STUDIA MATHEMATICA, T. XXIL (1963)

On some spaces of strongly summable sequences
by
W. ORLICZ (Poznah)

1. This paper contributes some further remarks to the problem
treated in [4]. Notations of [4] will be used throughout; if & = {#;} T
and y = {s;}¢T, # >y will mean #; > s; for all ¢, and || will stand for
the sequence {|t;|}. Let

n

o1

ohfm) = — E(p(li,,l) for w=1,2,...
y=1

Then we shall write
T, = {zel: of(x) - 0 as n— oo},
Ty = {wel': of(Ax) — 0 for a certain 1 >0 as n — oo},

It is easily seen that 7'
T, C 1%, where

4, 18 & convex set and 75" is a linear set; we have
1% = {wel: Jwel, for arbitrary i},
as in [4].
1.1. We define a functional o,(@) in 17, o,(%) = supof(x) for T, ,
n
and g, (@) = oo for wel'y"™T,, . It is eapily verified that o, is a modular
in T%* in the sense of [3] and satisties the condition B.1, i. e.
0,(Am) =~ 0 a8 2 -0 for weT*.

Tor, assuming <75, we have of (4,3) — 0 a8 n — oo for a certain Ag;

hence there is an index m satisfying the condition :

D ptelth <o for wzm.

=1
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Consequently,

of (M) < sup of(Ax)+ &

nm

for 0< <2,
By [3], an F-norm |||y may be introduced in 7 by means of the
formula

*) lolj¢ = int {s> 0: @,ﬂ(f-) ge}.

Let us remark that in [4] the norm, (*) was defined only in the space
T7, that is in the subspace of all elements of T which satisty the condi-
tion g,(4w) < oo for an arbitrary i. In the terminology of the theory of
modular spaces, T, means the subspace of all finite elements of the space

Tg*. If @ is an s-convex g-function, then another norm may be defined
in 7%, namely

®
(**) |Jm||,‘,‘q, = inf {E> 0: 0 (?ﬁ;) < 1},
This norm is s-homogeneous and equivalent to the norm (*). Let
p(u) = ', @ > 0. If we denote then the norm (*) by {1 and the norm
(#*) with s =a, s =1 if a>1, by -4, we obtain ||]%® = (sup O,Z(m))l/(uu)’
n

o]l = supof (@) for 0 < o <1, and |w|* = (sup o ()" when o > 1.
" I

Let us remark, besides, that the terms T, of the sequence » = {t;}
are linear functionals over T3 with respect to the norms Illy and |-,
and the relations («) lzalls — 0, (8) p(A2s) —> 0 28 n — oo for every A > 0,
are equivalent.

1.2, The norm ||-|2 is complete in Tp* and T% is a complete subspace
of Tx.

Let m, = {f{}<T2* let 2 > 0 be a given number and let e
a8 %, m —>co. By the definition of ||- > there exists an increasing sequence
of indices m, possessing the following two properties:

(+) ) 22’6(3’7%.‘_1 - w‘n«k) ET%)
1 1
(++) sgpa;';(z%(mnkﬂ——wnk)) < g for k=1,2,..
Property (++) gives
Zw(z%(t;‘k+1—t;%)) <eco for i=1,2,..

By

=1

Since o(Ya,u) < Yo, for @ >0, Yay=1, u; >0 we have

o

Pl X r—pl) < Np@gen gy, i=1,s,.

=D oD

(+++) “ey

icm
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for all indices p for which 2 > . From (%) it follows that #** — {,
for i =1,2,... and, if I > % > p, we have
PAE—1T) < D2 (i1 — b)),
r=p

whence
oo

PR —tl) < D p(2” i — 1)),
v=p

Let « == {#;}; the last inequality implies

o0
oh (A, —2) < D) oh(2¥ (@, —2)) = 0y <00 for w=1,2,...
v=0
o0
) sup of (4 (2, — 2)) < Zsup af (2% (2, 11— %))
n

y=p W

However, the sequences of(2*(a,, +1—%,)) converge to 0; hence
by (++) we have ¢, 0, i.e. op(A(#,,—a)) > 0 as n — oo for k > p.
Now (++) and (I1) imply

> 1
up of (Ao, —a)) < D' 27,
" k=p

whence supoﬂ(l(mnk-m)) - 0 for every 1 >0, i.e. |@ny, — 2[5 — 0. Sinee
l(mnk—m)neTﬁ* and @, eT,*, we have z¢T%. The inequality

lem—all < 0m— @ llg+ ([0, — @
yields finally ||o,,— x|} — 0 as m - oco.

In order to prove the second part of the theorem let us note that if
wyeTy for m = 1,2, ..., then the inequality

o (342) < of (2w — )+ of (Aw,)  for

implies $AzeT, for an arbitrary i, i.e. zeT%.

n=1,2,..

2.1. For arbitrary two p-functions @, v we have T* ~ T, = T5 ~ Ty,
We repeat here with a slight modifieation the proof given in [4].
Let 7 >0 and let 0 < < my for a cerfain positive integer m. Then
()
#(n)
Indeed, if 0 <u <7, then y(u) <wy(n), and if (k—1)y < u < ky,
where & is an integer satisfying the inequalities 2 <% < m, then

y(u) < p(mn)[p((k—1)n)]"e(n) < pimn)le(nT e(u).

(+) p(u) < pln)+ o(u).
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Now, if weT;" ~ Ty, then AzeT, for a certain 4, > 0, and we have
Ay lt] < mn for a sufficiontly large m; thus (1) yields

k(%]
o) < pin+ L o),
. @ (n)
whence
(++) limgup o} (e2) < w(n), limd)(iz) =0.
n k2edan]

2.11. For an arbitrary p-function ¢ we have T ~ Ty = 1% ~ T,

Let AyweT,, 2 >0, w(u) = p(i;'u). Tt follows from the proof of
2.1 that 2.1 (++) holds, i.e. limoj(Aw) = 0, and consequently meT<.

n
The inclusion 75 ~ T, C T5* ~ T is obvious.

1

2.2, If 93 g, then T, CTY% The conditions |lwflls-~0 as i-> oo,
w;e TS, imply |2 -0 as § — oco.

The inequality p(u) < by(ku) holds for u = u,, where k, b, u, are
positive constants. Let A,wel, , 3o > 0. Sinee ¢(Aoh~') < by (Ayl) for
indices. ¢ satisfying the inequality 2.k, > %, holds, and since the ge-
quence x; = {t;} with terms t; =, when A,k™% < u, and £ = 0 for the
remaining indices i belongs to 73" ~ T, = Tp* ~ Ty, we have "' = g — o' ¢ T™*
@' eT¥, and consequently oeT%*. A similar method of proot may be applied
to the second part of the theorem; it follows also trivially from. the closed
graph theorem, for the terms of the sequence are linear functionals with
respect to the norms ||-[i7, |-|ls.

By [4], 2.3, if convergence with respect to the norm Il implies

!
convergence with resgpect to the norm ||-||2 in T, then y =3 ¢. Hence we
obtain from 2.2 immediately:

2.3. The following properties are equivalent: (o) P 5 P, (B) T2*D T3,
(v) llwlly — 0 implies llslly — O for arbitrary 2Ty,

CoROLLARY. (A) T3" CIU" if and only if T%C T2,

(B) The following properties are equivalent: () ¢ L ¥, (B) B = T,

o ma o 4 X . i P ki
(v) T7 = Ty, (8) the norms Iy -1y are equivalent in T,.

2.4. The following conditions are equivalent:

(«} ¢ satisfies the condition (A,) for large u,

(3) T :* =T 5:

() the space [T5", ||-|2] is separable.

.(OC):>(B'). If (a) holds, 2 >1, then there is a ¢, >1 such that
the inequality ¢(iu) < o;p(u) holds for u > u,(2). Arguing as in 2.2 we
may show by means of this inequality that on(®) > 0 as n > co implies
i (%) >0 a8 n — oo, where p(u) = p(iu) '

icm®
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(B) > (y) follows from [4], Corollary to 1.3.

(v) > (a). Let @(u) = ¢(24) and let us suppose that (4,) does not
hold. By the arguments of [4] (2.3, the proof of (y)=(«)) sequences
of the form @; = v;e,, may be chosen so that n; = n; for ¢ £ j, |ln§ > 1,
lllle < 2% Let Ty = 1@+ NeBe+..., Where 9 = {n;}, ; = 0,1; we have
ey for arbitrary », for #yl@llp+ nellesla-+... <1, and T%* is complete
with respect to the norm [-|l;. If %' 9", then |, —u,,| >, for
a certain m, whenee |2 (2, — z,.); > |#nly = 1, i. e. T3 is not separable,
a contradietion.

2.5. In order that the |-|lz-norm topology in T2 be locally s-conves it

is necessary and sufficient that ¢ & 2 where y(u) = y(u’), v is a conver
Sfunction.

Necessity. If the ||-|l;norm topology is locally s-convex in 7%,
then this topology is also locally s-convex in T%; hence the necessity fol-
lows from [4], 2.5.

Sufficiency. If ¢ 'i'Xy then by 2.2 there exists an s-convex norm
equivalent to |-|f7.

3. Besides the modular space T%, a space 7% was considered in [4],
3 for convex g-functions . The following question arises: assuming ¢
and y to be convex ¢-functions, when does the identity 7% — T'; hold?
The following theorem generalizes a result of [4]:

3.1, If T¢ = T, then
(+) lim 820 _ (%) tim £2®)

U-+00 ]g U -0 lg v
where 1. <r << co.

Let us write ¢, = info, where the infimum is taken over
all exponents o >0 satisfying the inequality limsupe(w)/u’ < oo, and
x U—r00

-

0y = oo if such exponents o do not exist. Moreover, let us write

8, = infs, where the infimum is taken over all exponents s > 0 such

that liminfy(v)/v® >0, and s, = oo if such exponents do not exist. It is
-0

readily seen that limsuplge(u)/lgu < o, Let T = Tﬁ. By [4], 3.3,

(+) p(dw) < pw)p(v)  # g(w)p() < 4 p(u) >1.

Put o = du, ¢, = p(u); if p(u) >1, for u > u,, a >1, then p(w)
< 6 (v) for 0 < v < wo(u), 1. o. y satisfies the condition (4,) for small v.
It may be easily verified that

(++) L - for 0 <o < v(w),
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where s = lge,/lga. By [4], 3.4, (3.1h)

= 1
+ )y — =M.
() (p(ﬁ’u)'q)(“)<5 for w>u

The last inequality shows that the inequalities limsupe(u)/u" < oo

U—+00
and liminfy(v)/v" > 0 are equivalent; hence o, = s,. This equality holds
>0
also when one of the values ¢, 8, is equal to oo,
By (++)
1ge, 1!
o< Jee _ lepln)
Iga lgd+lgu
whence liminflgg(u)/lgu > s,, and since o, > limsuplgy(w)/lgw, (*) holdg
U—>00 U—r00

for  u = u,,

with r = 8¢ = ¢,. From (+) and (++) it follows also that
1
lim E¥(®)

v->0 1g v

A funetion ¢(u) is called regularly increasing with index r, if ¢(u)
= "o (u), where o(lu)/o(u) —1 a8 u— oo, 1 >0 (cf. [1], [2]).

3.2, If the relation 3.1 (%) holds and if lgp(e") is a convew function
Jor large w, then ¢(u) is a regularly increasing function (for large w) with
index 7, = 7.

The function ug'(u)/p(u) iy defined for weB = (@, co)\ A4, where
the set 4 is of measure 0, and uep'(u)/p(u) - g as u — oo, ueB. Since

Fe()
[t
lgp(u)—lgp(a)  ; o)
lgu—lga f“dt )
PO
and the ratio of integrals on the right-hand side of the above equality

tends to g, the value ¢ is finite and g = ». Now it is sufficient to apply
& known criterion (cf. e.g. [2]).
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1. Introduction

Soit une équation intégrale singmliére:

At)a(t) + %2 fgg)?ds =m,(t) (s,tel),
L

olt L désigne un arc de Jordan, régulier et fermé, I'intégrale a le sens de
la ‘valeur principale de Oauchy, les fonetions complexes A (1), B(t), »(t),
@,(t) définies pour teL satisfont & la condition de Holder. Les méthodes
classiques de Carleman, Vécoua et Muskhelichvili (voir la monographie
[10]) utilisées dans I’étude de ces équations, ainsi que les considérations
plus abstraites de Halilov [6], Tcherski [4] sont fondées en prineipe
sur la propriété unique qu’une transformation intégrale singuliére
(pour les arcs fermés)
x(s)
t

1
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