Intrinsic description of the Sz.-Nagy-Brehmer unitary dilation

b:

I. HALPERIN (Kingston, Canada)

To the memory
of Maurice Audin

I. Introduction

1. In this paper, generalizing a theorem of [2] for a single contraction, we shall describe by "intrinsic" properties the Sz.-Nagy-Brehmer minimal unitary dilation, and also the Sz.-Nagy-Brehmer minimal isometric dilation, of an arbitrary family of commuting contractions on a Hilbert space (the scalars may be real, complex or quaternionic).

As a corollary we obtain, in a new way, necessary and sufficient conditions on commuting contractions, in order that a Sz.-Nagy-Brehmer unitary dilation should exist, conditions which were given previously by the writer in [3], and earlier, in less precise form, by Brehmer in [1].

2. We use the following terminology. J will denote an arbitrary set of indices a, and \tilde{J} will denote the set of those integer valued functions $m \equiv m(a), -\infty < m(a) < \infty$, for which $\tilde{m} \equiv \{a \mid m(a) \neq 0\}$ is a finite subset of J. We write $m \geqslant 0$ if $m(a) \geqslant 0$ for all a; we call m, n positive-disjoint if: $m \geqslant 0$, $n \geqslant 0$, and $\tilde{m} \cap \tilde{n} = \emptyset$ (empty set). We write n = -m if n(a) = -m(a) for all a.

If E_a , $a \in J$, are commuting operators on any Hilbert space and $m \in \widetilde{J}$ with $m \geq 0$ we define E(m) to mean $E_1^{m(1)} \dots E_r^{m(r)}$ where \widetilde{m} has been denoted by $\{1, \dots, r\}$ for convenience; we define $E(\emptyset)$ to be 1; we define E(-m) to be $(E(m))^*$. I, M, N will always denote finite subsets (possibly empty) of J. Any such finite set I will be denoted $\{1, \dots, r\}$ for convenience.

Throughout this paper T_a , $\alpha \, \epsilon \, J$, will denote a fixed family of commuting contractions on a fixed Hilbert space H. Operators V_a , $\alpha \, \epsilon \, J$, acting on a Hilbert space $H \cap H$ will be called an *isometric dilation* of $\{T_a\}$ if $\{V_a\}$ are commuting isometric operators on H and for all $x \, \epsilon \, H$:

(1)
$$T(m)x = P_H V(m)x \quad \text{for} \quad m \in \tilde{J}, \ m \geqslant 0.$$

 P_{H} denotes the projection (orthogonal) onto H.

The dilation will be called a Sz.-Nagy-Brehmer isometric dilation if (stronger than (1)), for all $x \in H$.

(2) $T(-n)T(m)x = P_H V(-n)V(m)x$ for m, n positive-disjoint.

The dilation will be called a *unitary* one (in place of an isometric one) if the V_a are all unitary on K.

An isometric, respectively unitary, dilation $\{V_a\}$ acting on K will be called *minimal isometric*, respectively *minimal unitary* if $K = [\{V(m)H | | m \in \tilde{J}, m \geq 0\}]$, respectively $K = [\{V(m)H | m \in \tilde{J}\}]$ (we write $[A, B, \ldots]$ to denote the subspace spanned by A, B, \ldots).

It was shown in [2], sharpening previous results of Sz.-Nagy-Brehmer [4] and Brehmer [1], that commuting contractions $\{T_a\}$ possess a Sz.-Nagy-Brehmer minimal unitary dilation if and only if the following condition is satisfied:

(3) For every finite subset $I \subseteq J$ the operator P_I is positive definite on H.

Here we write I as $\{1,\ldots,r\}$ for convenience and we define $P_I=P_r$, and P_j , $0\leqslant j\leqslant r$, by induction on j as follows:

$$P_0 = 1, \quad P_{j+1} = P_j - T_{j+1}^* P_j T_{j+1}.$$

We adopt the convention: $P_{\theta} = 1$. Note that if (3) holds then $1 = P_0 \geqslant P_1 \geqslant P_2 \geqslant \ldots \geqslant P_r$.

3. If $\{U_a\}$ acting on K is a unitary dilation of $\{T_a\}$ we set $K^+==[\{U(m)H|m\in \tilde{J},\ m\geqslant 0\}]$. Then clearly, $U_aK^+\subset K^+$ for all $a\in J$ and the restrictions of the U_a to K^+ will be a minimal isometric dilation of $\{T_a\}$ (even a Sz.-Nagy-Brehmer one if $\{U_a\}$ is a Sz.-Nagy-Brehmer unitary dilation).

Thus the problem of constructing a Sz.-Nagy-Brehmer minimal unitary dilation $\{U_a\}$ breaks into two parts, (i) the construction of a Sz.-Nagy-Brehmer minimal isometric dilation $\{V_a\}$ of given commuting contractions $\{T_a\}$, and (ii) the construction of $\{U_a\}$ to be a minimal unitary dilation of given commuting isometries $\{V_a\}$.

It was shown by Brehmer [1] that for real or complex scalars (i) is possible under certain additional restrictions on $\{T_a\}$. The writer showed in [2] by another method (valid for real, complex or quaternionic scalars) that (3) is necessary and sufficient. In the present paper we obtain a description of $\{V_a\}$ in terms of $\{T_a\}$ which yields this condition (3) anew and throws light on its geometric significance.

As for (ii), this is always possible. This was shown by Brehmer [1] for real or complex scalars, by the writer [2] for real, complex or quaterionic scalars. The description of $\{U_a\}$ in terms of $\{V_a\}$ which we obtain

If J is finite the actual construction of $\{U_a\}$ in terms of $\{V_a\}$ is straightforward; but the construction when J is infinite seems to require either (i) a process of "identifications" which obscures the final result, or (ii) the use of transfinite induction (equivalently, the axiom of choice).

By combining (i) and (ii) a description of the Sz.-Nagy-Brehmer minimal unitary dilation $\{U_a\}$ in terms of the given commuting contractions $\{T_a\}$ (assuming (3) is satisfied) can be obtained. We shall not give the detailed description here. But we note that if $\{T_a\}$ are doubly commuting (this means: $T_aT_\beta=T_\beta T_a$ and $T_a^*T_\beta=T_\beta T_a^*$ for all $a\neq \beta$; this was the stronger hypothesis used by Sz.-Nagy in his original discovery [4] of the existence of a Sz.-Nagy-Brehmer minimal unitary dilation) then our description of $\{U_a\}$ becomes more transparent.

This paper does not assume familiarity with previous work on dilations.

II. Analysis of the Sz.-Nagy-Brehmer isometric dilation

4. In section II we shall assume that $\{V_a\}$ acting on K exists as a Sz-Nagy-Brehmer minimal isometric dilation of $\{T_a\}$. We shall prove that (3) holds and we shall describe the behaviour of the V in terms of the given T_a .

For this purpose we define the operators D_I , \overline{D}_I for each finite subset I of J as follows: Write $I=\{1,\ldots,r\}$ for convenience, let $D_0=\overline{D}_0=1$; for each j let $\overline{D}_{j+1}=V_{j+1}\overline{D}_j-\overline{D}_jT_{j+1}$; let $D_j=V_j^*\ldots V_1^*\overline{D}_j$; and let $\overline{D}_I=\overline{D}_r,\ D_I=D_r$. We let H_I denote the subspace $[\overline{D}_IH]$ of K, with the convention: $H_0=H$.

We note that if $a \in I$ then \overline{D}_I can be expanded into a sum of addends each of the form $V(a)(V_a-T_a)T(b)$.

We shall first prove:

(4) The subspaces $\{V(m)H_I|m\in \widetilde{I},\ m\geqslant 0,\ I\subseteq J,\ I\ finite\}$ are mutually orthogonal and if \overline{K} denotes their orthogonal sum, then $\overline{K}=K$.

To prove (4) we first show that $V(m)H_1 \perp V(n)H_1$ if $m \in \tilde{I}$, $m \ge 0$, $n \in \tilde{I}$, $n \ge 0$, and $m \ne n$. It is sufficient to show that, for $x \in H$, $y \in H$,

$$E \equiv (V(n)\overline{D}_I x | V(n)\overline{D}_I y) = 0.$$

We must have for some $\beta \in I$:

$$m(\beta) > n(\beta) \geqslant 0$$
 or $n(\beta) > m(\beta) \geqslant 0$.

By symmetry we may suppose the former holds. Then, since the V_a are commuting isometries, we may even suppose that $m(\beta) > n(\beta) = 0$.

In the above expression for E, expand \overline{D}_I on the left so as to retain the factor $(V_{\beta}-T_{\beta})$ and expand \overline{D}_I on the right completely. Then E becomes a sum of addends, each of the form $(V(-b)\,V(a)(V_{\beta}-T_{\beta})\overline{x}\,|\,\overline{y})$ with $\overline{x}\,\epsilon H,\ \overline{y}\,\epsilon H,\ a,b$ positive-disjoint, $a(\beta)\geqslant 0$, and $b(\beta)=0$. Since $\{V_a\}$ is assumed to be a Sz.-Nagy-Brehmer dilation, (2) shows that such an addend has value $(V(-b)\,V(a)(T_{\beta}-T_{\beta})\overline{x}\,|\,\overline{y})=0$. Hence E=0 as required.

Next we prove that $V(m)H_M \perp V(n)H_N$ if $m \in \tilde{M}$, $m \ge 0$, $n \in \tilde{N}$, $n \ge 0$ and $M \ne N$. We may assume that for some $\beta \colon \beta \in M$, $\beta \notin N$, and we need only show that, for all $x \in H$, $y \in H$,

$$E \equiv (V(m)\overline{D}_M x | V(n)\overline{D}_N y) = 0.$$

If we expand \overline{D}_M so as to retain the factor $(V_{\beta}-T_{\beta})$ and expand \overline{D}_N completely, we express E as a sum of addends each of the form $(V(-b)V(a)(V_{\beta}-T_{\beta})\overline{x}|\overline{y})$ with a,b positive-disjoint, $a(\beta)\geqslant 0$ and $b(\beta)=0$. By (2), each such addend has value $(V(-b)V(a)(T_{\beta}-T_{\beta})\overline{x}|\overline{y})=0$, so E=0, as required.

To complete the proof of (4) we need only show that $K \subset \overline{K}$. It is sufficient to show that for $m \in \tilde{J}$, $m \ge 0$, and $x \in H$ the element U(m)x is in \overline{K} .

Write $I=\tilde{m}=\{1,\ldots,r\}$. We shall prove by induction on r that $V(m)x\in \overline{K}$ for each $x\in H$. Clearly, if r=0, $V(m)x=V(0)x=1x=x\in \overline{K}$ since $\overline{K}\supset H_\theta=H$.

Assume now that r>0 and that $V(n)x \in \overline{K}$ whenever \tilde{n} has less than r indices.

We shall use the identity

(5)
$$V^{i}W = \sum_{j=1}^{i} V^{i-j} (VW - WT)T^{j-1} + WT^{i}.$$

Let m_1 be defined by $m_1(1) = 0$, $m_1(\alpha) = m(\alpha)$ for $\alpha \neq 1$ and apply (5) with $V = V_1$, $T = T_1$, $W = V(m_1)$ and i = m(1). We obtain

$$V(m)x = \sum_{j=1}^{i} V_{1}^{i-j} \left(V_{1}V(m_{1}) - V(m_{1})T_{1} \right) T_{1}^{j-1}x + V(m_{1})T_{1}^{m(1)}x.$$

By the inductive assumption, $V(m_1)y \in \overline{K}$ when $y = T_1^{m(1)}x \in H$, so it is sufficient to show that $V_1^{s_1} \left(V_1 V(m_1) - V(m_1) T_1 \right) x \in \overline{K}$ for all $s_1 \geqslant 0$ and all $x \in H$.

Now for each $u=1,\ldots,r$ let $m_u(\alpha)=0$ if $\alpha=1,\ldots,u$, and let $m_u(\alpha)=m(\alpha)$ otherwise. By induction on u, we need only show for a single u $(1\leqslant u\leqslant r)$:

$$V_1^{s_1}...V_u^{s_u}(V(m_u)\overline{D}_ux)\epsilon \overline{K}$$
 for all $x \epsilon H$ and $s_i \geqslant 0, 1 \leqslant i \leqslant u$.

But for u=r, $V(m_r)=V(0)=1$ and $\bar{D}_r x=\bar{D}_I x \in H_I$ so $V_1^{s_1} \dots V_r^{s_r} \bar{D}_I x \in \bar{K}$. This completes the proof of (4).

- (6) (i) $V_1 \dots V_r x$ is the orthogonal sum of its projections onto the subspaces H_M , M varying over all subsets of I; its projection onto \overline{H}_I is $\overline{D}_I x$;
 - (ii) $(P_I x | x) = \| projection \text{ of } V_1 \dots V_r x \text{ onto } H_I \|^2$;
 - (iii) The relation $W_I P_I^{1/2} x = projection$ of $V_1 \dots V_r x$ onto H_I determines a linear isometric mapping W_I of [range of P_I] onto H_I ;
 - (iv) $V_1 \dots V_r x = \sum \bigoplus W_M P_M^{1/2} T(I-M) x$, where T(I-M) denotes the product of the T_a for which $a \in I-M$ (by convention: $T(\emptyset) = 1$).

Proof of (i). We first prove identity

(7)
$$V_1 \dots V_r = \sum (\overline{D}_M T(I - M) | M \subset I)$$

(I is denoted $\{1, \ldots, r\}$ for convenience). If r = 0, $I = \emptyset$, and (7) holds trivially; if (7) holds for some r, then

$$\begin{split} V_1 \dots V_{r+1} &= \sum \left(V_{r+1} \overline{D}_M T(I_r - M) | M \subset I_r \right) \\ &= \sum \left(V_{r+1} \overline{D}_M - \overline{D}_M T_{r+1} \right) T(I_r - M) | M \subset I_r \right) + \\ &+ \sum \left(\overline{D}_M T_{r+1} T(I_r - M) | M \subset I_r \right) \\ &= \sum \left(\overline{D}_M T(I_{r+1} - M) | M \subset I_{r+1} \right). \end{split}$$

Thus, by induction, (7) holds for all finite I. But for $x \in H$, $\overline{D}_M T(I-M)x \in H_M$ and, by (4), the subspaces H_M , $M \subset I$, are mutually orthogonal; (i) now follows.

Proof of (ii). From (i) we deduce:

$$E \equiv \|\operatorname{Projection} \ \operatorname{of} \ V_1 \dots V_r x \ \operatorname{onto} \ H_I\|^2 = (\overline{D}_I x | \, V_1 \dots V_r x) = (D_I x | \, x).$$

Since $\{V_a\}$ is a Sz.-Nagy-Brehmer isometric dilation, $(D_Ix|x)$ may be evaluated by expanding D_I and then replacing each V_a^* by T_a^* . This will show that $E = (P_Ix|x)$. This proves (ii) and this establishes the necessity of condition (3).

Proof of (iii). By (i) and (ii), for arbitrary $x \in H$, $\overline{D}_I x$ is the projection of $V_1 \dots V_r x$ onto H_I and $||\overline{D}_I x|| = ||P_I^{1/2} x||$. Since $[P_I^{1/2} H]$ = [range of P_I] and $[\overline{D}_I H] = H_I$, (iii) follows.

Proof of (iv). This follows from (7), because of (iii).

- **6.** We can now describe the Sz.-Nagy-Brehmer minimal isometric dilation $\{V_a\}$ acting on K in terms of the given $\{T_a\}$ as follows:
 - (i) K itself is the orthogonal sum of subspaces

(8)
$$K = \sum \bigoplus (H_{I,m} | m \in \tilde{I}, \ m \geqslant 0, \ I \subset J, \ I \ \text{finite}),$$

where each $H_{I,v}$ is the map by an isometry $W_{I,v} = V(v)W_I$ defined on $\lceil P_I H \rceil$.

(ii) The behaviour of each V_{β} on K can be described as follows: If $\beta \in I$, then V_{β} on $H_{I,v}$ coincides with $W_{I,v'}(W_{I,v})^{-1}$ where $v'(\alpha) = v(\alpha)$ if $\alpha \neq \beta$ and $v'(\beta) = v(\beta) + 1$.

But if $\beta \notin I$ then write I' for $\{\beta, \alpha \mid \alpha \in I\}$. If $y \in H_{I,v}$ and y is of the form $W_{I,v}P_I^{1/2}x$ with $x \in H$ (such y are dense in $H_{I,v}$), then $V_{\beta}y = W_{I',v}P_I^{1/2}x + W_{I,v}P_I^{1/2}T_{\beta}x$, where $v'(\alpha) = v(\alpha)$ if $\alpha \in I$ and $v'(\beta) = 0$. By continuity, these relations determine $V_{\beta}y$ for all $y \in H_{I,v}$.

We note: in the preceding paragraph, V_a is determined uniquely, that is, if $P_I^{1/2}x_1 = P_I^{1/2}x_2$, then $P_I^{1/2}x_1 = P_I^{1/2}x_2$ and $P_I^{1/2}T_{\beta}x_1 = P_I^{1/2}T_{\beta}x_2$. For (setting $x = x_1 - x_2$) we have in turn:

$$P_I^{1/2}x = 0, \quad (P_I x | x) = \|P_I^{1/2}x\|^2 = 0, \\ 0 \leqslant (P_I x | x) = (P_I x | x) - (T_\beta^* P_I T_\beta x | x) = -(P_I T_\beta x | T_\beta x).$$

Since $P_I\geqslant 0$, it follows that $P_IT_{\beta}x=0$, hence $P_{I'}x=0$ and $\|P_I^{I'2}T_{\beta}x\|^2=(T_{\beta}^*P_IT_{\beta}x|x)=0$, $P_I^{I'2}T_{\beta}x=0$.

III. Existence and uniqueness of the Sz.-Nagy-Brehmer minimal isometric dilation

- 7. It is clear from sections 5, 6 that if $\{T_a\}$ possess a Sz.-Nagy-Brehmer minimal isometric dilation $\{V_a\}$ acting on some $K \supset H$, then the condition (3) holds and K and $\{V_a\}$ are determined uniquely (to within a unitary isomorphism).
- 8. On the other hand, section 6 indicates how K and $\{V_a\}$ can be constructed if (3) holds. Simply choose K to be the orthogonal sum of subspaces $K = \sum \bigoplus (H_{I,v}|v\,\epsilon\,\tilde{I},\,v\geqslant 0\,,\,\,I\subset J\,,\,\,I$ finite) with each $H_{I,v}$ a copy of $[P_IH]$, all subspaces $H_{\theta,v}$ to be interpreted by convention, to be the single space $H_{\theta} = H$.

Then for each finite, non-empty $I \subset J$ and for each $v \in \tilde{I}$, $v \ge 0$, choose a fixed, but arbitrary, isometric mapping $W_{I,v}$ of $[P_IH]$ onto $H_{I,v}$ (we adopt the convention: $W_{\theta,v} = 1$).

Finally, for each $\beta \epsilon J$ we define an operator V_{β} on K as follows. Let I be an arbitrary finite subset of J, possibly empty, and let $v \epsilon \tilde{I}$ with $v \geqslant 0$.

If $\beta \in I$ (then $I \neq \emptyset$), define V_{β} on $H_{I,v}$ to coincide with the isometry $W_{I,v'}(W_{I,v})^{-1}$ where v'(a) = v(a) if $a \neq \beta$ and $v'(\beta) = v(\beta) + 1$.

If $\beta \in I$ (then possibly $I = \emptyset$), write I' for $\{\beta, \alpha \mid \alpha \in I\}$. Now if $y \in H_{I,v}$ and if $y = W_{I,v}P_I^{1/2}x$ for some $x \in H$ (such y are dense in $H_{I,v}$) then set

$$V_{\beta}y = W_{I,v}P_{I}^{1/2}T_{\beta}x + W_{I',v'}P_{I'}^{1/2}x,$$

where v'(a) = v(a) for $a \in I$ and $v'(\beta) = 0$. Then by continuity define $V_{\beta}y$ for all $y \in H_{I,v}$, and then by linearity and continuity define $V_{\beta}y$ for all $y \in K$.

It remains to verify that these relations actually determine each V_{β} uniquely on K, that $\{V_a\}$ are commuting isometric operators on K and they are a Sz.-Nagy-Brehmer minimal isometric dilation of $\{T_a\}$.

But if one uses the arguments used in sections 5, 6 this verification offers no difficulties.

IV. The minimal unitary dilation of commuting isometries

- 9. In section IV we suppose $\{V_a\}$ is a given family of commuting isometries on H (so $V_a^*V_a=1$ for all a). For each $m \in \tilde{J}$ with $m \geqslant 0$ set $A(m)=H \ominus V(m)H$.
- 10. Now suppose $\{U_a\}$ acting on $K \supset H$ is a minimal unitary dilation of $\{V_a\}$. Set B(m) = U(-m)A(m) and let B denote the subspace of K spanned by $\{B(m) | m \in \widetilde{J}, m \ge 0\}$. We shall now prove:
- (9) If $n \ge m$ then $B(n) \supset B(m)$.
- · (10) $B \perp H$ and $K = B \oplus H$.

Proof of (9) and (10). Let $p \in \tilde{J}$ be defined by p(a) = n(a) - m(a) for all a. Then, since $U_a x = V_a x$ for $x \in H$,

$$\begin{split} B(m) &= U(-m) \big(H \ominus V(m) H \big) = U(-m) H \ominus H \\ &= U(-n) V(p) H \ominus H \subset U(-n) H \ominus H \\ &= U(-n) \big(H - V(n) H \big) = U(-n) A(n) = B(n). \end{split}$$

This proves (9) and since $B(m) = U(-m)H \ominus H$, so $B(m) \perp H$ for all $m \in \tilde{J}$, $m \ge 0$. Hence $B \perp H$.

Now if $m \in \tilde{J}$, U(m) = U(-b)U(a) for some $a \in \tilde{J}$, $b \in \tilde{J}$ with $a \ge 0$, $b \ge 0$. Then $U(m)H = U(-b)V(a)H \subset U(-b)H = B(b) + H \subset B + H$. So $B+H \supset U(m)H$ for all $m \in \tilde{J}$ and since B+H is closed, so $B+H \supset [\{U(m)H \mid m \in \tilde{J}\}] = K$. This implies, B+H = K and proves (10).

- 11. We can now describe K and $\{U_a\}$ as follows (using identifications).
- (i) $K \ominus H$ is spanned by subspaces $\{B(m) | m \epsilon \tilde{J}, m \geqslant 0\}$ where each B(m) is mapped onto A(m) by an isometric mapping $W_m = U(m)$ extended to an isometric mapping of $B(m) \oplus H$ onto H by defining $W_m x = V(m) x$ for $x \epsilon H$.

 $x_1 \epsilon B(m) + H$ is to be identified with $x_2 \epsilon B(n) + H$ if and only if $V(n)W_m x_1 = V(m)W_n x_2$.

(ii) For each $\beta \in J$, and $y \in B(m) + H$, $U_{\beta}y$ coincides with $W_m^{-1}(V_{\beta}W_my)$. By continuity, this determines $U_{\beta}y$ for all $y \in B + H$.

Note that in (ii), $U_{\beta}y$ is determined uniquely. For if $y=x_1\epsilon B(m)+H$ and $y=x_2\epsilon B(m)+H$, then $V(n)W_mx_1=V(m)W_nx_2$, so $V_{\beta}V(n)W_mx_1=V_{\beta}V(m)W_nx_2$ and hence $V(n)V_{\beta}W_mx_1=V(m)V_{\beta}W_nx_2$, which implies that $W_m^{-1}V_{\beta}W_mx_1$ is identified with $W_n^{-1}V_{\beta}W_nx_2$.

12. The relations established in section 11 show that K and $\{U_a\}$ are determined uniquely by $\{V_a\}$. But they also indicate how to show the existence of K and $\{U_a\}$ by actual construction.

Simply choose, for each $m \in \tilde{J}$ with $m \ge 0$ a copy B(m) of A(m) with $B(m) \perp H$ and an isometric mapping W_m of B(m) onto A(m). Extend W_m to an isometric mapping of B(m) + H onto H by defining $W_m x = V(m)x$ for $x \in H$.

If $y_1 \in H$, $y_2 \in H$, identify $W_m^{-1}y_1$ with $W_m^{-1}y_2$ if and only if $V(n)y_1 = V(m)y_2$. After such identifications the set union of H and all B(m), form a (possibly incomplete) inner-product space $K' \supset H$. On K' define the operator U_β : if $y \in B(m) + H$ so $y = W_m^{-1}x$ for some $x \in H$, define $U_\beta y$ to be $W_m^{-1}V_\beta x$.

There is no difficulty in proving that the extensions of $\{U_a\}$ to the completion of K' form a minimal unitary dilation of $\{V_a\}$.

13. The use of identifications in sections 11 and 12 can be avoided if J is finite and, by use of suitable (transfinite) induction, if J is infinite, as follows.

Assume now that $J=J_{\varOmega}$ consists of all ordinal numbers $\alpha<\varOmega$ for some \varOmega (finite or infinite) and let J_{γ} (for $\gamma\leqslant\varOmega$) consist of all $\alpha<\gamma$.

If $\{U_a\}$ acting on K is a minimal unitary dilation of $\{V_a\}$, let $K_{\gamma} = [\{U(m)H | m \in \widetilde{I_{\gamma}}\}]$. Then $U_{\beta}K_{\gamma} \subset K_{\gamma}$ for all $\beta \in J$ and each U_{β} is isometric on K_{γ} . Moreover, U_{β} is unitary on K_{γ} for $\beta < \gamma$ and the restrictions to K_{γ} or $\{U_{\beta} | \beta < \gamma\}$ are a minimal unitary dilation of $\{V_{\beta} | \beta < \gamma\}$. Finally, $K_{\beta} \subset K_{\gamma}$ if $\beta \leqslant \gamma$.

So $\{U_{\alpha}\}$ on K can be obtained by step-by-step extension of all $\{U_{\alpha} | \alpha < Q\}$ from K_{β} to $K_{\beta+1}$.

Thus K_1 is of the form $H \oplus \sum_{i=1}^{\infty} \oplus E_i$ where each E_i is a copy of $H \ominus T_1H$; there exists an isometric mapping $W_i = U_1^i$ which maps E_i onto $H \ominus T_1H$; U_1 is unitary on K_1 under the relations $U_1 x = V_1 x$ if $x \in H$ and $U_1 W_i^{-1} x = W_{i-1}^{-1} x$ for $x \in H \ominus T_1H$ with the convention $W_0 = W_0^{-1} = 1$. On K_1 , the extended V_β ($\beta \in J$) satisfy the relations $V_\beta W_i^{-1} x = W_i^{-1} V_\beta x$ where W_i^{-1} is to be extended to all $x \in H$ by the relation $W_i^{-1} = W_i^{-1} P_{H \ominus T_1 H} + W_{i-1}^{-1} P_{H \ominus T_1 H} V_1^* + \dots + W_1^{-1} P_{H \ominus T_1 H} (V_1^*)^{i-1} + (V_1^*)^{i}$.

It is clear how to use this procedure to show the existence of K and $\{U_{\alpha}\}$ by actual construction.

References

- [1] S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Scientiarum Mathematicarum, Szeged, 22 (1961), p. 106-111.
- [2] I. Halperin, The unitary dilation of a contraction operator, Duke Mathematical Journal 28 (1961), p. 563-571.
- [3] Sz.-Nagy-Brehmer dilations, Acta Scientiarum Mathematicarum, Szeged (to appear),
- [4] B. Sz.-Nagy, Prolongements de transformations de l'espace de Hilbert qui sortent de cet espace, Appendix to the book Leçons d'analyse fonctionnelle by F. Riesz and B. Sz.-Nagy (3rd Edition, Budapest 1955).

Reçu par la Rédaction le 6.3.1962