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is snduced by commuting the set (Ag)sen. Then
fld) = <y a(A)>, k=1,2,.., dmH(),

where ek(l)édi’ (dual of D). The e, () are generalized simultanecous eigen-
functions of (Ag).

CORROLARY 3 (Berchangkil). If the operator B with o dense domain
D(B) has an inverse B~' of H.-S.-type, then putting H, = D(B) with
(u, ©)p = (Bu, Bv)+ (u, v) we get the thesis of theorem 4.

CORROLARY 4. Other spectral theorems given by Berchanskii.

CORROLARY 5. Put H, = H™(Q), H = H° = L*(Qy), then the eigen-
clements of partial differential operators (Ap) are distributions e,(A)e
cH"™(Q) = H™ of an order < N[2.

Let B(p, ¢) be. scalar product of an order < (=1,2,...), H(B)
completion of 03°(2) in B(:, ).

Put in theorem 4: H = H(B), ® = H"*"(Q); then we get the fol-
lowing

CORROLARY 6 (a sharper form of a theorem of Garding). Let (4,)
be a commuting set of observables in H(B); then the Fourier transform
D> ¢ — ¢ (A) = <@, ex(A)), where the simultancous eigenfunctions of (Ap)
are elements of H™™(Qy), i. 6. distributions of an order not exoceeding
N2+

COoncluding remark. All proofs are exceedingly simple, which
shows that the instrument of H.-S.-mappings is suitable for mastering
the problem consgidered ahove.
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Continuous selections in Banach spaces
by

E. MICHARL (Seattle, Wash.)

Dedicated to the Memory
of Stefan Banach

One of Stefan Banach’s many interests was the interrelationship
of topological and linear phenomena. This paper is a summary of some
recent work in that direction. :

Let X and Y be topological spaces, and @ a function from X to the
collection of non-empty subsets of Y. Then a selection for @ is a contin-
wous f: X — Y such that f(»)e®(x) for every zeX. Our problem is to
find conditions which insure the existence of a selection for &.

For continuity, it suffices to assume that @ is lower semi-continuous,
that is, for every open ¥V C Y the set {xeX | ®(x) C V = 0} is open in X.
As for the sets @(x), they will usually be closed, and either conver subsets
of a Banach space or something similar; this will assure not only that
these sets are individually well behaved, but that they are properly in-
terrelated. Finally, we shall usually assume that X is paracompact.

‘We begin with our gimplest and most basic result, and will then
congider various refinements.

TuamoreM 1 [1]. If X is paracompact, ¥ a Banach space, and €(Y)
the family of non-empty, closed, convex subsets of ¥, then any lower semi-
continuous P: X — O(Y) admits a seleotion.

It should be remarked that Theorem 1 actually characterizes para-
compact Spaces.

CoroLLARY 1 [1]. If B is a Banach space, F o olosed subspace, and
w: B — B|F the natural projection, then there exisis a continuous f: B|F —~F
such that f(x)en™"(x) for every weB/[F.

There are various ways of strengthening Theorem 1. The simplest
is to replace the Banach space Y by a locally convex F-gpace. Let us
outline three other possible improvements.

Firgt, the requirement that the sets @(z) be closed can, under sui-
table circumstances, be somewhat relaxed. For instance, if X is perfectly
normal (not necessarily paracompact) and Y separable, then €(¥) can
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be replaced in Theorem 1 by a somewhat larger class of convex sets which
ineludes, in particular, all those which are either closed, or finite dimensional,
or possess an interior point [1].

Our second method of strengthening Theorem 1 is to weaken the
requirement of convexity. Let us call a subset A of a Banach space
a-comven (0 < a < ) if, whenever SC A and # is in the convex hull
of 8, then o(z, 8) < o (diam §). (Note that if 4 is closed, 0-convex = con-
vex.) The sets which are a-convex for some a < % are a strange lot; they
include, for instance, all finite unions of intervals radiating from a point,
but do not include a semi-circle in the plane (where the subset S con-
sisting of the two end poir ts causes trouble). Anyhow, Theorem 1 remains
true it €(Y) is replaced by the family of all closed, a-convex subsets
of Y, for some fized o < }. (See [3].)

Finally, Theorem 1 may be strengthened by no longer requiring ¥
to be a Banach space, but only a complete metric space with an axio-
matically defined conven structure, which permits one to take “convex
combinations” of some (but not necessarily all) n-tuples in a suitably
continuous fashion. (This includes the locally convex F-gpaces mentioned
earlier.)

‘With convex sets then defined in the obvious way, Theorem 1 re-
mains true in this considerably more general context. Among the con-
sequences of this new result, let us mention that Corollary 1 remaing true
if F is merely assumed to be a metrizable group, and F a cloged subgroup
which is isomorphic to a Banach space. (See [2]).

In conclusion, let us mention that, for finite dimensional X, it is
possible to place purely topological conditions on the sets @(z) which
are not only sufficient but, in a sense, also necessary. Without dimension-
al restrictions on X, however, the search for such a set of conditions
has so far remained unsuccessful.
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Operators and distributions
by

J MIKUSINSKI (Warszawa)

I recall first the definition of operator which I have introduced in
my book Operational Caloulus.

We start from the ring of continuous funections of a real variable ¢
(0 <t < oo), the product being defined by the convolution

1
fo = [fl—7)g(v)dr.
0

By a Titchmarsh theorem, that ring has no divisors of zero. The
clements of the quotient field, obtained from that ring are by definition
operators.

"This algebraic method seems to be the most adequate for the notion
of operators. However an equivalent definition can be given by the
sequential method, as for distributions. Then instead of distributional
convergence we should introduce the following one:

We say that a sequence of continuous functions g, (x) is convergent
or fundamental if, given any non-vanishing identically function w, the
sequence wg, (convolution) converges almost uniformly.

Since this convergence is more general than the distributional one,
the notion of operator is more general than that of distribution. But
this i only so when the interval where the functions are defined is bounded
from below. It if is not, distributions can be obtained from operators
by an additional limiting process.

It in important to answer the question whether the algebraic (or
sequential) method of introducing operators is essentially more general
than that of the Laplace transform. In order to give a positive answer
we should show that there exist operators or functions which can not
be represented in the form

!

4

(the division being meant here as the inversion of the convolution),
where f and g arve Laplace transformable. In other words, we should

L=
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