

On positive Banach halfalgebras without identity

hν

S. BOURNE (Berkeley)

- 1. Introduction. In a recent number of this journal [1], we presented a theory of positive commutative Banach halfalgebras with identity. It is the purpose of this note to remove the assumption of an identity. We prove that if H is a positive commutative Banach halfalgebra without identity, then the quotient halfring of H by a regular maximal ideal is the halffield of non-negative real numbers \mathbf{R}^+ , and, there exists a homomorphism of H into the halfalgebra of all non-negative continuous functions on a locally compact space.
- 2. Regular ideals. In our paper on the semiradical of a semiring [3], we introduced an important concept of semiring theory, the algebraic closure of an ideal:

Definition 1. The algebraic closure I^- of an ideal I is the ideal of all elements of the semiring which are congruent to 0 modulo I.

The algebraic closure consists of all elements which satisfy an equation s+i=j, for some i,j in I. Immediately, $I^-=I$, and $I\subseteq I^-$. If $I=I^-$, then I is said to be *closed*. Any congruence modulo I^- is equivalent to congruence modulo I [3].

Definition 2. An algebraically closed ideal I of a halfring H is called regular if H/I contains an identity.

LEMMA. If S is a commutative simple semiring with zero, then either $S^2 = 0$, or S is a semifield.

Proof. Since S is commutative and simple, then either xS=0, or xS=S, for any $x\neq 0$.

COROLLARY. If η is a proper homomorphism of a commutative halfring H into a halffield F, then the kernel of η is a regular ideal.

Proof. The kernel is a maximal and algebraically closed ideal, for F is simple. Since $\eta^a(x) \neq 0$, when $\eta(x) \neq 0$, the lemma implies that $H/\eta^{-1}(0)$ is a halffield. Thus the kernel is regular.

3. Banach halfalgebras. In [2] we introduced the concept of a Banach halfalgebra:

Definition 3. A set H of elements s, t, \ldots is a Banach halfalgebra if and only if

- (1) H is a halfalgebra over the halffield of non-negative reals R^+ .
- (2) H is a semilinear space with invariant metric d(s, t).
- (3) $||st|| \le ||s|| ||t||$, where ||s|| = d(s, 0), for $s, t \in H$.
- (4) H is complete with respect to this norm.

In [2] we proved that a Banach halfalgebra H is embeddable in the Banach algebra \Re over the reals with norm

$$\|v(s_1, s_2)\| = \inf_{(u, v) \in \nu^{-1} \nu(s_1, s_2)} \|(u, v)\|.$$

Let $\mathfrak{M}_{\mathfrak{R}}$ be the set of regular ideals of \mathfrak{R} and H be embedded in \mathfrak{R} . We denote the natural homomorphism of \mathfrak{R} onto \mathfrak{R}/M , $M_{\epsilon}\mathfrak{M}_{\mathfrak{R}}$, by φ_{M} . If we hold s fixed and let M vary over $\mathfrak{M}_{\mathfrak{R}}$, we obtain a complexe valued function $f_{s}(M) = \varphi_{M}(s)$, defined on $\mathfrak{M}_{\mathfrak{R}}$.

Definition 4. A Banach halfalgebra is *positive* if $f_s(M) \neq -1$ for all $s \in H$ and $M \in \mathfrak{M}_\mathfrak{R}$.

Słowikowski and Zawadowski [4] gave a definition of a positive semiring which implies ours for a commutative Banach halfalgebra. As in our paper [2], we can prove for a positive commutative Banach halfalgebra $f_s(M)$ is a non-negative real number for $s \in H$ and $M \in \mathfrak{M}_{\mathfrak{R}}$. For each $M \in \mathfrak{M}_{\mathfrak{R}}$ the restriction of φ_M to H defines a proper homomorphism of H into the halffield \mathbf{R}^+ of non-negative reals. According to the corollary, this homomorphism defines a regular maximal ideal M^+ of H, such that $f_s(M^+) = f(M)$, for all $s \in H$. Let \mathfrak{M}_H be a set of regular maximal ideals of H. As in [2] we set up a 1-1 correspondence between the sets \mathfrak{M}_H and $\mathfrak{M}_{\mathfrak{R}}$ such that $f_s(M^+) = f_s(M)$ for any $s \in H$. Since $f_s(M)$ is a non-negative real number, we have

THEOREM 1. If H is a positive commutative Banach halfalgebra without identity, the quotient halfring of H by a regular maximal ideal is the halffield of non-negative reals.

Topologizing after Gelfand yields

Theorem 2. If H is a positive commutative Banach halfalgebra without identity, then there exists a homomorphism of H into the halfalgebra $\mathbf{R}^+(\mathfrak{M}_H)$ of all non-negative continuous functions on a locally compact space.

Example. Let H be a locally compact commutative halfgroup with property F [5]. Rothman [5] proved that H is embeddable in a locally compact commutative group G. Let $L_1^R(G)$ be the group algebra of real-valued measurable functions on G and $L_1^{R+}(G) = \{f: f \in L_1^R(G) | f(g) = 0, g \in G \text{ and } g \notin H\}$. Then $L_1^{R+}(G)$ is a halfalgebra without identity. (added in proof, 21, 6. 1962).

Bibliography

- [1] S. Bourne, On normed semialgebras, Stud. Math. 21 (1961), p. 45-54.
- [2] On Banach *-semialgebras, ibid. 21 (1962), p. 207-214.
- [3] -and H. Zassenhaus, On the semiradical of a semiring, Proc. Nat. Acad. Sci. 44 (1958), p. 907-914.
- [4] W. Słowikowski and W. Zawadowski, A generalization of the maximal ideals method of Stone and Gelfand, Fund. Math. 42 (1955), p. 215-232.
- [5] N. T. Rothman, Embedding of topological semigroups, Math. Ann. 130 (1960), p. 197-203.

UNIVERSITY OF CALIFORNIA, BERKELEY

Reçu par la Rédaction le 4.5.1962