumed under the ordinary theory of Ba-
nach algebrag [desirable though this would be], however, and we shall
not congider it here.
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Chronologically, the next Banach algebra to have been closely studied
is the algebra €,(R), the class of all absolutely integrable complex func-
tions on the real line R, with pointwise linear operations, the product

= [re—ngwa

o0
= [|f(¢)|dt. Wiener’s work on £,(R) [27, 28], culminating in
—00

of two functions f and g defined by convolution: frg(z)

and |fl

his famous Tauberian theorem, is universally interpreted today as alge-
braic in nature, although Wiener himself did not use the jargon or the
techniques of algebra. [It is worth while to note that none of the proofs
of Wiener’s Tauberian theorem is algebraic: all of them require analytic
methods.] For example, Wiener’s Tauberian theorem asserts that every
proper closed ideal in the algebra £,(R) is contained in some regular
maximal ideal. Algo,.the Lévy-Wiener theorem. on analytic functions
of functions with absolutely convergent Fourier series is a special case
of a theorem true for all commutative Banach algebras. The algebraic
structure of £,(R) is not yet completely known; P. Malliavin has re-
cently shown that it has great complexity [16].

Considerably more success has attended the study of all bounded
continuous functions on a topological space. Let X be a compact space
[it may as well be taken to satisfy Hausdorff’s separation axiom]. Let
¢(X) denote the set of all complex-valucd continuous functions on X.
Under pointwise operations and the wniform norm, €(X) is plainly an
algebra which is also a Banach space and in which the fundamental
inequality [|fg]l < [fli-llgll obtaing. In a 1937 paper [25], M. H. Stone,
among other things, completely analyzed the structure of this algebra.
[He dealt with C,.(X), the real-valued functions in €(X), but all of his
results and some of his arguments go over, mutatis mutandis, to the com-
plex ‘case.] The maximal ideals, cloged ideals, and uniformly closed sub-
algebras of C,(X) were completely described, and the fact that the al-
gebraic structure of €,(X) identifies X among all compact Hausdorff
spaces was proved. In the complex case, one appavent technicality has
led to much research. For a uniformly cloged subalgebra 2 of €(X)
to be the algebra ¢(Y) for a continuous image Y of X, it is necessary
and sufficient that 20 should be clogsed under the formation of complex
conjugates. The study of uniformly closed subalgebras of ¢(X) not ¢loged
under the formation of complex conjugates involves some very delicate
questions, and the theory is far from complete at the present day. A useful
survey, containing also new regults, has receutly been published by
K. Hoffman and I. M. Singer [15].

The next specific Banach algebra to be studied, so far as the writer
is aware, was the algebra of complex functiong of finite total variation,
on the real line R, which constitutes a superalgebra of £,(R). Let .#(R)
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denote the set ¢f all complex-valued furctions on R having finite total
variation, that are contizucus on one side [let us say on theleft], and have
limit 0 at —oco. Addition ard sealar multiplication ¢f such functions are
defined pointwise. The preduet f+g [convolution] of two funetions f, ¢

in J(R) f f(w—1)dg (t). The norm |f|

of fe s (R) i the total variation cf f over R. [The proviso that functions
in (R) should be lcft continucus is a harmless normalization. As the
integral decfining frg is necessarily a Lebergue-Stieltjes integral, if two
functions f ard f’ of finite variation on R differ only at points of discon-
tinuity, we will have g+f = g«f’ for all bour ded Borel measurable functionsg.
The provigo f(—oo) = 0 is legs trivial. If it were omitted, our algebra
would contain the function ! which is identically equal to 1. We would
have ffl = O ard bf = (f(oo)——f(—oo))l for all furecticrs f of finite
variaticn. Thus cur algebra would be norcermutative ard would have
a one-dimensional radical, consistirg of all constant functions.]

The algebra (R) was studicd by A. Beurling in a paper published

= fexp (stw)df(x)

pointing out that the mapping f—f is an 1somor13hlsm of #(R). He
decomposcd  (R) into the. direct sum cf the classes of absolutely con-
tinuous furvctions, singular continuous functions, and saltus functions,
pointirg out that the difficulties in studying . (R) arise because of the
exigtence of singular continumous functions. He introduced the famous
Limit lim||f**, which later became a vitally important instrument in

is defined by the formula frg(z) =

in 1638 [1]. He uscd the Fourier-Stieltjes transform £ ()

N—+00

Gel'fand’s theory of commutative Banach algebras. He also proved that
if feu#(R) and f has no singular part, then sup{}f(tl teR} = hm||f"’||’/"’

In terms of Gel'fand’s theory, this equality states that a fu.uetlon m M (R)
with no singular part cannot be mapped by a multiplicative linear func-
tional of 4 (R) into a number of absolute value greater than sup{|f( F(t): teR}.
A simple proof of Beurling’s equality can be obtained from this obser-
vation.

An important contribution to the theory of .#(R) by N. - Wiener
and H. R. Pitt [29] also appeared in 1938. Their main result is as follows.
Let f be in . (R) and have gingular part f, and saltus part fy. If [Ifel]
- inf{|f;(t)|: te R} ard F(t) vanishes for no ¢ [this relaxes their hypothesis
somewhat], then f has an inverse in .#(R). This result is also easy to
obtain by the general theory of Banach algebras. Wiener and Pitt also
constructed a function fe.#(R) such that inf{| f@#):teR} >0 but f*
does not exigt, This econstruction seems to be obscure, however, and the
situation was completely cleared up only by a construction of Yu. A.
Brefder [24] published in 1950,
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Gel'fand [4] has also commented on .#(E), and further contributions
to its theory have heen made by D.A. Raikov [5]. L. B. Segal in [22]
proved Gel'fand’s theorem on analytic functions of elements of Banach
algebras, for funetions in 4 (R) without gingular part.

The real Banach algebra 4, (R), consisting of all real-valued functions
in 4 (R), admits a lattice ordering: nonnegative funetions arve the non-
decreasing funetions. Then sums and products of positive functions are
positive, and one might expect that this ordering would play a r6le in
the strueture of .#,(R) comparable to the vital role played by positivity in

the theory of &, (X). This is not the case. The mappings £~ [ exp (itw) df (v)

are homomorphisms of .#,(R) onto the complex number field for
all veal £ 0. This phenomenon does not oecur in the case of €. (X),
where nonnegative funetions go into mnon-negative real numbers uwnder
every homomorphism of C,(X) onto a field. There are 2° homo-
morphisms of .#.(R) onto the veal number field, but they do not
determine #,(R).

Unlike algebras ¢(X), the algebra (R) is very far from being
completely analyzed. The remainder of this essay is a summary of the
present knowledge about this algebra and abouvt some of its gemer-
alizations.

It was recognized long ago that the algebra .#(R) is a concrete
example of a large class of Banach algebras. With a function fed (R)
one can associate a unique complex-valued Borel measure A on R:
A(]—o0, 1) = f(#) for all teR. As is well known, 7 is completely determined
for all Borel sets by the values A(J—oo,i[) and the requirement of
countable additivity. If ge#(R) and u(]—oo,i[) = g(t), then the
meagure Ay corresponding to the convolution fxg is given by A+u(H) =

[ 1B—0)iule) = [ plB—0)di@) = w(D), for all; Borel ety J C .

This leads to the following general definition. Let & be a locally com-
pact group, written multiplicatively, and with identity element ¢. Let B
denote the Borel sets of @, that is, the smallest c-algebra of subsets of &
containing all compact sets. Let .#(G) denote the set of all complex-
valued, bounded, regular, countably additive measures defined on B.
[This definition is slightly redundant.] For Ae#(G), let [A|(B) =

m
= sup{]zl[}.(ﬂm : By, By, ..., By is & partition of ¥ into Borel sets}. Then

|A| is the smallest nonnegative real meagure in #(G) that majorizes
|A(E)] for all Borel sets H. [The properties of |A| are described in detail
in [8].] Let ||| be defined as |A|(@). For A, pes (@), let (A-+ p)(B) = A(E)
+u(B) and for a complex pumber a, (ad)(F) = a(/l(E)) for all HeB.
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Let Aep(H) =(!2(Ew"”‘)du(w) = [u(@ 'B)dA(w), for all EeB. The set-
&

function A+u is again regular, as K. Stromberg has shown [26], and thus
is an element of .#(@). With the algebraie operations and norm just
described, (@) is & Banach algebra, commutative if and only if & is
Abelian. For a@, let &, be the measure such that ea(H) =0 o0r 1 a8 a¢ B
or ael. Then &, i the identity of .# (&), and the measures & form a group
under eonvolution isomorphic with @.

Actually, .# () itself is a particular example of a large class of al-
gebras, called convolution algebras, introduced and studied by B. Hewitt
and H.S. Zuckerman in a series of papers [12], [11], [14], [13]. These
algebrag appear in the most diverse branches of mathematies, all the way
from number theory to mathematical statistics. Their theory has as
yet been only slightly developed.

We return to the algebra ./ (G). A survey of the theory of A(G) for
locally comipact Abelian G as of 1958 has recently been published by
W. Rudin [21], and a survey of the theory of (@) for arbitrary locally
compact G as of 1956 by B. Hewitt [7]. For the state of the theory at the
times of writing, the veader is referred to these memoirs. We shall now
describe some of the developments in the theory of A (@) that have been
made in the past two years.

Paul J. Cohen [2] has settled a long outstanding problem by iden-
titying all of the idempotent measures [wu = u) in A(G) for locally

. compact Abelian G. Oohen’s resuls, which corroborates a conjecture

of W. Rudin [18], can be stated simply enough. Let H be a compact
subgroup of @, and let 1z denote normalized Haar measure on H. Then,
defining Az (F) as Az (B ~ H) for all HeB, we can regard Ay as an ele-
ment of #(G). It is obvious that Ag+im = Am, Since Ig(Baty = Ag(B)
for Borel sets F C H and s eH. Furthermore, if x5, xa) - «-) Xm 3T [contin-
uous] characters of &, no two of which are equal on H, a simple compu-
tation ghows that the measure (yi+ xa+. .-+ dm) Az 18 idempotent. [For
2 measure ¢ and a meagurable function g, the measure g is defined by
9o (B) = [g(@)dp(2).] It is also obvions that if u, and u, are idempotent
b

measures, then p*pa, so— py, ANA gy fa— > fy 8TE algo idempotent
meagures. Oohen’s theorem asserts that every idempotent measure in
(@) can be obtained from idempotents of the form. (1 +xat---+ Am) Az
by iterating these three operations. For the proof, which is long, see
Cohen, loc. cit.

The functions that “operate” on .« (¢) have also recently been iden-
tified, by H. Helson, J.-P. Kahane, Y. Katznelson, and W. Rudin {6].
Again, let G be Abelian and this time infinite. [The theorem to be stated
is meaningless for non-Abelian ¢ and false for finite Abelian &.] Consider
all of the measures u in .#(G) such that the Fourier-Stieltjes transform
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aly) = [x@)dp(x) is real and of absolute value <1 for all characters
o

x of &. Suppose that I is a complex-valued function defined on the closed
interval [1, 1] and that F(0) = 0. Suppose that the composite function
Fop hag the form 4 for some Ae.# (@) for all u of the sort just described.
Then F is said to operate on #(@). The theorem of Helson, Kahane,
Katznelson, and Rudin asserts that every F operating on (@) can be
extended throughout the complex plane so as to be an entire function.
Thus (G) is grossly different from an algebra €(X), in which F can be
any continuous function. For the proof, see Helson, Kahane, Katznelson,
and Rudin, loc. cit.

Tt has been known since 1950, and was shown by Yu. A. Sreider,
that «(R) is asymmetric in the following sense. Given any locally eom-
pact group @, # (@) admits an involution u-—> i, where i(B) = u(B™)
for all B eB. This involution satisfies the usunal axioms: (A-+u)” = 1+ 4;
(ap)” = @i for complex numbers a; (i) = pl; (1) = p. We also
have ‘! y(w)dn(s) = g x(@)dp(x) for all characters of &. Thus, if & is
Abelian and #(6) admits any involution * such that v(u") == 7(u) for

all multiplicative linear functionals = on (@), the involution + must
be ~. This is apparent from the fact that if e,{ 1 (0)@A(0) = [y(2)dp(x)
&

for all characters y of G, then A = u. Sreider [24] constructed a multi-
plicative linear functional = on «#(R) and a measure o in % (R) such that

7(0) =1 and 7(6) = 0. This proved of course that .#(R) is asymmetric, -

and also established the validity of the assertion of Wiener and Pitt
rveferred to above: the measure y = o—o—sg, has the property that

o
| [ exp(itw)dy(z)| = 1 for all real t, but »~* does not exist. Sreider’s con-
—oo

struction was extended by Hewitt [9] to all locally compact Abelian
groups in which every neighborhood of ¢ containg elements of infinite
order. J. H. Williamson [28] has given a quite different construction,
baged according to Williamson [oral communication] on the original
construetion of Wiener and Pitt, which proves the asymmetry of (@)
for all nondiscrete loscally compact Abelian groups G. A particularly simple
proof is found in Rudin [21].

Constructions of the sort described in the preceding paragraph have
been carried considerably further in a paper of B. Howitt and 8. Kaku-
tani [10]. This paper shows that “most” linear functionals on ocertain.
infinite-dimensional linear subspaces of .#(@) [if G is nondiserete] are
in fact multiplicative: they can be extended over all of .#(G) so as o be
multiplicative linear functionals on . (G'). These results are thus consonant
with the oldest tradition of funetional analysis, namely, the computba-
tion and detailed study of the linear functionals on specific normed linear
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spaces. One may with propriety therefore present these results in a con-
ference dedicated to the memory of Stefan Banach, and express a hope
that Banach himself would have found them. of interest. i

We proceed to a precise statement of the results of [10]. Let G be
a nondiserete locally compact Abelian group. A subset 4 of G is called
independent if, whenever @, #,,...,, are distinct elements of 4 and
@1y Qay --+1 O aré integers, the equality oflef?...af» = e implies that
(i =@z =... =@ =0. Let ¢ be an integer >1. A subset A of G is
said to be a-independent if all elements of A have order a and if, whenever
By, @y +e., B, are distinct elements of A and gy, gy .-, ¢n are integers,
the equality 2Ma®...af = ¢ implies that ¢y =@=...=¢ =0
(mod. a). . :

For an arbitrary closed subset F of @, let .#(F) denote the set of
all Aes#(G) such that |A|(F’) = 0; these are the measures all of whose
mass is confined to the set F. Let 4 (F) denote the continuous measures
in (F) and #4(F) the purely discontinuous measures in 4 (F). It is
eagy to see that . (F) is the direct sum of . (F) and 4, (F), and that all
three of these sets are closed linear subspaces of (). :

Given a closed subset F of G, and a linear functional I not identi-
cally 0 defined on . (F), one may ask for conditions under which there
is a multiplicative linear functional M defined on all of #(@) that is an
extension of L. Plainly L must be bounded and of norm <1. Also L
must behave properly on the measures g, for z<F. Specifically, if 2,
Xgy ..., %, are elements of F, not necessarily distinet, and ¢i, ¢a;..-)
are integers such that afiaf...slr =e, then L(es), Lles), ..., Les,)
are defined because e , &g,y +++y &, 2TG IMEATUTES in #(F). If L is to have
a multiplicative linear extension M defined on the entire algebra .# (@),
we must have 1 = M(e,) = M(efie2...e5%) = M (e ) M (£,) ... M (&5, )™
= L (&4 L(eg,)". .. L(ey,)™ Now let P be a closed subset of G that is
independent or a-independent for some integer ¢ > 1, and let F' = P o P
For this choice of F, we find that the simple necessary conditions for
multiplicative extensibility are also sufficient. The exact statement
follows:

THEOREM A. Let G be o mondiscrete, locally compact, Abelian group
and let P be any closed subset of G that is either independent or a-ind pendent
for some integer a >1. Let I be any linear functional of morm <1 on the
linear space A (P o P7") such that if @y, By, ..., By @20 elements of P [not
necessarily @SSUNOt), qu, Qay -rvy Gn @re indogers, and afiaf?...afr = e, then

L{en) 8 D{ee). . Doz, = 1.

Then there is o multiplicative linear funotional M on 4 (@) such that
M (A) = L(1) for all Ae# (P o P
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Theorem A would of ecourge be vacunous if there were no cloged in-
dependent or a-independent sets, and trivial if there were no independent
or e-independent sets with plenty of measures on them. It turns out
that both of thege requirements can bo met abundantly. If every neigh-
borhood of e in G containg an element of infinite order, then every nomn-
void open subset of ¢ contains an independent set P that iy homeomor-
phic with Cantor’s ternary set. Thus . (P « P~ ig an infinite-dimensional
space, as is (P « P~'). If some neighborhood of ¢ in ¢ containg only
elements of finite order, then a slight technicality must be surmounted.
In this case, there ig at least one integer a >1 such that every neigh-
borhood of ¢ containg an a-independent set P homeomorphic with Cantor’s
ternary set. Other open sets may not contain such sets P. However,
every nonvoid open subset of G contains a translate of such a get P, for
which the conclusion of Theorem A holds. . ‘

The proof of Theorem A is simple in principle. It consists in showing
that the set {u—IL(u)e.: pe (P w P} is contained in some proper
ideal £ of . (G). Then .# can be extended to a maximal ideal ,# of (@),
which by one of Gel'fand’s fundamental theorems is the kernel of a multi-
plicative linear functional M. Thus u—L(u)e.c# for all pest (P u PY),
and hence M(u) = L{u) M(e,) = L(u) for all ue.#(P v P™'). Thus we

w

wust show that the equality Z(M“L(Ml) g+l == ¢, can hold for no
1=1

Bas Moy ooy e (PO PN and Ay, Agyeeny Ane(G). The details of
the proof are somewhat complicated, and for them we refer the reader
to [10].

Theorem A has a number of congequences. For example, let L be
any linear funetional on 4,(P v P~!) of norm not exceeding 1. Then
there is a multiplicative linear functional M on (@) that is an extension
of L. To see this, take any character y of @&, continuous or discontinuous.

00 (=]
For A = ot 3 ayege (P u P7Y), lot Ly (1) = L(zc)—kl)ja,w(,m,).
lel =]l

Then apply Theoremn A to the functional L,. If P is homeomorphic
with Cantor’s ternary set, the conjugate space of ,(P o P~') is a very
complicated Banach space [it is the direct suo of 2% I, spaces], go that
the linear functionals L on ,(P v P~Y) are very numerous and compli-
cated. As a simple case, however, consider any complex-valued Borel
measurable function f defined on P o P~', of absolute value <1 every-

- where. Then the mapping A~ [ f(z)di(w) [Aest(P v P~)]is a suit-
Pup-1

able L. Taking f(2) = 4 for all ®<P P, we construct & multiplicativo

linear functional M on (@) such that M (A) = M (1) for Aest (P w P

if and only if A(G) = 0. This is asymmetry of .#(@) in an extreme form!

By taking even more special sets than perfeet independent or g-in-
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dependent sets, we can obtain a reyuls stronger than Theorem A. Let S
denote the compact Hausdorff space consisting of all multiplicative
linear [nonzero] functionals on (@), topologized with Gel'fand’s topol-
ogy. The dual group X of G forms an open subspace of 8, if we associate
with each [continuous] character y of @ the multiplicative linear function-
al A— f{ 2(#)dA(x). The closure X~ of X in S is a proper subset of S, in

view of the asymmetry of .#(&). By choosing perfect subsets @ of &
carvefully enough, we can extend “most” linear functionals I on .4 @)
to multiplicative linear functionals M on .#(G) such that M<X-.

To describe the needed restrictions on L, we introduce two sets
of complex numbers for every nondiscrete locally compact Abelian group G.
It every neighborhood of ¢ in @ containg an element of infinite order,
let Iy be the set of all complex numbers z such that [#] =1 and let I,
be the set of all complex numbers # such that |2| < 1. If there is a neigh-
borhood of ¢ in G containing only elements of finite order, then it can be
proved that there is at least ome integer & >1 such that every neigh-
borhood of ¢ in G contains a compact subgroup isomorphic with the direct
product of a countably infinite number of cyeclic groups of order a. Select
any such a, let I, be all of the a-th roots of unity, and let I'y be the convex
hull in the complex plane of I',. Our second extension theorem can now

. be stated.

TamorEM B. Let @ be any subset of G homeomorphic with Cantor's
vernary set and having the properly that every eontinuous function defined
on @ with values in Iy is arbitrarily uniformly approximable by continuous
characters of G. Let L be any linear functional on M (Q) such that L(A)el',
if Ae (@), 420, and A(G) <1, and such that L(egye Iy if 2¢Q. Then
there is a multiplioative linear fumetional MeX~ such that M (4) = L(2)
Sfor all Aes (Q).

Theorem B is nonvacuous: every nonvoid open subset of & containg -
@ set @ with the properties specified in Theorem B. Note the curious fact
that if Iy is finite, then every continwous function on. @ with values in I,
ig the restriction to @ of a continuous character on G-

Theorem. B is an analogue of an interesting result of Yu. A. Sreider
[23]. In 4 (R), let o7, denote the linear subspace of all measures abso-
lutely continuous with respeet to Lebesgue’s gingular measure ¢ on the
Uantor get, Then there is a multiplicative linear functional ¥ on: ./ (R)
such that M is in the closure of the Fourier-Stieltjes transforms

u— [ exp(itw)du (@) and M(1) = y-A(R) for all Aesf,, where y is a com-

plex number such that 0 < |y| < 1.

Theorems A and B at once raise a question. What commutative
Banach algebras contain nontrivial cloged linear subspaces having the
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property that all linear funetionals [satisfying perhaps some simple
necessary conditions] on these subspacos can be extendsd to Db multi-
plicative linear functionals on the whole algebra? This question has
not been systematically explored. We give one example in an algebra
very different from #(@). Let G be as above any nondiserete locally com-
" pact Abelian group, and let X be its dual group, topologized as usual
50 a8 to be & locally compact Hausdorif space. Let €(X) denote the al-
gebra of all bounded, continuous, complex-valued functions on X. The

funetions ji, where ues# (@) and f(y) = af 2 (@) @A (@) for xeX, are of course

in €(X). For simplicity, we suppose that every neighborhood of ¢ in ¢
conbaing an element of infinite order. Let @ be any subset of & ag specified
in Theorern B, and let © he the uniformly closed subspace of C(X)
generated by all of the functions g for ues#,(Q). Tet L be any linear
functional on & of norm not exceeding 1 in the uniform norm for & C €(X).
Thus we have |L(u)| <sup{|a(g): xeX} < [u] for all pe# (@), By
defining L(s;) to be any complex number of absolute value 1 for each
xe@, we extend L in an obvious way over M (Q). It is easy to see that L
satisties the hypotheses of Theorem B. Thus there ig & point M in X~ C &S
such that M(u) = L(a) for all ues,(Q). Let BX be the Stone-Cech
compactification of X [note that X is a normal space]. The identity map-
ping ¢ of X onto itself admits a continuous extension i, that maps AX
onto X~: this is a characteristic property of X. Let p X Dbe any point
in ' (M). Then the evaluation f(p) is a multiplicative linear functional
on €(X) that agrees with L on the functions i (ue 4,(Q)) and hence
agrees with L-on &, since .#,(Q) is dense in &. Using X with its discrete
topology, denoted by X4, we can similarly extend L to be a multiplica-
tive linear functional on the algebra €(X;), consisting of all bounded
complex-valued functions on X. R

The general problem of finding the closed linear subspaces of com-
mutative Banach algebras on which linear functionals of norm <1 are
actually muliplicative seems to ba completely open, even for the algebra
of all continuous complex-valued functions on a compact Fausdortf
space.” A triviality may be mantioned. If ¥ is a compact Hyusdoret space
of cardinal less than 2%, then €(¥) containg no closed linear subspaco
different from {0} with this property.

To-conclude this essay, we mention some important open q{wﬁtions
in the theory of .#(G). '

1. Is there is a concrete representation, more gpecific than Sreider’s
generalized characters [24], for all multiplicative linear functionals on
A (BE)t A similar query applies to .#(@) for arbitrary locally compact
Abelian @, but a concrete construction of the multiplicative linear func-
tionals on #(R) would itself be of great interest. 'Theorems A and B

icm
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show that the space of multiplicative linear functionals on J#(R) is
extremely complicated.

2. For locally compact Abelian or non-Abelian &, what are the cloged
ideals of (@)%

3. For locally compact non-Abelian &, what are the simple algebras
that are homomorphic images of #(G)?

4. For locally compact non-Abelian ¢, what are the idempotents
of #(G)? :

Question 1 and questions 3 and 4 for compact groups probably can
be angwered with presently available techniques. Question 2 [even for
Abelian groups] and questions 3 and 4 for noncompact groups appear
to be very far from a solution. Such statements as the preceding sentence
are of course dangerous: some ingenious person may any day prove the
writer wrong. Such a dénouement would please him greatly.
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Linear differential equations in Banach algebras
by

E. HILLE (New Haven, Conn.)

1. We denote by B a complex B-algebra with unit element e. Let {
be a complex variable, and f(f) a function whose values are in B. Then

1) w'(§) = f(¢)w(?)

may be regarded as a generalization of the classical system of first order
linear differential equations. It reduces to such a system if B is the al-
gebra of » by » matrices.

It f(Z) is holomorphic in a simply-connected domain 4, and if w,
is a given element of B, then there exists a unique solution w(Z; Zq, W)
of (1) which is holomorphie in 4 and which reduces to w, when [ — £,.
This solution is a regular element of algebra if and only if w, has this

property. We have
(2)

w(E; Loy W) = w(L; Loy €)%Wo-

2. Suppose next that 4 is a sector with £ = 0 as vertex and that

- f(¢) is not holomorphic at ¢ = 0. The behavior of the solution as {— 0

depends upon the integrability properties of | f(O)]l. If this function is
integrable down to 0, the solutions have finite limits as {0 and the
initial value problem may be set also at the singular point { = 0.

Tf the integral diverges, several cages arise. Thus, if { = 0 i 2 simple
pole of f(¢), then a priori estimates of the form

®) oML < (@) < 0l

hold and we may speak of a regular singular point in analogy with the
clagsioal case. If the pole is of order %, & >1, we have the analogue of
an irregular singular point of rank k—1 and [lw(l)]| now lies between
two exponential functions of |¢|7"

3. In the regular singular cage, suppose that

FO) = Y™ eB, [0 <o

=0

(4)
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