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STUDIA MATHEMATICA, T. XXIL (1963)

Some analogies between the class of infinitely divisible
distributions and the class % of distributions

by

L. KUBIK (Warszawa)

1. It is known that the class of infinitely divisible distributions
may be characterized as follows (see Gnedenko and Kolmogorov [1],
§ 17, theorem 5):

" TmroreM A. The dlass of infinitely divisible distributions is . equal
to the class of compositions of & finite number of Poisson distributions and
of their limits in the sense of weak convergence.

In [3] T found the class % of distributions that play for the class &
of distributions the same role as the class of Poisson distributions for the
class of infinitely divisible distributions. Namely, the class ¥ consists
of all distvibutions with the Lévy-Khintchine function () of the form (2)

{ 0 for < A4,
142 :
(1) G(u) = | alog + for A<u<0, (e¢>0)

1+

alog(1+A4)* for % >0,

(*) The logarithm of the characteristic function ¢(f) of any distributionfrom
the class % can be written in the Lévy-Khintehine form
+o0
logo(t) = iyt f (e”"f 1—

—o0

it ) 1402

Tra a6 (u),

u?

where y is a real number and & (u) is a non-decreasing bounded funetion (G (— o) == 0)

having the right derivative and the left derivative, denoted indifferently by G’ (u),

14+ u?
u

at every point u s 0, and such that G’ (u) is for w < 0 and for u > 0 non-

increasing funection. The function &(u) will be called the Lévy-Khintchine function.
(3) In [3] the distributions with the Lévy-Khintchine function .of the form

[0 for <0,
Gu) = l (e = 0)
c

for u> 0,

were also included into the class ¥. However, this is not necessary, because such dis-
tributions are -- as easily seen -- limits of distributions of the form (1) or (2).
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or
0 for % <0,

(2) G(u) =1blog(1+u?) for 0 <u<B, (b=0)
blog(1+B)* for w >B.

The following theorem (see [3]) corresponds to theorem A :

THEOREM B. The class % of distributions is equal to the class of com-
positions of & finite number of distributions from the class % and of their
limits in the sense of weak convergence.

In [3]T also indicated a further analogy between Poisson distributionsg
and the distributions from the class %: It is known that every Poisson
digtribution is the limiting distribution of sums

5%1 + fnz +.t Enkn "‘An; -Am, = GODSt,

of suitably chosen two-valued random variables ;. Similarly every dis
tribution from the class € iz the limiting Qistribution of sums

St&+... &
B,

of suitably chosen two-valued random variables &,

In the present paper I should like to indicate some other analogies
between Poisson distributions and the class of infinitely divisible distri-
butions on the one hand and the classes ¢ and &% on the other.

2. First of all let us consider the following analogy. Bvery infini-
tely divisible distribution can be characterized by a non-decreasing func-
jﬁion G(u) — the Lévy-Khintchine function. The Poisson distribution
is characterized by the fact that all the increase of the function G(x)
takes place at one point. Beyond that point, the function G () is constant.
EYery distribution from the class % can be characterized by a non-decre-
aging function @(u) (Lévy-Khintchine function) having the right deri-

vative and the left derivative at every point « 3 0, and such that Lo X
w

—4,, A,,B, =const, B, >0,

>§6’-’ gu) (f‘) is for # < 0 and for » > 0 g non-inereasing function. Now the
distribution from the class & is characterized by the fact that all the de-

o 1a?
crease of the funcmon—ul— G'(u) on the half-line (—o00,0) or (0, +o0)

takes place at one point. Beyond that point, the function Lt @ (u)
is, for v < 0 and for u > 0, constant. ‘

& o X .
] () ¢ (w) .denotes in all this paper the right derivative or the letf derivative
Or i some points the right and in other points the left derivative.
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3. In connection with theorems A and B the following question ari-
ses: are the class of Poisson distributions and the class ¢ the only classes
such that compositions of distributions from these classes and their limits
form the whole elass of infinitely divisible distributions and the whole
class &, respectively ¢ It is easy to notice that those are not the only
classes of distributions with such a property. In fact, instead of the class
of Poisson distributions we may take the class of distributions approxi-
mating the Poisson distributions, for-ingfance the class of distributions
with Lévy-Khintchine functions of the form

‘ 0 for uw<a—s,
b
G{u) = Voo (u—a+e) for a—e<u<ate,
€
b for % >ate.

With £ = 0 we get the Poisson distribution. Instead of the class ¢
we may take the elass of distributions approximating the distributions from
the class ¢, for instance the class of distributions with Lévy-Khintchine
funections of the form

0 for w<<A,
140642
1 du?

alog(l4-642) for w >0,

G(u) = y alog for A<<u<0, (=1

or
0 for u<<O0,
G(u) = blog(l+dut) for O<u<<B, (6=1)
blog(1+6B%) for u >B.

With § — 1 we get the distribution from the class .

However, the class of Poisson distributions as well as the class ¥
are in a sense the narrowest classes with the property mentioned above.

If a class 7 of distributions (a subelass of the class of infinitely di-
vigible distributions) has that property that compositions of those di-
stributions and their limits form the whole class of infinitely divisible
distributions, then the class 7 contains distributions which are “arbi-
trarily near'” Poisson distributions. Namely, the following theorem holds:

THEOREM 1. If J is a class of distributions (a subclass of the class
of infinitely divisible distributions) such that the class of compositions of
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those distribuiions and of the limiis of those compositions is equal to the clags
of infinitely divisible distributions, then for every a, every ¢ >0 and every
1 > 0 there ewists a distribution from the class T with the Lévy-Khinichine
Sunction G(u) such that for all u < a— e we have G(u) < 5 and for all 4 >
>a-+e we have G(+0d)—G(u) < 7.

Proof. Leb us consider the Poisson distribution with Lévy-Khint-
chine function

for u<a,

Go(u) = b for

uU>a.

From the assumption of our theorem follows the existence of distri-
butions from the class J with Lévy-Khintchine functions G ()
(6i=1,2,...,k; n=1,2,...) such that

ki,

im '@, (u) = Gy (u)

001

(% # a).

Since functions G;(u) are non-decreasing and non-negative, we ob-
tain our theorem immediately. For sufficiently large n, each of the fune-
tons Gy (4), Gy (), «ovy Gy, (w) has the property of the function G(u)
mentioned in theorem 1. .

This theorem says that the class 7 constains the distributions with
Lévy-Khintchine functions G(«) such that the main part of the increase
of G(u) takes place on a very small interval. Beyond that interval the
function G(u) increases very slowly.

Now we shall prove a theorem which says in what sense’ the class
¢ is the narrowest class of distributions having the property that com-
positions of those distributions and their limits form all the class Z.
That theorem corresponds to theorem 1.

THEOREM 2. If ¥ C % is a class of distributions such that the class
of compositions of those distributions and of the limits of those compositions
i8.equal to the class £, then for every a>>0, every ¢ >0, and every 5 >0,
there emists a distribution from the class & with Lévy-Khinichine function
G(u) such that for all 4 >a+ ¢ we have

®) o 144t

@ (u) <9,

and for all u (e < u < a—e) we have

- 2
4) 1J:e G (o)~ 1TV

U

G/(’M) < 7.

icm
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Similarly, for every a« < 0, every ¢ >0, and every n >0, there exists
a distribution from the class & with Lévy-Khirvitchine function G(w) such
that for all w < a—e we have

14+
(5) —u &) <,
and for oll u (a+e<u < —&) we have
2 2
14w 1tet
% —z

Q' (u)— (—e) < 7.

(6)
For the proof of this theorem we shall need the following simple
lemma (see [2]): ‘ '
Lemma 1. Let f(z) and h(z) be continuous functions defined " the
interval <@, b). Let the right derivatives f (x), b, (z) and the left derivai-
ives f(x), b (%) exist at every point x of this interval. If h(a) 5= h(b), then
there exists a number ¢ (a <<e¢ < b) such that

YO—f@) , ]f(m—f(a) st o] <o,
M [mh(ﬁ) filo) [h(b)—-h(a) R (e) f_(c)]

If (7) holds, then either

L f0)—fa) ., , TO—J@ 40y (6) > 0,
(7) m@he-(c)“f+(c)<0: 7(b)— h(a) “{e)—f=(e)

or

o fO)—f@ JOI=J@) 10 6y > 0.
T e A A T L Al

In the sequel we shall use the following notation:

, file) i (7)) holds,
FO=1r @ # @) bods,
, f(ey i (7') holds,
wf'e) = { Fi(e) i (77) holds.

Proof of theorem 2. Let us take arbitrary numbers a, €51 >-0.
Let us consider the distribution from the class &% with Lévy-Khintchine
funetion

0 for w <0,
Go(u) = {log(1+u2) for O <u <a,
log(1+a% for « >a.
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From the assumption of our theorem follows the existence of digtri-
butions from the class & with Lévy-Khintchine funetions Gri(u)
(i=1,2,..., k3 n=1,2,...) such that

kn
Hm D' Grs(u) = Gy(u)

700 ;77

(—o0 < u < +o0).

Let us observe that in our case the convergence is uniform. For
every 6 >0 there exigts then an N such that for » > N and oevery u

|G () — G ()] < 6,

where
kn
®) Galu) = D Grylu).
=1
. Hence

Go(a)—Gr(a—e) - log(1+a2)—d—~log(l+(a—e)?) — 6
log(1+a?)—log(1+(a—e)y) = log(1+a?)—log(1+(a—e)?)
=1— 26
log(1+a?) —log (1+ (a— &)?)

and
Gn(e)—Gu(+0) log(l4e2)+6 8
< =1+ :
log(1+¢2) log(1+&2) log (14 2)
Let us take

. Jlog(1+a?) —log(L )2 ‘
= min {0802 efltie 5))v,glog(1+eﬂ)}.

There exists a number N (dependent upon & and therefore also
upon n and &) such that for n > N

Gn(a)-G.n(a——e) 7
log(1+ %) —Tog[1{a—ep) = ' 1"

G"_(.E)TGZL(;*: 09 < 1 i
Sl

log (1+ e?)

Next — on ua.ccou.nt of lemma 1 — th i
— there oxist numbers.e, and e,
sueh,tha.t0<c,<e<a,—e<ca<a, and e

7 Gnl(a)—G,(a—¢) 2 2
11— g n N R Y
4 log(1+aﬂ)_10g(1+(a_s)2) < 4Gn(e,) 26, ® < wlin (01) *“22,;’1'
" Gﬂ(e)_G (+0) t
g ——" 7 7
log(ltey  Sitg-
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Since for all u (¢; <u < ¢y)

po 1+ L ke 14é
Gn(cz)“m <Gn(u)‘2u < Goloy) 2,
therefore
” N 7
1—‘2 < G (u) on <1+ Ve
i.e.
k| 14
7 ’ u i
1——4—<§Gm() <147

All the summands are non-negative and non-increaging functions.
None of them can then decrease on the interval (e, ¢,) more than /2.
Therefore, for every u (¢ <u < a—g),

142 ,
%% Gri(e)— ™

2
T ) <

AE = 1,2y dn).

0|

Inequality (4) is thus proved.

We proceed to the proof of inequality (3). Suppose it is not true.
This means that there exist ¢ > 0, £ >0, and 5 > 0 such that for every
digtribution from the class & with Lévy-Khintchine function G(u)
there exists a number w, > o+ ¢ such that

1+ug

(9) ——G'(Uy) = 7,
o

and, moreover,
1+ (a+e)?
a-t¢e
From the definition of the class & follows the existence of distri-

butions from that class with Lévy-Khintchine functions G,;(u), Gue (%),
.+3 Gup, (u) such that

(10) Q'(a+e) = 1.

kn,
lim 3G (u) = Go(u).

n—00 j1

In our case the convergence is uniform. For every ¢ > 0 there exists
then a number N such that, for » > N and every u,
k'L

}gaﬂiw)—eo(u)i <8,
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whence
kn Jp,
| > Guslat-e)— 3] Gula)| < 28.
i=1 1=1

Functions @,;(u) are non-decreaging and so

kn,
D {Ghui(a46)— Gnila)} < 25,
i=1
whence
(11) Gui(o+e)—Gua) <28 (1=1,2,...,k,).
Let us take for example Gy, (v). From (10) we have
1+ (a’+ 8)2 ’
—_— >
ate GNI(“"'S) 2N
1+u? .
@i (u) does not increase. We thus have
1—|— u?

Gy (u) = for a<u<ate.

Hence and from lemma 1 follows the existence of such ¢ (a < ¢ <
a-+¢) that

Gwi(a+e)—

b (9) @ (o1t
10g(1+(a+a))_10g(1+a2) Z i (0) % >=7.
Therefore
G (a+e)—G(e) > nflog(L+ (a+ o)) —log (14 a)} ,

which contradicts (11) if we take

8 = {log(1+(a+e)?) —log(L1-+a2)} n/2.

(9) cannot then be true and so inequality (3) holds.

) The proof of inequalities (5) and (6) is quite analogous. Theorem
2 is thus proved.

The class & contains then the distribution with such L(,vy Khint-
chine functions G(u) that the main part of the decrease of 11%

G«’(‘u,) on
the half-line (—oo, —e) or (g, +o0) takes place. on the very small inter-
val. Beyond that interval, the f"unctlon —_— G’( u) decreases on the given

half-line very slowly. The class & eontams then the distributions which
are in a sense “arbitrarily near” distributions from the class .
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4. In section 2 we indicated an analogy between Poisson distribu-
tion and the distribution from the class ¢, consisting in that Lévy-
Khintchine function of Poisson distribution increases in the same way

2
as the function%qi G’ (u) decreases, where G (u) is Lévy-Khintchine fune-

tion of the distribution from the elass . The question arises, if it is possi-
ble to establish an isomorphism between the class of infinitely divisible
distributions and the class % consisting in the same, i. e. in that Lévy-
Khintehine function G (u) of an infinitely divisible distribution increa-

. R . - .
ses in the same way as the function —:—— @' (u) decreases, where G(u) is

Lévy-Khintchine function of the distribution from the class % which
corresponds to the infinitely divisible distribution with Lévy-Khintchine
function @ (). Now, there exists such an isomorphism between the class
of infinitely divisible distributions and the subelass of the class % con-
sisting of such distributions that

14 u?

(12) lim —— & (u) > —oo,
U—s—V u
1+u? _
(13) tim 2% @ (u) < +oo.
- U0 u

This isomorphism is established by the fo]lom:ng formulae:

(14) 1+“ G = —Gu) (u<0),
(15) G(—I-O)—G(—O) =G(+0)—G(—0),
(16) ii—;f@'(u) — G+ o0)—Gw)  (u>0).

In order to prove that formulae (14)-(16) establish the isomorphism
mentioned above we shall need the following lemma:
LevmA 2. If G(u) is Lévy-Khintchine funciion of a distribution from
the class £, then
1
@ (u) = lim ———Z-—G’( u) = 0.

Uy — 0O

lim 14wt
U—00

Proof. First of all let us observe that G'(u) is for & <u < +

oC
bounded, where ¢ is an arbitrary positive number. For, if lim G'(x) = +co
u-.»uﬂ

(17)

for a u, (¢ < 4y << o0) were true,

1
1im ite?
T oy

G (u) = +oc,
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A . K
would also hold, and since Li;fi @' (u) is for w > 0 non-increasing, we
should have @' (u) = +oo for 0 < u << u,, which is impossible.
On account of lemma 1 we have for all %, and u, such that ¢ < u, <
< Uy

G’(ﬁz) —G (%)

= L) (U <o < ug)-

Up— Uy,

The function G(u) satisfies then for # >¢ the Lipschitz condition
and thus is for % > ¢ absolutely continuous ([4], p. 404), whence it follows
that

w

(18) Gu) = G(s)+fG’(u)du (> e).

Suppose now that formula (17) does not hold. There exists then such
6 >0 that for v >0

1 2
e >0,
%
whence it follows that
, u
G (’NI) == 6m -{~¢p(u),

where g(u) > 0. Henece and from (18) we have

é 14 u?

PRl

G(“)=G(€)+f§—1%ﬁdu+f¢(%)du >

which is impossible. There must then be
1 2
lim —Zla' (u) = 0.

U—>00

Similarly we prove the second part of formula (17). Lemma 2 ig
thus proved.

‘We shall now prove that formulae (14)-(16) establish an isomor-
phism between the infinitely divisible distributions with Lévy-Khin-
tehine functions G(u) and the distributions from the class .2 with Lévy-
Kintchine funetions satisfying (12) and (13).

Let us take an a{bitrary distribution from the class % with Lévy-
K?fxintchhlfa function G(u) satistying (12) and (13). Formula (14) deter-
mines uniquely a non-negative, non-decreasing, continuous from the

icm°
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left, function @(u) (G(—co) = 0 on account of lemma '2) for u < 0. For-
mulae (14) and (15) give

G(+0) = G(+0)—F(—0)+ lim I—Jrz:—zé'(u),
U—>—0

and formula (16) gives

1+u2 2 _
#w) = Jim L g+ @0 - 2% g )

+0 B " (u >0).

‘We have obtained thus Lévy-Khintchine function G(u) (and only
one). To every function G(u) satisfying (12) and (13) there corresponds
then one and only one Lévy-Khintchine function & (u). )

Let us now observe that the derivative & (u) of arbitrary Lévy-
Khintchine function G(u) satisfying (12) and (13) is for all % bounded.
From the proof of lemma 2 it follows that @ () is bounded for all u from
the half-lines —oo <u < —e and & < u < 400, with arbitrary ¢ > 0.
From (12) and (13) it follows that
lim G’ () = li

0 U—s-

Therefore @ (u) is bounded for all . G(u) satisfies then for u < 0
and for # >0 the Lipschitz condition, and thus it is absolutely con-
tinuous for # < 0 and % > 0. We have thus

G'(u) = 0.
0

Y

(19) @) =F(—0)+ [ Fwdu (u<0),
—0

(20) Gw) = F(+0+ [Fwdu (v >0).
+0

Let us now take an arbitrary Lévy-Khintchine function & («). From
(19) and (14) we have

1) @ (u) = @(—0)+f G(u)ﬁd'u (u < 0)
and from (20) and (16) we have

(2 >0).

(22) G(u) = G(+0)+ f{G(—koo)—G(u)}I_%du
o

From (21) we obtain

(23) ;

-0
0 = G(—o0) = G(—0)+ fG(u)d—_;‘;«&—du.
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Formula (23) together with (21) deteimines uniquely the function
G(u) for v < 0. From (15) and (23) we have

%
f G (u) 1o .

(24) (40) = G(+0)—6(—0)—

icm

Formulae (22j a,ndv (24) determine uniquely the function @(w) for '

4 >0. To every Lévy-Khintehine function G (u) there corresponds then
one and only one Lévy-Khintchine function G(u) satisfying (as easily
seen) (12) and (13). If G, («) and G,(u) correspond to G4(w) and G,(u)
respectively, then G, (u)+Ga(u) corresponds to G (u)4Gy(u). There-
fore the correspondence (14), (15), and (16) preserves the composition
of distributions.

The isomorphism in question is thus proved.

It is obvious that to a Poisson distribution corresponds the distri-
bution from the class #. It is easy to verify that to a distribution from
the clags ¢ with Lévy-Khintchine function

0 for u< 0,

blog (14 u?) 0<u <B,
blog(14+ B2 for wu > B,

G(u) = for b =0)

treated as infinitely divisible distribution, corresponds the distribution
from the class % with Lévy-Khintchine function

0 for % <0,
b b
. —log(1+4B2)-log(1+ u?)— —log? 2 <
Gy =12 og(1-+B2)-log(1+ u?) 410g (14+u?) for O0<u <B,
b i
Zlogﬂ(l+B2) for u > B.

To the distribution from the clags . with Lévy-Khintchine function
given by the formula

1
—— for %<0,
¥ | 2
(25) Glu) = O(H“I)
—— for u >0,
VB(14 u?)
1 1
4,B,0>0," Adz—=+4-"=
! ? ? ]/B ,/aﬂ
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satisfying (12) and (13) corresponds the infinitely divisible distribution
with Lévy-Khintchine funetion G (w) = G(w). The distributions with
Lévy-Khintehine function (25) correspond then to themselves. It is obvious
that the normal distribution (G'(u) = 0) also corresponds to itself. The
normal distribution and the distributions (25) are the only distributions
with this property.
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