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The determinant theory of generalized Fredholm operators
by

A. BURACZEWSKI (Warszawa)

In 1952 Lezanski [3], [4] generalized the determinant theory over
the linear equations with operators of Fredholm type in Banach spaces
and Sikorski [8]-[14] developed and modified this theory by introducing
the notion of determinant system. Independently of Lezanski and Si-
korski, similar theories were obtained by Ruston [6], [7] and Grothen-
dieck [2]. However, their theories are more complicated and less general
than Lezanski’s theory.

So far the determinent theory has been applied only to Fredholm
operators. The main purpose of this paper is a generalization of this
theory over o larger class of operators, called generalized Fredholm
operators (see p.267). Formulae obtained for solutions are analogous
to the formulae in the Fredholm case.

The paper consists of an algebraical and an analytical part. The
former contains & discussion of properties of generalized Fredholm oper-
ators and determinant systems in arbitrary linear spaces. The analytic-
2l part concerns determinent systems for operators of the form S4-T
in Banach spaces where § is @ fixed generalized Fredbolm operator of
order zero (see . 292) and T is any quasi-nuclear operator (see p. 267).
The analytical part can be applied in the theory of singular integral
equations. »

The notation used here is not traditional. It was adopted from pa-
pers of Sikorski for convience because it enables us to caleulate in a simple
and mechanical way.

The author is pleased to express his gratitude to Professor Sikorski
for suggesting this problem and for patient supervision of the research
presented in this paper, which is the author’s doctoral dissertation.

1. Operators. We shall consider two fixed linear spaces = and X
over the same real or complex field &. The letters &, %, { (with indices,
if necessary) always denote elements of =, the letters x,y, # denote ele-
ments of X, and a,b, ¢ — scalars of &. Every mapping into.&F will be
called a functional.
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Following Sikorski [10] we suppose that & and X are conjugate,
i. e. there exists a bilinear functional on =X X whose value at the point
(£, z) is denoted by &z and which satisfies two additional conditions:

(a) if &z = 0 for every £e¢ 5, then 2z = 0;

(a') if & = 0 for every weX, then & = 0.

Let 2 be the class of all endomorphisms A in X such that the follow-
ing condition is satisfied:

(b) for every fixed £e = there exists an neZ such that &(dx) = g
for every weX.

It is easy to see that every endomorphism A <2 induces an adjoint
one in & which will also be denoted by 4, and whose value at the point £
will be denoted by £4. Namely £4 is the only element # satisfying (b).

By definition of £4,

(b’) for every fixed weX there exists a yeX such that (éd)x = &y
for every &e£.

Endomorphisms 42 can be interpreted as bilinear functionals on
ExX as follows:

1 (Ao = E(da) = (Ed)o.

It is obvious that U is a ring. Instead of &z, we can write &Iz, where I
is the identity operator.

If &z =0, then &, = are said to be orthogonal.

For any A< let us introduce the following notation:

Y(4)={dz:0eX}, Z(A)={w: Az =0, zX},
HY(A) = {£4:£eH), F(A)y ={£: (A =0, £e 5},
dimZ = the algebraic dimension of a subspace Z of X or 5.

For fixed &, and x,, let z,- £, denote the one-dimensional operator
K < defined by the formula ()

Ko = @y Egm.
Thus the value of its adjoint endomorphism at & point £ 'is
(K = fﬁo' Eo-

Any finite sum of one-dimensional operators

K = ﬁmi-fi

() z* &ox means the product of the element by the scalar £yx.

—_— e
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is called a finitely dimensional operator because the sets Y (K) and
% (K) are at most n-dimensional.

Observe that if K is a finitely dimensional operator, then so are AK
and KA for every A<, and

AK = ZnJAmi-Ei,
p=1

KA = Do £A.

i=1

n’
In particular, if X' = Y @;-&, then
i=1

@) KK = ' > (&af), &

i=1 j=1
An operator B is said to be a quasi-inverse (*) of A, if
AB4 = A, BAB=B.
Clearly, if B is a quasi-inverse of 4, then A4 is a quasi-inverse of B.
2. Definition of the generalized Fredholm operator. A linear oper-

ator (bilinear functional) A e is said to be a generalized Fredholm oper-
ator if:

(go) AimZ(A4) < oo, dimZ (4) < oo}

(g) the equation Az = x, has a solution » if and only if ézy =0
for every £eZ(4);

(g') the equation £4 = &, has a solution £ if and only if &z =0
for every weZ(4).

The integers (4) = min (dim Z(4), dimZ(4)) and d(4) = dim Z(4)
—dim 2 (4) will be called the order and the defect of A, respectively.

If d(4) = 0, then A is said to be a Fredholm operaior.

Let 2y, ...,2, and {;, ..., {, be the b:iases of the subspaces Z(4)
and Z(4) respectively.

There exist linearly independent elements oy, ..., , such that (*)
(3) ney =20y for 4,j=1,...,m
and every element £¢5 is uniquely represented in the form
(3 E=n'+aym+...+aym, Where '@ (4).

Similarly there exist linearly independent elements %y,..., ymeX
such that
(4) Gy =06y for 4, j=1,...,m,

(2) For the properties of this notion see Sikorski [10].

(3) As usual §;; means the Kronecker symbol.
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and every element w¢X is uniquely represented in the form

#) B =y'+ay+..+ Y, Where Y e¥(4).

=

If £ and X are conjugate and finitely dimensional, then their di.
mensions are equal and every endomorphism in X is & Fredholm operator.
Thercfore generalized Fredholm operators with a non-vanishing defect
can exist only in infinitely dimensional spaces.

Now let X and 2 = X* be Banach spaces (). Let us denote by ¢z
the value of a functional £¢ 5 at a point weX, and by 2 — the elass of
all bounded endomorphisms defined on X.

Following Atkinson [1], one of the conditions (g) or (g’) in the de-
finition of the generalized Fredholm operator is a consequence of the re-
maining conditions, and thereforc it can be omitted.

3. Properties of generalized Fredholm operators. Now we shall
give some known properties of generalized Fredholm operators. The
proof of some of them is adopted from the paper of Atkinson [1].

(1) If AU is a generalized Fredholm operator and Ce2l has the in-
verse (¥, then CA and AC aré gemeralized Fredholm operators and
"(CA} =r(AC) =r(4), d(04) = 4(4A0) = a(d).

The proof is obvious.

(i) Bvery generalized Fredholm operator A< Tas a qUasi-inverse
BeW. B is also a generalized Fredholm operator and r(B) = r(A), d(B)
= —@(4). :

To prove this statement we define two sefs:
X, = {@: 7% =05 ¢ =1,...,n; veX},
Yo={w:lim=0;i=1,...,m; zeX},
W]/lere the elements 7, ..., N 20d Ly, ..., L, satisty the conditions (3),
(3), anfi (4), (4'). It follows from the definition of 4 that Y, = Y(4)
It is easy to see that the following equationis hold:
n
X, = {w': @ = wuzzi-mw; weX},
i=1

Y, ='{m’: @’ =w—2yi-gw; weX}.
i=1

Let A’ denote the operator A reduced to the subspace X,, and for

an e ¥, let '
n
Z%’m“fofxo-
=1

.
T = py—
- 1=

N X
() X* means the space of all linear hounded functionals defined on X.
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“Obviously, 4'z’ = x,, so it follows from this immediately that A’
is & linear mapping of X, onto ¥,. But this mapping is a one-to-one map-
ping, for otherwise for an element 2, Y, there would exist two elements z',
2" eX, such that ' # 2" and 4’2’ = A'»"” = x,. Thus, #’—2" is 2 linear
combination of z,,...,2,, and it belongs to X,, which iz impossible.
Thus, there exists A’ (the inverse of A’) which is 2 lineer mapping
of X, onto Y,.

The mapping B, defined by the formula

N
By zAf'l(w_ yi'éi"ﬂ)!
. i=1
is @ linear mapping (°) of X onto X,. It is easily seen that y,,...,¥,, form
a basis of the null space Z(B) and that #,(Bz) = 0 for each zeX and
i=1,...,n
The following formulae hold:

(5) AB =I— }'y;¢;,
=1

(59 BA =1— Y4y,
=1

Formula (5) follows immediately from the definition of the inverse.
Formula (5’) ean be proved as follows:

m

Bds = A’ (Ao~ Yy, {ids) = A (4q)

i=1

T n
=A'"4 (m— zilmm) = w-—23i~n,-m.
i=1 i=1
Since #%;(Bx) = 0 for every xe¢X and ¢=1,...,%, we obtain by
(3") and (5)
" .
&(B) = ("7'+2“H7¢)B“’ = (5~—25iy,.-¢,~)m =nxr for every weX,
i=1 i=1
i. e. B satisfies condition (b). Thus, it belongs to the class 2.

It is easy to verify that B is a quasi-inverse of 4 and that B is a gen-
cralized Fredholm operator such that »(B) = r(4) and d(B) = —d(4).
This completes the proof.

I Be? is a fixed quasi-inverse of a generalized Fredholm operator
A ?, then for every fixed basis 2,,...,2,, and &;, ..., {pn, of Z(4) and

(5) If X is a Banach space and 4 is bounded, then B is also bounded.
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Z(4) respectively, there exist elements 7y, ..., %,, and ¢, ..., ¥,, uni-
quely determined, such that formulae (5), (5'), and (3), (4) hold.
In particular, if r(4) = 0, d(4) = d > 0, then

(8) AB =1,
d

(6) BA=1I— YNy,
4=1

Observe that in case 7(4) = 0 and d(4) = d > 0, the opetator 4
transforms the space X onto X, and the adjoint operator 4 transgforms
Z into £ in a one-to-one way.

Similarly, if 7(4) = 0 and d(4) < 0, then the operator A trans-
forms X into X in a one-to-one way, and the adjoint operator A4 trang-

formg & onto 5.

If 7(A) = 0 and d(4) = 0, then the Fredholm olierator A has an
inverse A1

(ii) Let 2y, ..., 2, and (i, ..., Ly, be all Uinearly independent solutions
of the equations Az = 0 and EA = 0, respectively, and let B2 be a quasi-
inverse of the generalived Fredholm operator A <.

EBuery solution of the equation

(7) Az = wy, where m, is orthogonal to Cayovvy s

is of the form

(7") & = a2 +...+ 6,2, +Ba,;

B, is the only solution of (7) orthogonal to TR
Every solution of the equation

(8) A = &, where & is orthogonal to Biyeny By

s of the form

(8’) & =a1il+--~'ﬁ‘a'mCm+foB;

£,B is the only solution of (8) orthogonal to Yiyeoey Ym-

In f.a,ct, multiPlying (7) from. the left side by B and applying (5'),
we o.bta,m (7). It is easy to prove (by leading to a contradiction) that
B, is the only solution of (7) orthogonal to Ny vy oe .

Snm.ﬂa,rl},r, multiplying (8) from the right side by B and applying (5)
we obtain (8’). Analogously we verify that B is the only golution of (8)
orthogonal to ¥, ..., ¥,. This completes the proof.

(iv) AU is.a’geneml'ized Fredholm operator if and only if there ewist
By, ByeW and finitely dimensional operators K,, K,e? such that

®) 4B, ~I_x,
(9 BA=I-K,.

©
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Necessity is obvious. It is sufficient to take a quasi-inverse Be2
of A instead of B, and B, and to apply (5) and (5).

Sufficiency. Let By, B,e be such that formulae (9) and (9°) are
satisfied. It follows from this that condition (g,) is satisfied.

To prove condition (g) let us take an element x,e X such that éz, = 0
for each £eZ(A). Let x,, ..., 2, form a basis of Y (K,), and let X, be
the set

(10) X, = {w: 2eY(K,) and z¢Y (4)}.
There exist linearly independent elements #y,...,7,, such that
(11) K, = a7,
i=1

Since X, is a linear subspace contained in Y (K,), the basis of X,
can be denoted by =z, ..., %, where m < n. By (9), (10), and (11), there
exists an element x¢X such that

m
Az = %—Z%'ﬁiwu-
. i=1
The elements 7; (f = 1,...,m) satisfy the condition 7,4 = 0. For
otherwise there exists an element ZeX such that Az = 0. Thus by (9)

m
the element 3 x;-7,4% belongs to ¥ (4). But this is impossible because
i=1

i=
it contradiets the definition of X,. Hence Az = x, and the condition (g)
iy satisfied. Proof of condition (g’) is analogous. This eompletes the proof.

COROLLARY. If A,, A, and products A,A,, A,A; are generalized
Fredholm operators, then A, and A, are also generalized Fredholm operators.

In fact, let B; and B, be quasi-inverses of 4,4, and 4,4,, respecti-
vely. By (5) and (5') we obtain

(Bid) 4, =I—K, and Ay (4,B,) =I—K,,

where K, and K, are finitely dimensional. Hence A4, is a generalized
Fredholm. operator. The proof for 4, is analogous.

It is not enough to suppose that one of the products is a generalized
Fredholm operator, as the following example shows.

Let X be the space ¢ of all convergent sequences {a,} and let = be

the space 1 of all sequences {a,} such that > la,| <oco. We define the
i=1
operators A, and 4, on X as follows:
Az = (a,0g,...) and A,z =(6:,0,a,0,...),

where » = (a, s, ...).
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It is easy to verify that A4, = I but d(4,) = Joo and a(4,)
= —oo, Neither 4, nor 4, are generalized Fredholm operators.

(v) If Ay, 4,2 are generalized Fredholm operators, then A,A, i
also a generalized Fredholm operator and d(A 4,) = d(4,)+d(4,).

The first part of the theorem. follows from (8), (8), and corollary.

To prove the second part let us consider the equations: 4,4,z =,
E4, 4, = 0.

Obviously, we can take for the basis of Z(4,4,) elements which
belong either to the basis of Z(4,) or to the basis of the linear subspace
X, = {x: £Y(4,)~Z(4,)}. So,

AimZ(A,4,) = dimZ(4,)+dim X, .

Similarly, we can take for the basis of Z(4,4,) clements which
belong either to the hasis of 2 (A4;) or to the basis of the linear subspace
8 ={&:Y(4)~Z(4,)}.

Thus:

dim Z (4,4,) = dim Z(4,)+dim 5,.

Let 21, ..., %, and £y, ..., & denote the bases of Z(4,) and 2(4,),
respectively. It follows from the definition of X, that each element xe X,

i3
is of the form @ = }a;2, and satisfies the eondition
i=1

ki3 .
(12) Naliz =0 for j=1,..,k.
i=1

Analogously it follows from the definition of 5, that each element
L

£e &, is of the form & = Y'b,Z, and satisfies the condition
i=1
k
(12 Dbl =0 for j=1,... 0.
q=1

Let r denote the rank of the matrix (Z;,),., ...k Of the system of
n

I=1,

=l .,
equations (12). The rank of the analogous matrix of the system (12')
is also 7. Since ;¢ X, if and only it Gz =0 ( J=1,..., k) and similarly,
e By it and only if Lz, =0 (j =1, ..., ), it is not difficult to deduce
that dim X, = n—» and dim 5 = % —». Hence (A A,) = @(A,) - d(4,).
This completes the proof.

(vi) If A is a generalized Fredholm operator and K is finitely dimen-

sional, then A +K is also a generalived Fredholm operator and

(13) A(A+E) = a(4).

©
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To prove that A+ K is a generalized Fredholm operator it is suffieient
to multiply A+K from the left and the right side by a quasi-inverse
of A and to apply (iv). :

Formula (18) follows immediately from (v) and from the fact that
every operator of the form I--K,(°), where K, is finitely dimensional,
i a Fredholm operator; so we have

d(A-+K)+a(B) =0, d(Ad)+d(B)=0.

Hence, d(A-+K) = d(4).

(vii) If A is a generalized Fredholm operator, then A can be represented
in the form A = S+K, where 8<% is a generalized Fredholm operator
such that v(8) =0, d(8) = d(4), and K2 is finitely dimensional.

It is sufficient to consider the case d(4) = d > 0. The proof in the
case d(4) < 0 is analogous.

Let 21, ...,%.,.4 and {;, ..., be the bases of Z(A) and Z(4), res-
pectively, and let us introduce the following notation:

(14) L= Z.%-'m, &= Z%‘Q:

i=1 =1
where 5, (i =1,...,r+d) and 9, (¢ =1, ...,7) have the same meaning
a8 above;

r r

(1) K= -LE=—Yy-l, E,=—EL=— Y.

i=1 1=1

It is easily seen that

(16) AL =Z4, BL=ILB=0, LEL=1L, ZELE=2Z,

where B ig a quasi-inverse of A.
Using (5), (5'), (15) and (16), we obtain the following formulae:

(7) (A+I)(B+E) =1,
d
(17) (BHE)(A+L) = TI— D op iy
i=1

Let us write, for brevity, § = A+L and U = B+ZE. It follows
from (17) and (17’) that § is a generalized Fredholm operator such that
7(8) = 0, @(8) = d(4), and that U is a quasi-inverse of S§. Further,
by (16), we have

A = S(I4+LL) = (I+LL) 8.

Hence, A = §+4K where K = SZL = LES.

(%) For the properties of Fredholm operators, see Sikorski [10]:
Studia Mathematica XXIT. 18
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In the sequel S will always denote a fixed generalized Fredholm
operator such that »(8) =0, d(8) =d >0, and U is a fixed quasi-in-
verse of 8. The letters s, ..., s5¢ X will always denote fixed linearly in-
dependent solutions of the equation Sz =0, and wy,..., 5 — the so-
Iutions of §U = 0 such that w;s; = 6;; for 4,5 =1,...,4d.

Suppose that S47T is a generalized Fredholm operator. Observe
that

(18) r(I+0T) = r(I+TT) = r(8+T).

To prove this let us remark that S+47 = §(I4UT) and that I+ UT
and I 47U are Fredholm operators. Let us write #(S--T) = r. Then there
exist linearly independent solutions of the equation (8-+T)z = 0, say
%1y ...y %, Which are all linearly independent solutions of the equation
(I+Ul)z = 0. The elements Sz,..., Sz, are all linearly independent
solutions of (I+TU)z = 0. This completes the proof.

(viii) Let B denote a quasi-inverse of I+ UT. Let z,, ..
denote bases of Z(I4+UT) and Z (14 UT), respectively.

Elements
(19)

sHhand Ly, ..., ¢,

) Bsa

are all linearly independent solutions of the equation (S+T)x =0 and
elements

(19')

Ziyoiey 2y B8y, ...

LU, ..., 60

are all lnearly independent solutions of the equation &(S+T) = 0.

Let us write 2, = 2, for 4 = 1,..., . It is easy to see that 2, ..., 2
are solutions of (§4-T)x = 0 and that they are not solutions of Sz = 0.
Obviously, there exist linearly independent solutions Byyly onny Bppg OF
(8+T)2z = 0 such that 8; = (I UT)z,,; for j=1,...,d. Further, there

exist N1y <veyNrid Sa:'GiSfinIg (4) and such that B(I -+ U.T) = I—Z%m
{1

(see (57)). Hence, Bs; = B(I+UK)2,,; =2, for j =1,...,d. &‘;.king
any element ;U of (19'), we obtain

a
LUS+E) = Z}(I—Zsi'wi—i— UK) = Mzd‘fc}si-w,; =0
i=1

=1
because ;s =0 (i=1,...,d, and j=1,...,r). Since f, = —FUK,
sp s LA r_
1t is easy to see that ‘ZI%U = 0 implies Ya,f,= 0. Tt follows from this
= t=1

thatfthe elements (19') are linearly independent. This completes the
proof.

It is not yet known if in an arbitrary infinitely dimensional Banach
space there exists a bounded generalized Fredholm, operator S, such that

e ©
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r(8) =0, @(8,) =1. This problem is equivalent to the following. Is
every infinitely dimensional Banach spaee X isomorphic to the Cartesian
product X xX B, where R is a straight line? If such an operator S, exists,
then there exists also a generalized Fredholm operator U, such that
r(U,) =0, &(U,) = —1, and S,U, = 1. Then, repeating completely
considerations of Atkinson [1], we obtain that each bounded generalized
Fredholm operator A can be represented in the form

4 = 0(8§“+1)
provided that d(4) >0, and in the form
A = O(U;% 4T)
provided that d(4) < 0, where T' is a compact operator and C-! exists.

4. Examples of generalized Fredholm operators. Let us con-
sider the space X = ¢ and 5 =1 (see p. 271) and let 4 be defined as
follows: ‘
then Az = (ag,1, 8ay,,...).

if © = (ay, 85, ...)eX,

It is easy to see that adjoint operator A is of the form

(4 =(0,...,0,a;, a,,...), where &= (o, a,...)¢5.

Obviously, the operator A defined in such a way is a generalized
Fredholm. operator such that r(4) = 0 and d(4) = d.

Now, let X and £ — X* be Banach spaces and let R be the ring of
all bounded endomorphisms defined on X. As usual, £z is the value of
a functional £¢ & at a point zeX.

Let 3C R be an ideal congisting of operators Te«R such that I-+T
are Fredholm operators. For instance, § can be the ideal of all finitely
dimensional operators or the ideal of all compact operators.

Now lef us consider an operator SeR such that S2= 1 (S is then
said to be an involution) and two operators 4, BeR such that the follow-

ing conditions are satisfied:
and (4—B) exist;

BS—8Be3.

AB =BA, (4+B)
AS—B8A43,

Let T¢3. Then the operators (7)

(20) A+BS+T, A—BS+T,

A—8B+T, A+8B+T,

(") See Przeworska-Rolewicz [5].
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are generalized Fredholm. operators such that their defects do not depend
on T and satisfy the condition

d(A+BS) = (A +8B) = —d(A—8B) = —d(A—BS).

To prove, e.g. that A-+BS--1 is a generalized Fredholm oper-
ator, it is sufficient to note that produets (A-+BS+T)(4-—-SB) and
(A—8B)(A+BS+T) ean be represented in the form (I--7')(A2—BY
and (A2—B2)(I4T,), respectively, where Ty, T,¢S.

We ean find examples of operatiors of this type, with a non-vanigh-
ing defect, in the theory of singular integral equations.

Let L be a closed rectifiable curve in the eomplex plane and X —
the space of funetions ¢(¢) defined on L and satisfying Holder’s inequality
on L.

By Poinearé-Bertrand’s formula

(M)2 1~tf¢_, p(t)  (p(t)eX)

(where the integral is taken in the sence of Cauchy’s main value) the
linear operator S defined by the formula

1 [ e
-n:'b T—1

Sp(t) = —dr

is an involution.

Now, if the functions A (t), B(t)e X satisfy the condition A42(t) —B2(t)
# 0, and if for 4, B, in (20) we substitute operators of multiplication
by A(t) and B (%) 1'espectively, then we obtain the theory of the singular
integral equation

A f P a =t (fex),

Where, in general, the operator 4--BS has a non-vanishing defect.

5. Definition of the determinant system. Tet = and X be two
linear conjugate spaces and let 2 be the class of operators satisfying
condition (b). Using the terminology of Sikorski [10] we shall understand
by & determinant system (with a positive defect) for an operator A <2 every
infinite sequence
(21) Dy, Dy, ...
such that:

(dy) D» i8 & (2n+d)-linear  functional on £™+%x X", the value of
D, at the point (&,..., &y, 2y, ..., 3,) We denote by D, (51’ E”’*'d);

vy T
m particular, if n = 0, then D,(&,, .. -y £€4) 18 a d-linear functional;
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(dy) D, (51’ e 5"”) is skew gymmetric in £,,..., &, gand in @,..., %,

M@y, ey B
i. e. for every permutation p = (P, ..., Pu,g) of the integers 1,...,n-4d
and for every permutation q = (¢i, ..., ¢,) of the integers 1,...,7n
E ey & Eryoeny Ensd
D, (7 Pn+d) —.:sgIlP'Dn( v “*)
"(wl,...,w,, DBiy ey By |
(517 ey ‘En.;.d ) — SgD.Q'Dn(gl’ ---)§n+d),
gy s o+ 3 Vo, L1y coey Ty

respectively, where sgnp = 1, sgn g = 1, if p,q are even, and sgnp = —1,
sgn q = —1 if p, q are odd;
(d,) it D, (51" - i:“:) is interpreted as a function of & only

vey

(1 <1 < n-+d), then there exists an element z;¢ X such that

(Eu oy Eny

a -
) = §z; for every ek
Biy ooy Ty

if Du(él" - &n. “’) is interpreted as a funection of z; only (1<j <n),

Byseees Tp
then there exists an element {;¢Z such that

Ey iy Enra .
( Vo entd) ey for every  @jeX;
Lry cory Tn

(d,) there exists an integer r > 0 such that D, does not vanish iden-
tically;
(d;) the following identities hold for » =0,1,...:

n .
[79: 1Y ST . Ely i )

(0.) Do = N(~1)¢,D,

) Dasa By Byy very By ;( ¢ Tigy veny Biyy Byyay ooy Tn)

’ Eo; 51, vy §n+-d)
D,) D
(D) n+1(Aw07w17"'5mn

n4d

“Z( 1 Emo n(fﬂ:'-'; 411 i+17~--;§n+d).
Ly eevnnennenennenaren 5 Ty,
Analogously we define the determinant system with a negative
defect. Then the number of #; is larger than that of &;. The least integer
7 = r{D,} such that D, does not vanish identically, and the difference
d{D,} between the numbers of z; and & in D, is called the order and the
defect of the determinant system (21) respectively.
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If either & = & or @, = a; for ¢ + j, then it follows from (d,) that

Dn(fu ey &n-}—d) - 0,

Byy eeey By

and it follows from (d,) that, for n=1,2,..., Dn(ﬁ" j:*-d), interpreted
13 v

a8 & bilinear functional of variables £, and. ; only, belongs to 20 (see (1))
Analogously as in the Fredholm case (see Sikorgki [14], p.151)
D, in (21) will be called the determinant of A, and D, for n > 0 will be
called the subdeterminant of order n of A.
The following simple remarks hold (compare with Sikorski [10]):

Remark 1. If Dy, Dy, ... is & determinant system for A e and
¢ # 0, then

(23) 0Dq, ¢Dy, ...
ig also a determinant system for A, and

1 1

(24) -Duy —-G‘Dl; ‘;{DM---

is & determinant system for cA4.
Remark 2. If Dy, D,,... is a determinant system for 42, and
Be? has the inverse B—1e®l, then -

(25) D, (ElBﬁl, LS §n+drB_l

N ) m=0,1,2,..)

is a determinant system for 4B, and
(259

is a determinant system. for BA.

. It follows from remark 1 that the determinant gystem for A, if it
exigts, is not uniquely determined by A.

. (ix) If S8e is o generalized Fredholm operator of order zero, U<
is @ quasi-inverse of 8 and sy, ..., 55 is a basis of the spaces of all solutions
of the equation Sw = 0, then the sequence 6, 01y ..., defined by the formule

& Ua, ..

. §1Uwﬂ, 5181 vos E18g

(26) 6,,(5" 51‘) =

C T
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where 4 =d(8) >0 and p =n-+d is a determinant
system for 8.

Tt is evident that eonditions (d,), (d,), (ds), and (d,) are satisfied.
To prove the condition (d;) let us first observe that there exist points
Wy, ...y wge &, such that the formulae

(m=10,1,...),

SU=1I, US=I-)ao:s

hold (see (6), (6")).
Then the condition (D,) follows from expanding the determinant

Eog ... EoBw O O ... 0

fos, PRI fp) _

Loy Lyy ey Tn,

oo

& Umg ... EpUm, Ep8y Ep8s ... &pSa

(where p = n-+d) in terms of its first row, and the condition (D,,) follows
from expanding the determinant

£y EUxy .. E U, £81 ... &Sa

01,’+1( oy ey Ep): e e e e

Smu’ P T

in terms of its first columm.

Similarly we can obtain the determinant system in the case d =
d(8)< 0. For this purpose, let us set for n = 0,1, ...

& Us, ..

0 El:---;En -
n = | 8$1%y
D1y eers Tn_g,

. £1an—d

(26")

vee 8_gln_a

where s;,...,5_g is & basis of the space of all solutions of the equation
&8 =0, and U is a quasi-inverse of §. The sequence o, 01 ... just de-
fined is a determinant system for § with a negative defect.

In particular cage, if 7(8) = 0 and d(8) = 0, then § has the only
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quasi-inverse §-2. It follows from (26) or (26') that the sequence I,, I, ..
defined by the formula

"

£8-1w, ... £,8-1,

b )

27y I, =1, (
D1y oeey O,

is a determinant system for S§.

All theorems concerning operators and determinant systems with
a negative defect are formulated in the same way as for operators and
determinant systems with a positive defect. Therefore in the sequel, to
avoid the duality of formulation, we shall only consider operators with
a pogitive defect.

6. Fundamental theorems.

) ) If Ae¥ has a determmant system {D,}, then A is a generalized
Fredholm operator such that r(A) = r{D,}, d(4) = &{D,}.

More exactly:

If r=r{D,}, d = @{Dp} >0, and N1y ees

YpeX are
fized elements such that U

. =4 N
y Mg d €=y Yyyood

D,("“ f“,"?r-}-d

0
e LU

then theére emist elomemg Liy ey Gre B and 2y, ..., % qcX such that

Dr('lh, ..? ..................... 3 77,+d)
Yo oy Yicyy By Yoy
(28) {iw= o Jity ity U for every  zeX,
‘ D,.(nl, ceay 77r+d)
d yl’ MR 7"
&N
D,("“ oy ity € Mgty ceenns y Mryd
(28" £, — Yry cornenens Cee ey Yo ) .
! D, (7]17 ey 'ﬂr—wi) for ey fef
Yis ooy Yy

The elements Liyoe
of the equation

(29)

o & are linearly imdependent and are solutions
EAd =0.

s . . .
(8) This theorem is a slight generalization of a theorem of Sikorski [10].
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The elements 2z, ...,
of the equation
(29)

2 qy ore linearly independent and are solutions

Az = 0.

Conversely, every solutton & of (29) is a linear combination of Ly, ...
and every solution z of (29') is a linear combination of 2, ..
The bilinear functional defined by the formula

-Dr+1(§, My ---7”7r+d{)
Ls Y1y -y Yr

.D,.(m ) eres "7r+d)
Yy ooos Ur
determines a guasi-inverse Be2l of A.

The equation
(31)

74""

oy Brpde

(30) &Bx =

E-A- == Eo

has o solution & if and only if &z, for i =1, ...
form of the solution & is

§=o0,0+...Fe b+ &B,

and &,B is the only solution of (31) orthogonal 10 Yy, ..., Yp-
Analogously, the equation

(31)

,*-+d. Then the general

Aw =z,

has a solution z if and only if x, is orthogonal to &y, ..., (.. Then the general

form of the solution x is
& =62 +.. '+0r+dzr+d+Bmﬂ
and Bz, is the only solution of (31')
It follows from (d,) that such elements y, ..., {, exist. Furthermore, it
follows from (28) and (d,) that {y; = 6, (4,5 =1,...,7). Thus &y, ..., &
and ¥4, ..., Y, are linearly independent. We can establish in the same
way that 2, ...,2,,4 and #;, ..., 7,.4 aTe also linearly independent. The
elements £y, ..., ¢, and 2, ..., &4 are solutions of the equations £4 = 0
and Az = 0, respectively, because it follows from (28), (d,) and (D;_,)
(or from (28), (d,) and (D,_;)) that {;Az = 0 for each <X and £42;, = 0
for each fe 5.
Replacing & by é4 in (30) and then using (D,

by (d,) that 4B =I— 2%
- (b— r) we obtain B4 = I— Zz 7, It follows from

f=1

orthogonal 10 1y, ..., Yeya-

) (n = r) we obtain
;- Analogously, repla.cmg z by Az in (30)
and then using (D.

this that B is a quasi-inverse of A. The rest of theorem (x) follows from
theorem (iii).
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(xi) If Ae? is o generalized Fredholm operator, then A has a deter-
minant system {D,} and r{D,} =r(4), @¢{D,} = d(4). This system is
determined by A uniquely up to a scalar factor 0.

Suppose that r(4) =r >0, d(4) = d, and B is & quasi-inverse of 4.
Let 2y .oy ®eyar Cayeres G 80A Uiy ooy Yy N1y oeny Nrya have the same
meaning ag in section 2. :

Let us sef
(32) 2, =0 for mn=0,..,r—1,
&80 . b2 Caty oon Ly,
(33) _@,(E” ey frm) I R B B ’
G T N e I
Srpa®i oo Erpafeia [ R W

and for r =1,2,...

(34) Dresr (il’ o 5"+d+k)

1y ooy Drgl

= 258'119 Sgnq
pq

-9, prar 1 Sopgrsa

.......... mﬂk-l-l’ caey qu+r

£y By, - £y Bag,

where bz,’ is extended over all permutations p = (py, ..., Dryasr) and
59

G = (1 -5 @ix) of the integers 1,...,r+d+k, and 1,..., 7%, respec-
tively, such that

p1<p2<"'<.lpk7 pk+1<pk+z<...<pk+r+d’

h<@<..<g, T < Qe < oo < gy

T]ie sequence .@P y Dy, ...y Just defined, is a determinant system
for A(‘)..'_I.!o prove this we have to verify that all conditions (d,)-(d;) in
the_ dt.aflmtlon of the determinant system are satisfied. Obviously 2,, 9y, ...
satisfies eonditions (4,), (d,), (ds). Since

. yl PARRRS | yl‘
(d,) is also satisfied.

) It is easy + ; .
the choice of B, y to prove that (2n+ d)-linear functionals @, do not depend on

e ©
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Tt follows immediately from (32) that (D,) and (D,) hold for n =0,
...,n—2. It is easy to see that they also hold for » = r—1, because

El; sevy Er+d) -0

Dyyoeny By

(35) -Dr(
if one of the points &, ..., &4 belongs to #(4) or one of the points
@y, ..., @ belongs to Y (4).

The proof of condition (d;) for n >>7 is based on the formula

o g1 Pnss o Eppyy Tnia

(36)

Epy @1 - Ep, Eppya®nsr =+ EppygPnia

&1y, oo £, Ent1Bgy g+ Enr1Pe, g

............

§'n+dw1 (XX §n+dwn+d ‘
where Y and » are extended over all permutations P = (py, -.+) Pnia)

v a
and q = (¢, ---s guea) Of the integers 1,...,n-+d, such that

Dy <Pa< oo <Dny  Prg1 < ooo < Prids
ql < q2< van < qn’

We obtain (see [107)

Qn«s-l <o < Qn+d-

) (Eoy 51: weey Er.grdﬂLIc)
Tk Loy By oery mr-a-k
50 quﬂ 50 Bmgk
&y, Bitg, - &y Bay, 3 €
= Z BEN DS Q| . ool -.@,( Ph+1? ktrid) |
V.0 mqk+1s et mﬂk.H-
l $ny, Bog, -+ Epy Bg, ‘
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| &p By, - & By,
| &, By, - £n By, o ;
+ g BEOPEENG| .. e . s '@r( ” Pha? **0? ZJk+r+.:t)
H
b9 Pagos1? Pajprg? +++ 9 Ppyy

‘ 5pkBa;go Epkquk

where p', b, q denote arbitrary permutations (of the integers 0, 1, ..., r4 k)
of the form:

P = (0, D1, ey Phs Prog1y + ooy Phpryd)s

Pr<Pe< oo < Pry  Pretr< -vv < Phyrids
P = Doy Puy +vs Pits 0y Phoszs oy Phyrya)s

Po<P1 <o <Py DPry2<.io <DPpyryds
0= (Gos Guy -3 Gy Pogry -1 Qioyr)y

Go<O<- < Ty 1 <o < Qo

Hence, by (35), (36) and by the formula AB = I— Y y,-{; (see (5)),
gl

we obtain
r4kp1
Doy DLyyeeey TBpyp
£4ABuy, ... &ABag,
§p By, ... &p By,
= Z sgnp'sgngl. ... ... ... .9, (Epk+] ey fﬂk.|,,.+d)
L Dager1y 1 Qopr
& Barg, £p By,

r r
50“’0"2 £ Cio «-s 5o$k+r“2 Eoi Cyr

i=1 i=1
&p, By . &p By,
_ snyp| e
er 'Epkaﬂ EﬂkBmIH r x
1@, ST .
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! E:Pk.ﬂzl . Eﬂk.(..]zr-q-d
| e
|
Cprrea® o Sopprpa®red
; &y By . Ep By bp By, ... £p By,
L e e e e e
L e e e e e e e e
Fir ’
= Z s p’Z (—1)w;. Sn B0 - En By £ By £y By | X
¥ =0 ST TN o P $1®y4 L1y
R A
i $oy (%7 o C gy
| foea® ot EmpryPreg
x e & s 2 e e s e s e s
Eoprrra®s o Evpiriafria
bk | &, By, -+ £p Bg,, ..
— E (._1)'150501: E sgnpsgn q‘i ............. X
i=0 X
: ! EPkBm@i,l §1’kqui,k+r i
£ : W £ :
X.@,( Bpgr) pHH_d) =Z(‘"1)ifoma'9r+k( 19 cesererrenmniaanas , k+,+g)’
Dagijr1r 1 Tappyr paur Loy oo s Bi19Biqrs oovy Thoyr

where ' is extended over all permutations p = (py, ..., Priasr) Of the

P
integers (1,...,7+d+%k) sueh that p; <... < PryPrp1 < --- < Dryria
and all permutations q; = (¢;1,..., §iksr) 0f the integers 0,...,4—1,
’l;—l—l, ceny k-+r such that Qg < ooo < Qiy i1 < -ve < Qi etre This
proves (D,). The proof of (D;) is similar.

Now, we shall prove the last part of theorem (xi).

It has been proved by Sikorski [10] in the case d(A) = 0 that the
determinant system for 4 is determined by A uniquely up to a scalar
factor # 0. The proof in the case d(4) > 0 is analogous to that in above-
mentioned paper [10]. Let D, Dy, ... be any determinant system for A.
We have to prove that there exists a scalar ¢ = 0 such that

(37) D, =¢92, for

where 2, is defined by (32), (33), and (34).
By theorem (x), we obtain »{D,} =r{2,}, 4{D,} = d{%,}, i.e.

n=0,1,2,...,

(38) D,=0 for m=0,..7r—1,
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and D, # 0. If one of the points @, ..., @ belongs to ¥ (4) or one of the
points &, ..., &g belongs to #(4), then it follows from (d,), (D,_,)
(D,_;) and from (38) that

D,(E“ ey Er—{--d) = 0.

Dyyoeey By

!

(89)

‘We know that (r--d)-dimensional subspace 2 (B) is spanned by ele-
Ments 7y, ...y fryq. Similarly, r-dimensional subspace Z(B) is spanned
by elements ¥y, ..., %, Bach point &e& can be uniquely represented
in the form & = &+ &, where £'e®(A) and £'eZ(B). Analogously,
each point ;X can be uniquely represented in the form z; = @y
where #'¢ Y (4) and «; <Z(B). By (39), we obtain

(40) @,-(EI’ ceey Er.\.d) _ -@r(E}:’ ceny Ef;,]d)
Dyy ovey Bp )y ey By
for arbitrary &, ..., &,q¢8 and z,,...,4,¢X. The same is true for
D,, i.e.
e r
(41) D,(S“ o 5“") = D,(ff,’ o 57;“”).
Dyyeeey By Dy g ooy Dy

Since two arbitrary (2r--d)-linear funetionals defined on Z (B)t¥x
xZ(B)" and skew symmetric in &', ..., &, q¢%(B) and oy, ..., @, eZ(B)
differ only by a scalar factor, there exists a sealar ¢ = 0 (since D, # 0
# 9,) such that )

7] 7] ’" "
517 ey Er E E
+d 1y a
D,( A )=a%( 1y bt

DLy g eney Ty By g eeny Tp

for &' ..., EhaeZ(B) and ', ..., oy eZ(B). It follows from this, (40),

and (41), that
D,.(El, ey fr+d,) — 09,. 51; ey §r+d)
Diyoney By Byyoery &y
for arbitrary &,,..., &, 4¢& and #,, ..., x,«X. This and (38) proves that
(37) is true for n =0,...,7r—1.
For n > formula (37) can be proved by induction. Suppose (37)
to be valid for n > r. We have to prove that it holds for n-1, i. e.

1
.D" . El,..-1§n+d+1 =09 51,.-‘,E"+d+1
1\ 2, = n+1 .
1y +o0y Upgl DLyy voey Ly

(42)

Since D, ?,nd Dyq are linear in each variable, it is sufficient to
prove (42) only in th_e case when each of the points £, ..., &, .a.1, either
belongs to #(4) or is equal to one of the points 7y, ..., Npra-
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Tf the sequenee &, ..., &,.a4 contains one point belonging o ¥ (4),
then it follows from the induction hypothesis and from the identity (Da)
for D,,, and 2, that (42) holds. If the sequence &, ..., &npay1 CONLAINS
only points 7, ..., 7e.a, 0ne of them appears at least twice. Hence, by
the skew symmetry, both sides of (42) are equal to zero.

Theorem (xi) implies the following:

COROLLARY. Let A <2 be a generalized Fredholm operator such that
r(d) =0 and d(4) =d >0. If {D,} is a determinant system for A, then

(43) DH(E“ - E’“"i)
@yy veey B
&y Bw, ... &y B,
=2sgnp1)0(§pn+1,_,_, fppra) form=0,1,...;
v
&p, Bty -+ Ep, Bty

where Be is a quasi-inverse of A and > is extended over all permuta-

v
tions P = (P1y ---» Pnya) Of the infegers 1, ..., n-+d such that p; < ... < Pn,
Prgr < ovr < Prsd-

(xil) Let A = 8+T be such that r(d) =7, d(8)=d >0 and let
815 --ey Sa, e all linearly independent solutions of Sz = 0. Let U be a quasi-
inverse of S and let {D,} be a determinant system for the Predholm operator
I+ UT.

The sequence Dy, Dy, .

(44) Dn(fl,...,§ﬂ+d) ——“En,m(g“ ..................... 7§n+d) (n=0,1,...),

Ly

.., defined by the formula

veey g

is a determinant system for S+T which does not depend on the choice of U.
By (18), r(S+T) =r(I+UT). Let &y, ...y ¢, and Z,...,% be
linearly independent solutions of the equations EI+TUT)=0 and
(I+UT)e = 0, respectively, and let B be a quasi-inverse of I4+UT.
It suffices to prove (xii) in the case where {D,} is defined by the
formulae:

(48) D,=0 for n=0,1,..,r—1,
§1% ... &2 2:1“71---2,-‘1’9-
(46) _r(EU vy gr) I R N B 7
R I
Erz:l“- Erzr Z,wl...zrm,


GUEST


288 A. Buraczewski
and for k =i,2,

N

Byy oery Bpype

:ngnv sgng| . -E,(E’“’“"J’ o E‘”kw),
b.a

.......... Bigrs s By
fp(ﬂﬂm,,l oo bp, B,

where }' is extended over all permutations p = (p,,..., p o) a.nd
q= (qlf’r.l.., Qryr) of the integers 1,...,»-k such that

D1 <Pe<.. <Pry Prpr <Dz <err < Pioyry
(<< <g, Ore1 < Qryz < oo < iy

(47")

It follows immediately from (44) that {D,} satisties conditions (d,),
(d3), (ds). If n+d =, then it follows from (46) that

D,,b (517 ] 5n+d)

Lyy vuny By

.......................

E% . &2 | | LUDy ... LU, Gvsy ... Frg
because all the.solutions £; of the equation §(I4+TUT) = 0 are orthogonal
" to all the solutions s; of the equation Sz =0. If n < ¢ but w4 d>r, then
STRT ) ;
D”(mi, o m:‘:f )= 0, since each term () of the sum (47) is equal to zero.
If n =7, then by (46) and (47) we obtain
(48)

§1y ey & ;z) T
D o s € ey §
r(ﬂ”n ey @y ngxfp ‘D'(Uwf‘jﬂ, . ’ pd+r),

......... ey an

EpBsy ... &,,Bs,
where }2‘ is extended over all permutations p satisfying (47'). Applying

(%) Each term of that sum contai
I1 ing as a factor a determinant wi
one zero column f;s;, where i =1, ..., 7, and j is fized. R it Jenst
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formula (36) and elementary properties of determinants we obtain by
theorem (viii)

Dr<£“""£'+d)= .......... \

Ly ooy Ty

f §r+dzl see §r+dzr+d ‘, \ Zrml s Crmr

where 2,, ..., %4q 80d , ..., L, aTe solutions of the equations (§+T)z=10
and £(S+T) = 0, respectively. Hence the condition (d,) is also satisfied
(see (34)).

The proof of (d;) is based on the identities

d
8T =1, US=I- s o

=
(see (6), (6')). We have
D (50(S+T))517 Ly §n+d)
n+1
Lo, Lyy ey Tn
- ( ESIHTT),y &1y coveveenrannnnns s 5,,+,1)
T T\ U, Uy, ooy Uy y 81y evy Sa
" . — Ely vereeeenneerire e e e , fm)
= N (—1)&80x-D
;( V€S Uy “*d(Umo, ey Oy, Uty oony Uty 81y 000580
a e £
S P D, ( by vt , M)
g( V768" D Uy ooy Uy 81y -y 85198541y -1 82
= ) Bl weereiriinireeeaenes , 5,,+d)
= —1)'&gx; D (
2( V€o@i: Dn By oeey Bioty Bignry ooy Tn |

=0

En; 51, sery £ﬂ+d)

o
P\ S+D) 2y, 71, ..ny @,

fo, 51, .................. ’ETH-d
= ﬁn+d+1 a
[I+T0T— 3 8-y, Ury ...\ Uy 81, -0 8a
=1

= ( L By By ,5,,+d)_
nAEI\ (T UT)g, Uy, wevy Uiny 81y ooey8a

[
Zwm E (E‘” El’ ................... 7§n+d)
- %0 Lntd+1

85y Uy, oony URpy81y oony S

=1
Studia Mathematica XXII. 19
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n+d
507 ) Ez 1) Ei-uy En. a
f w(, +d t
= n
& Uty y weevrennnernninrnanes y Uy, 81y ..., 84

+d
—‘WZ‘( 1 é‘m (Eoy--,fl-l;£i+ly£n+d)
i@ D Ly ereenererrnenn ) @

Thus {D,} defined by formula (44) i8 & determinant system for §417.
It remains to establish that (2n--d)-linear functionals D, defined by
(44) for fixed sy, ..., 8z do not depend on U.

Suppose that Ve is another quasi-inverse of 8. We have S V =1,
and SU = 1. Hence, there exists a finitely dimensional operator Zs 0
guch that V = U—I—Z‘s o;. Replacing U by V in (44) we verify by the

skew symmetry a.nd 1mea.r1ty of D, that the (2n - d)-linear funetionals D,
obtained by means of V are the same as those obtained by means of U.
This completes the proof.

(xiii) Zet {D,} be a determinant system for I-+UT and let 7, ...
Yiy .oy YpreX be such that

) Npe &,

-ﬁr(’?n---:’?-r) 0.
yl?""y‘l‘
Then elements Ly, ..., e E and 2, ...,% q¢X such that
D, Ry eorernnainne U ............. ,m)
y _1, Uz
Lo = Lo Yooty Ui Yives oo Yr for every xeX,
D (7]1; ---ﬂ?r)
r |
yl! "'7:’/0‘
Er(nh ooy Moty 57’7i+15 ey "71‘)
Yy rrnerernernnenninnen aens 9
&y = ! 19 for every  £eE,
Dr("h:“':ﬂr)
Y1y ooy Yr
Br l(f, Zli--'azr)
;= 731y see s Y =
v - (?71, -~-:’7r> for every EeE
r
yl""7yf

(where i =1,..,r,j=1,...,d), are linearly independent solutions of
the equations EA =0 and Aa: = 0, respectively.
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If &, is orthogonal to 2y, ..., % q, then the element & such that

D 1( an")l’---’ﬂr)
" \Tx, g1y 5 9r

.5,(71” -“;Wr)
Y1y oor Yr

ty = reX

for every

is the only solution of the equation EA = &, orthogonal to y,, ..
Amnalogously, if x, is orthogonal to ¢, ...,

oy Yrs
&y, then the element x such

that
- £
D"-H(Uw’ M1y ’77:')
fr = 0y Y1y s Yr for every  E<E
B (7715 "')"71-)
Wy s U

is the only solution of the equation Ax = x, orthogonal 40 9y, ..., Ny, ®1y ---
.., g, Where wy, ..., wg are linearly independent solutions of the equation
EU = 0.

Theorem (xiii) follows immediately from (x) and (xiii).

7. Analytic formulae for determinant systems. 8o far we have
dealt with algebraic properties of determinant systems. If we know
a determinant system for a generalized Fredholm operator A4, then we
can solve the equations (see (x))

E—A = 507

Formulae (32), (33) and (34) defining a determinant system have
no practical value from the point of view of solving equations because
they are obtained by means of quasi-inverse B of A and of the solutions
of the equations £4 = 0, Az = 0. However, for a large clags of generalized
Fredholm operators, it is possible to give an analytic formula for de-
terminant systems in Banach spaces. This will be done in this and the
next gections.

From now on, let £ and X be conjugate (in the sense explained
above) Banach spaces and let &z be a hilinear functional such that

Az = x,.

llewll for every £¢F, zeX.

= sup|éa}, ||&] =sup|éa|
lé<1 i<t
Suppose that 4<% is bounded. It is easy to verify the equations of
the norms:
sup [ daf| = BupllEAH
nai<1

sg |4z = ||4]].

<
llzli<1
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Let us denote by M the class of all linear bounded functionals &
on 2 such that operators (bilinear functionals) 7'z defined by the for-
mula ()
(49)
belong to A.

Obviously T is also bounded, since |7 < |||

Following Sikorski [12], elements # ¢ M will be called quasi-nuclei (1),
If for an operator 7T there exists a quasi-nucleus &# such that 7' = Ty,
then T is said to be quasi-nuclear and F is said to be & quasi-nucleus of T.

It &,..., & and &, ..., @, ave fixed, then the quasi-nuclevs # de-
fined by the formula

ETww = F (2 £)

m
F(4) = 2 &dm,  for every A

=1

(50)

will be called finitely dimensional, and it will be denoted by

m
(50") F= YR,
i=1
. . . . m
Evidently the finitely dimensional operator D w;+ £; is determined by
the quasi-nucleus (50'). i=1

In the seguel, if & quasi-nucleus & is fixed, then, for brevity, instead
of Ts we shall write 7.

If # is a quasi-nueleus and 4 ¥, then, following Lezatigki [3], we
shall also write %,,(nAy) instead of & (4).
Aceording to this notation, formula (49) ean be written in the form

(51) (T = Ts),
or more generally

(81")

§Tw =&, (nn- &y)

EA,TA =Fy(nd,n E4,y)
Notice also that

where A, AyeA.

.(62) w4yl <IZI4]  for every 4.

Let us consider the following expregsion for m < n:

(83) @ (5'"“’ o 5n+d)

Tmidy ooy By
= Z,
51“1'"?Em‘“m(EP]Uml'"~'§anmn'Ep,n_H@l‘...'fp”+d8d),

(E) Operators Tg hfwe been introduced by Lezahski [3].
(*%) For the properties of a quasi-nucleus gee Sikorski [12], [14].
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where F ¢M, Te, s;,...,85 are fixed and py, ..., Pnyq I8 an arbitrary
permutation of the integers 1,...,n4d.
Similarly as in paper [3], it can be proved that expression (53) is
a (2(n—m)+ d)-linear functional of the variables &m 1, .-, Enyar Bmsts
..y T, Whose value does not depend on the ordering of #.,... Clearly
it satisfies condition (d;) in the definition of the determinant system.
(xiv) Let S be a generalized Fredholm operator of order zero, let
U e be a quasi-inverse of S, let sy, ..., 85 be linearly independent solutions
of Sx =0, and let 6, 0y, ..., be the determinant system for S definéd by
the formula (26). For any FeM, let

(B4) Do(#) = D Dyl #),

where

65 Dyt (S 00 5

Dy eery Dp
1
m!

N1y -y My Exy ey §n+d)

F [7)
Y1 nmYm M
Yisvooy Ymy Fay

veey @y
forn=0,1,...

Then the sequence Do(F), Dy(F),... is a determinant system for
8+Ts and, by fiwed 8, ...,8q, it does not depend on U.

The proof is analogous to thet of Lezanski [3].

To show that series (54) for » = 0,1, ... are well defined we have
first to prove that the series of norms of (2n 4 d)-linear functionals Dy, m(F)
are convergent.

By Hadamard’s inequality and by (52), we obtain

Ey s bnga
“Dn,m(g:)u = sup Dn,m(f)( 1, ? e
egl<l S \yyeeey @
izl ,nt
i=1,..n
1 : ’711"'7"7m;511"-)§n+d
=—— 8up Fp oy F, 7 (
m! < i T T g e eey Yy Ty ooy B
A< .
i=¥?.".,\n+d
J=1....,1n
F™ ey Ny E1yeeey Ena
< =4l sup sup 0n+m M1y s My &1y 3y Snit
m! <t [ Y1y ooy Ymy Layovey Tn
el | lwpl<l
i=1,..., 044 p,a=1,...,M
< ”ﬂ-“m d (n+d+m)[2 U ln+mls “ “8 ”
ST (n+d-+m) 1O ™s4ll- - - lisall -
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Thus we have proved

[ H’”

(56) Dl < (W - m) "R T )

It follows from this immediately that

DDyl <oo for m=0,1,..
M==0
Clearly, multilinear functionals D, (%) (n =0,1,..
ditions (d,), (d), (ds).

To prove eondmon (d,) let us consider the series

-+ llall -

.) satisfy con-

(57 Do(3F) (@1, -0y 0a) = 3 A" Dy (B (5, ..., @4),

Me=0
where wy, ..., wg are solutions of &U =0 such that w;8; = d;; for
4,j=1,...,d. Series (b7) is convergent for every complex 1 and it is

a holomorphic function of the variable A. It can also be verified that the

following identity holds:

(58) WDO(W)(“’U

vy @g)

=Frop ey

m

Eyen
Z ity D (AF) (m”
. 1)

Since Dy(0)(w,, ...

y Eny Wyy o0e

................

y wg) = 1, the holomorphic function (57) is not

identically equal to zero. Thus by the well-known property of holomor-

phic functions, there exists an integer » > 0 such that

dr
[ﬁ?‘po(w) (wy, teey wd)]/lal #0.

Henee it follows from (58) that D, (%) s 0.
Expanding the determinant 6, (’71"

% » Yo By By s
terms of ity (m+1)-st row, remembering that s, ..

of 8z =0 and applying the formula SU = I, we obtam

v Nms 505 51, ey

o I

&n, e d) i'll

, 85 are solutions

(p9) O ym41 ("11: o1 s $o8) &1y oy 5"4-@)
" Y1y ooy Yms oy Byy ooy By,
=2(—1)m+150y167&+m(171’ ...................... y Ty E1g vvneees , §n+d) n
7=0 Yis ooosYimts Yigry ooy Ymy Loy Bay ooy By
+2( 1 Eowt i (711,- ,nm,fl, ...................... 7§n+d).
1=0 Y sy Ymy Doy coey By_1y Bypqyeeny O
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ZF, to both sides of (39) and

. 1
Applying the operator mynm oo F vitim

performing the caleulation, we obtain according to (B5)

Eo‘gy Ely [RRS §n+d)
F
(60) Dn+1,m( )(wo, By, oery T
Eo-T, 517 sery n+d)
= — F
Dyama )(mo, A b
i ) Eiy rremsnnnineenes ,gm)
-1 * -,','Dnm F (

‘l‘;( )Eom X ( ) Zo, mi_;, Bipty oy Bn ’

where D, im1(F) =0 for‘m = 0.
Adding the terms of both sides of (60) (from m = 0 up to oo), We

obtain
508’51’.,,’§n+d) (EDT 51,.-.,5':;4-.1)
= _1),, F +
Dn+l(ﬁ)(w07 Dyy ooy Op +1( ) DBy oeey T
n (—1)16 oD (.g:) (El? .................. 5 E,H,d).
+Z TR Ty vy Bio1y Tirls Tn

=0

Hence the condition (D) is satisfied.

The proof of condition (D,) is analogous.
Ny eees £oy &1y e

YLs vees Y SFo» T1s -

nms ) E'ﬂ+"1) in

+s Tn

Expanding the determinant 68, +,(

terms of its m-1-st column, a.pplymg the formula US =1 —_ZsL w;
and basic properties of determinants, we obtain

N1y +ee9 Ty Eoy €1y ooey 51,,4.,1)
61 6 (
(61 AT N Ly ey Yy SBoy Bry oees By
N1y oy Mi—1y Mig1y +09 Ty Eoyrens En+d\)
B TP o N
2( V@0 Onym Yy ey Ymy Dayoeneenseesnnnsesens s Tn
nid
+ Z(—l)ié'm .8 ("71, ooy Ty &gy weey Eicry Sigry ooy §n+d)'
&~ O g ey Yy Dy weevveeeerasninnencns s @y,
1 .
Applying the operator W."i,m,l oo i, S0 both sides of (61) and

caleulating, we obtain
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(62) D"’+1,m(<¢) ( fo; 51, ey §n+d)

Sm05m17 veey Ty

Eoy &1y vy bny
= —D m— &z 09 512 ? Snid
b )(Smuywn veey By )+
ni-d
-+ 2 (“1)7:Et$o'1)w,, m(ly‘) (50’ v E‘i“’“ 5“'1’ T EWM
< By v irennriiinnnnnnnn, v, |
Adding the t i 3 -
chta g the terms of both sides of (62)' (from m =0 up to oo), we
S0y Euy oy &
Dﬂl(g;-)( 0151y 1] n+d)=__D ( Eo;£1y~-~;§md
r Sy, @y, ...y @, ni1(%) Ty, @4y ..., @y
n4d
+ (=10, D,(#) (§°’ vt B b
& Dy coveiveiniinerinnnen, y &n |

Thus the condition (D)) is also satistied.

i dSinﬁe the determinant .syste.m {6} for 8 does not depend on U by
( 81y -9 8ay !ﬁhe determinant system (54) for §--T does not depend

on U either. This completes the proof.

, Theorem (xiv) is very useful. If a quasi-inverse U of § and solutions

15 -+-3 8z 0f Sz =0 are known, then for arbitrary quasi-nucleus &M

we can obtain the determinant g r i
ystem for §-+Ts an
(%), we can solve the equations: N y~ Q" Ppriving theoren

ES+Ts) = &,  (S+T5)0 = a,.

8. Another form of formulae for th i D
_ > . r the determinant system. It D, (#
D,(#),... is a determinant system for Fredholm operator I +T, Whoei‘e )1:

is a quasi-nuclear operator determined b i-
lowing formula holds (see Sikordki [14]1 L o R $he fol

[14]):
T n 0 0 0...0
. Tn oo m—1 0 o 0
63) D,(#) = -
) D= I 0 o,
T:»n_lo'm_l Om—g Um.—a"-0:l -l.
i Om Om-1 Omy...0y Oy

«ory I7 8 a 2n-linear functional
(64) m(fl,...,fn)_ 511“1901...51.’["'1@” . '51_’['1'1,701___51171"90"
Tyyoeeyy, _Z .......... )

£1zlﬂ1mx~ . E,.T‘"m,,
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and ) is extended over all sequences of non-negative integers 4;, ..., i,
such that i+ i+...+ 1, = m.

There is & formula for the determinant system (54) for ST, ana-
logous to (63). It ean be obtained from the determinant system for I1+UT
by means of theorem (xii).

For this purpose we introduce the following notation.

If FeM and Ce2, then OF and F( denote the funetionals defined
by the formulae (3)

(F (4) = F(0A),

It is obvious that OF and FC are quasi-nuclei.

Observe that OF and #C determine the quasi-nuelear operators
CT4 and TsC, respectively.

Let U be a quasi-inverse of 8. If a quasi-nucleus # determines the
quasi-nuclear operator T, then U# determines the operator UTs and
the determinant system for I4+UT

FC(A) = F(AC) for all AU,

(65) Dy (UF) = Y Duu(UF) (n=10,1,...),
Mm=0
where
(65) Dy, u(UF) (E” 5)
LyyeryTn
M1 e Mlm ¥ N1 %n l
- !ﬂmfh "?]mym 771nm1"-77mmn
= 1 U‘g:"lyl e Min¥m ‘
K |§1y1 EYm E1%y - i,
i‘éﬂ;yl Enynk Euml Enmn
OYy o Y 1%y - 11T
F N OY1e oM UYm Mm@y In®
CE Uy, Eixy o 618

} Enlr.’h e Sn Uy'm. Enwl e Eﬂwﬂ- |

Similarly, #U determines the determinant system for I4+TU
(66) Do(FU) = D Dpul#FU)  (n=0,1,...),
m=0

(13) See Sikorski [14].
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where

(66') Dy u(FU) (i 5’”)

L e W,

”71)11:'/1 i "7mym ??’mtwl e nmmn

EYr - E1Ym 68y 6y

It

7m ¥m

1
—F Uy - T T

Enlr oo Enlim En®r . Eny

71Uy oo Uy U ... Us,,

1 z M UY1e e i UYm Uy ... N Uty
m! myy T U .

N ‘51?/1. SL.]"Jm '51«’1/'1 ...Elm“

En:'/l e fnym Enwl e En‘”n

BEvidently, formula (63) for determinant systems (65) is of the same
form. The operator T is replaced by UI and the numbers ¢, are equal
(67) on = UF(UTY"™Y) =Z ((UT"'U)  (m =1,2,..).

. If’wereplace @ by Un fori =1,...,nand o, ; by s;forj =1,...,d
in (65'), then we obtain the determinant system (54) for §-+7 (see (xii)).
Hence by (63), (64), we obtain the following theorem.:

(xv) The determinant system (54) for S--T satisfies the identities

™ % 0 0 0...0

T o m—1.0 0...0
D, (#) = i,T?‘ o m=20.00 01,00
o L I IR !

-1
Vi Om—1Om—g

m
Iy om

Omel  Omeg oo 00y
where o, (M =

Tunationsy 1,2,...) are defined by (67) and T is the (2n-|- d)-Tinsar

iy by
m(%:...,’wﬂ”) = ) det(a,;) = Ddet(by,1),

©
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where for k,1=1,...,n+4d
E (UL * U, for 1<mn,
a ==
WU e (UTs) ke, for 1>

§k(UT,~)ille for 1<,
ol £k(UTf)ilU3[,_n fOT l>mn,
and D, is ewtonded over oll finite sequences of mon-negative integers
Gryeey by pa) SUCh that Bybeno g = M.
(xvi) The following connections between the determinant system

(D, (F)} for 8+Ts (see (54)) and the determinant systems {D,(UF)},
{D,(#U)} hold (see (65), (66)):

£y ey by 01y ey 0

_5 51,..-,5,.) ~
S ) = pw| n=0,1,.0

Ty yenny By
D,,b(g")(é:ls, SR ] ‘Snsiwl"'! wd) — En(}—U)(El’m’E”) (n=0,1, o)

Byyse sy Tn
where oy, ..., wg ore linearly independent solutions of the equation £U =0
such that w85 = 6 ; for 4,5 =1,...,4d.
These formulae can be proved by applying the identities SU =1,
a

US =I—)'s; w;, to their left sides.

i=1
9. Determinant systems in spaces of sequences. Now we shall
consider two conjugate spaces 5 and X of infinite sequences
& = (p1; Pay )€ 5, ® = (01, 0y, .. e X.

We suppose:
1) bilinear functional & is the ordinary sealar product of the se-

quences £, , i.e.
fw = Z%"Uu
1=l
2) the series &w is absolutely convergent for each &e¢ & and veX,
3) the sequences
6, =(1,0,0,..),
ey = (0,1,0,...),

form a basis in £ and in X.
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Bach operator 4 20 is uniquely represented by an infinite square
matrix e = (a;,;). Thus we can identify operators A with the correspond-
ing matrices a, writing 4 = o« = (a; ;). '

In particular, the unit operator is represented by the matrix ¢ = (4, )

By a matriz quasi-nuclens we understand any quasi-nucleus g~ wof
the form
(68) 7 (4)

== Tp,i 0,7 for

(ai,/)fgl’

.

s

i7=1

where 7 = (7; ;) is an infinite square matrix. In particular,
o0 . )
T (- = . —
T (w-§) = .Zlqo).r,-,ivi for &= (py,0ay...), @& = (vy, vy ...).
i, 7=

The class of all matrix quasi-nuclei will be denoted by M,. It 7 M,
then th.e corresponding quasi-nuclear operator will be denoted by 7.
It is easily seen that both correspondences

Tor, T o
are one-fo-one correspondences. Consequently we can identify 7' with 7
T =r=9.

However, this identification is not extended over the mnorms. In
general, the norm of a matrix quasi-nuelens 7 = 7 is not equal to the
norm of a quasi-nuclear operator T = 7.

Let us consider the operator S defined by the formula

W)y eX.
Clearly, 8 is a generalized Fredholm operator such that r(8)

8w = (Var1) Vage, - @ = (D1, Vs, ..

a8)=d >0. -0
The operator U defined by the formula
Uz =(0,...,0,v;,v,...), T = (Vg Vgy...)eX
is a quasi-inverse of §. The elements ey eg for i
_ ...y &g form. bages of solutions
of the equations Sz = 0 and U = 0. It’ is Lasy to see that
(69) 8 =(byq;) =3, U= (8:,50a) = .
Let S8 be fixed and let i
et be et 2y denote the clags of matrices (operators)

(70) 0=84T=s+7 = (Sira )+ (7ig),

where 7eMN,.

icm
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Every matrix aelg has exactly one determinant system (54),
provided the solutions é,..., € of the equation Sz = 0 are fixed. This
follows from the identification of the matrix z as a quasi-nuclear operator
T with the gquasi-nucleus 7 <M, and from the fact that the determinant
gystem does not depend on U. Consequently we can denote the determi-
nant system by Dy(a), Di(a), ... for aes. i

Tt follows from theorem. (xii) that for every aes we can obtain
the determinant system {D,(a)} from {D,(d-+u7)}.

Tor this purpose let us denote by 2, the class of matrices (operators) B
such that

‘8 = §+1 = (6.;'7-1— T’i,?’)I ‘where T = (Ti.yv)EMo.

For every matrix fe,, the determinant Do(f) will be denoted by
D(B) or by
131,] .31,2

132,1 ﬁz,a (RRN N

T we replace j-th column in the matrix g by terms of a sequence
weX, then the matrix (*) f, obtained in such a way belongs also to 2.
Analogously, any matrix ;8 obtained from g by replacing the i-th row
by terms of a sequence &eZ belongs also to Ay

Moreover, the determinants D(f,), D(p) are linear functionals of
the variables # and £, respectively.

Observe also that every column in § is an element of X and every
row in B is an element of Z.

Let fe2, and let ¢;,...,%, and ji, ..., J. be two finite sequences
of positive integers. To quote several properties of determinant systems
for a g, we define, following Sikorski [14], for every fe,, the numbers

s W

B (;i ; ) ay follows: if either in the sequence %, ..
3 me=s N :
R 7

two of the integers are equal, then § (j1 jn) =

vy By OTIN oy ooey iy

Jus e n,

is the determinant of the matrix belonging to 2, and obtained from the

matrix 8 by replacing the 4,-st, ..., 4,-th column in B by the columns

(0,...,1,0,...,...,(0,...,0,1,...), vespectively, and the j;-8t, ..., jo-th
: L ;

0; otherwise (i" i”)

1 i1 In
row by the rows (0,...,1,0,...)...,(0,...,1,0,...).
1 i 1 [
The following theorem of Sikorski [14] ﬁolds:

(14) See Sikorski [14].
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For any B, the following formulac hold:
(11) ﬁ(?“ ”) =D”<ﬂ)(e“’ e‘"),
Jiy ooy dn, b1y3 v vy Gy

5,,...,£n)

Lyyoony By,

- [ . .
U1y eeeyly
= 1,1y Pt /9(. Moy
LV VRN W Bt I

I B T

(72) Dn(ﬂ)(

where @ = (V5,1 Vk,2y -++)y €k = (Pr,1s Pryay-.0) for b =1,..., n;

T A T A
(78) ﬁ(. .)= ( )
Jiy eery dn ,C_Z‘)']u---,?n,

where
Biyiy vv Biygy Bipry v By
CYRISE Y | Gigy e Big B e el B
(74) ﬂn,k(j 4 ’j") = i 71 Ty n Clpa 1y |
1309 tn
e T R Trpey oo Try, g
'l',-k. [ T,-k,;[” T"k: [P T'krrlc

Now, let us consider the matrix a = s+7e¥Ug (see (70)) and the
Fredholm matrix g = é+ure?, where u is o quasi-inverse of s.
It is easy to verify that

1 0 0..,
0 1 0
(78) f=2¢4ur={0 0 ..1 o
G1 G2 e G O gy eae
Q2,1 Ba vou O g O giy ves

We introduce the following notation for every aeg:

(76) a("ZIi . -~,7En+d) - ﬂ (@:1, ........... 7":n+d)
JiysesyJn ]1+d,...,j,n+d,1,_,_,d

(@ =8+, g = 8+4ur).

1

©
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Applying theorem. (xii) to the theorem of Sikorgki, in view of
Ue;, = 6,4, We obtain the following formulae for every aeg:

bgy ooy € yenny 6
(1) a(z." ’.“*“’) =Dn<a(“’ ! ’M) (n=0,1,..).
VEERRREN iy eeey by

Hence, by (72),
‘517 reey Em-d)

Ly ereyn

(78) Dn(a)(

0 © . s
Tyy erey 'Ln—;»d
= Py Prgd,ip g ®| . . U1,y 0 Vn,dp
i, v tppd=l 11, . dn=1 Jiy ey dn

where & = (Vi 1 g2y ---)y &1 = (‘Pl,m 7T for k=1,...,n and
l=1,...,n-+d. The numbers (76) will be said to be the coordinates (**)
of the n-subdeterminant D, (a).

There are formulae for the coordinates of D,(a) which follow im-
mediately from (73), (74), and (76):

il,...,iMd) ke (il,...,iMd)
79 af . . = )a . )

( ) (91""7]'" 7% . .713"',.9‘“ !
where

iy ey "/n.g.d)

80 n,m
o0 ol

1y o9 tn
6’£1J]+d o 6121, Intd ail, 1 611,41 61’,1 2t dll‘l‘m
‘sin-m.fﬁ'l" . ‘sin+d,in+d Bim-a,l Lo ‘5in+d,'1 (5in+d-"1' . 6in+dn"m
r<TIT  <tm '!',-1'7-]+d "'T"1.7n+d T"J.xl ...‘t‘,-x,d T'ln"l "'T"l."m

T"mr Ji+d e T,'m‘ Jpt+d T"'m- 1 e T,-m' a Tf’m, o 'l.',.m‘ m

If we take n = 0, then we obtain the formulae for D,(a). Applying
. A, ey, e
the conditions (D,) and (D) to the expressions Dl(a)(zn ! a),
[

(1%) See Sikorski [14].


GUEST


304 A. Buraczewski

Dl(a)( Cig2 iy oo E"d), where A = ey, we obtain the following formula:

ER
" o -
., - By lyeenyl 3 3
(81) Do) = ai,,-,,a(.” ’d)= » ato,a(*oﬂlw--,@
iy, ig=1 Jo i i, d=1 J

It is easy to establish by (81) that the value of D( o) at the poing
(€19 .-+y &2) is the determinant of the matrix

P11 P v

Pay Pag -
(& = Q1) Pr,2y -+ TOT kb =1,2, vy d)

Q11 Qe

o1 Qg

belonging to 2.
Thus we ean write D(a)(&,, ..., £) in the form

Pr1 Prg .-

B

(82) D(a)(&y, ..., &) = Pay Pap .-

Uy Gy ...

Qa1 Qgp e

,2

or, for brevity,

(83) D(a)(&y, ..

(ua -+ ng fk)

Rezal
Using the same method ag in proof of (82), we obtain

Pr1 s Prica 0 @y gy .

(84) Dy(a) (57 &y ;ffd) _ Zm% [ 220

i=1 Oy e

Pai1 0 @azyy ..
i1 Yy O gy v

Ga,1 wve Ggi1 Vg Gy iy oe-
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P11 P12
Pay  Pas
11 19

I
M 8
N%

.
i
-

ai_l,l m,_m cen
P P2

11,1 OGjg2 eee

where @ = (v, gy ...), & = (@1, @y ...).
Let ae®g be of order zero and let &,

cvvy EgeZ be such that

D(a)(&y,y ...y &) # 0. It follows from theorem (x) and from (82), (84),

that for every z, = (w;, w,, ...)eX the system of linear equations

(85) Do =w  (i=1,2,..)
j=1

has a solution of the form

a
(86) oz = chzk—i—i,

k=1

where ¢; are arbitrary constants, z, =

(#%, 15 2k,2y ---) 8re linearly inde-

pendent solutions of a homogeneous system, determined by the formula

P1,1 e Qriaa Pr,i+1

Pr—11 e+ Pr—14i-1 Pr—1,i41 -o-

Pri1,1 o Prtdie1 Phalitr oo 1 d
(87) zm:(_l)i .................. ( _1"2“?“)1

Pa,1 ver P i1 Pa, i1 T ’

0,1 ver 014 Oy, 441

Og Qg i—1 Q2 441

and Z = (uy, 4y, ...) is the only solution of the system (85), determined

by the formula
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P1,1 0 Pri- 0 Prip1 cer
1 Pa,n - Pai-1 0 @i

- ~ Tlo=1,2,..
Do(éyy -oey &) 0,1 o i1 Wp Gy gy ... )

wu;

Qg1 -+v Og 1 Wy Uy

and orthogdna.l to &, ..., &

If & = (w1, ¥, ...) €2 is orthogonal to 2,...,2z , then there exists
the only solution & = (@, ¢, ...) of the adjoint system

Z‘Piai,i =Y (j =1,2,...)
i=1

given by the formula

1 .
—_—— T e =19 ...
Y Dy £ U=1,2.)

Q1 Q1,2 ees
%1 P2

%1 %41, e

e

References

: [1].F. W. Atkinson, Normal solubility of linear equations in mormed spdoces
[in Russian], Mat. Sb. 28 (1951), p. 3-14.

[2] A. Grothendieck, La théorie de Fredholm, Bull, Soc. Math. Trance 84
(1956), p. 319-384.

[3] T. Lezanski, The Fredholm theory of linear equations in Banaeh
Studia Math. 13 (1953), p. 244.276. v puations th Fanack spaceh
[4] — Sur les fonctionnelles multiplicatives, ibidem 14 (1953), p. 13-23.
. [5]‘];» Przeworska-Rolewicz, Sur les équations involutives et lewrs appli-
cations, ibidem 20 (1961), p. 95.117.
[8] A. F. Ruston, On the Fredholm theory of integral equations for operalors

belonging to the trace class of a gemeral Banach spa i ]
' A ce, P ! 4 he-
matical Society (2) 53 (1951), p. 109.124. pace, Provacdings of tho Tondon Muthe

e _®

icm

Generalized Fredholm operators 307

[7] — Direct product of Banach spaces and linear functional equations, ibidem
(3) 1 (1951), p. 327-384.

[8] R. Sikorski, On Lesanski's determinants of linear equations in Banach spaces,
Studia Math. 14 (19563), p. 24-48.

[9] — On determinants of Legaitski and Ruston, ibidem 16 (1957), p. 99-112.

{10] — Determinant sysiems, ibidem 18 (1959), p. 161-186.

[11] —~ On Lesaniski endomorphisms, ibidem 18 (1959), p. 187-188.

[12] — Remarks on Lesanski's determinants, ibidem 20 (1961), p.145-161.

[183] — On the Carlemann determinants, ibidem 20 (1961), p.327-346.

{14] — The delerminant theory in Bamach Spaces, Colloquium Mathematicum
8 (1961), p. 141-198.

Regu par lo Rédaction le 17. 4, 1962


GUEST




