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Given an ultra-distribution ¢(s). For every 1 and % the limit @ (1, ¢)
of (4B), if it exists, is said to be a regular function corresponding to A, k
and ¢(s).

A sequence {g,(s)} of ultra-distributions converges to ¢(s), if to
every 4 >0 there exist an integer % and regular functions @,(1,z),
@(A, z) corresponding to A, & and ¢,(s), ¢(s) respectively, such that
@, (4,2) converges to D(4,#2) uniformly in every strip —N <5 < N.

All properties of section 3 remain valid for the new convergence.

The theory of ultra-distributions extended in this way is equiva-
lent with the theory of funetionals on a space of entire function defined
by authors mentioned in the introduction.
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Properties of the orthonormal Franklin system
by

Z. CIESIELSKI (Poznan)

1. Introduction. The purpose of this paper is to present some pro-
perties of the orthonormal Franklin set and to indicate similarity of this
system to another bases of the Banach space €'<0,1) of continuous
functions on <0, 1. It was proved [6] a long time ago that the Franklin
set forms & Schauder basis for ¢ (0, 1. Not many more properties of these
functions are known to be published. The other bases have been investi-
gated in [6], [7], [1], [2] and [3]. Some applications of the author’s results
are given in [4]. Using the results of this paper one can get the same
kind of applications for the Franklin functions. Some of these results
were announced on the Conference of Functional Analysis held in War-
szawa-Jablonna in September 1960. Theorem 1 has a very simple proof.
This theorem together with the Banach-Steinhaus theorem for sequences
of linear operators gives a very simple proof of the Franklin result. The
proofs of that result presented in [6] and [7] (p. 122-125) are very tedious.

2. Preliminaries and notation. The Haar functions are defined
as follows:
n{f) =1 in 0,15,
Z2n+1(1) = “‘VZTI:
—_ . k—1 2k—1
I VT in < i g ),
1) Lanoz(l) = | YV s 2k—1 k-
2n+1 ? on ?

0 elswhere in <0, 1),

where n =0,1,...; k =1,2,...,2"
We shall define the Schauder functions using the Haar functions

a8 follows:
¢

() = [ ta(0)dz,

[

(2) te0,1y, n=1,2,...
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The Schmidt orthonormalization procedure applied to {on} leads
to the Franklin functions

n
) fal) = Xhw@()  with 1, >0, for wa=0,1,...,
T==0

where the triangular matrix (1) is uniquely determined.

In the sequel, the partial sums of the Fourier-Franklin series of
a given continuous x(¢) will be denoted by §,[x].

The space of continuous functions on <0,1> will be denoted by
0<0,1>, and for z¢C{0,1> we put ||| = 51/1?::2 l(t)]. Let w(d) =

= w(d; x) denote the modulus of continuity of z, 1. e.
o(d) = sup{a:a = |w(t)—a(l)], [t—h < 0y 4y 6,6<0, 15},

Moreover, we define

lal, = ( [le@Par)™, 1 <p < oo,

and

Izl = [l for @e0(0,15.
The following theorem will be used later:

TaROREM A [1]. If 2¢CG<0,1>, then

o0 1
@ a(t) =o(0)+ X[ [ tu(m)do()] u (1),
f=1 0

where the series is uniformly convergent in {0, 1>.

Now, let us introduge the polynomials of the polygonal lines. Let
0=t <t <..<t, =1 be a fixed partition of the interval 0,1>.
Then the polynomial of the n-th degree i3 defined by

&— &
(5) Pll) = (=1 y) + &
b —1t, .
for ¢, <t <ty i =1, .oy %y Where {t;} is the given partition. Note

that ‘P(tl) = Eq: for 4 = 0, ey R

3. Polynomials of polygonal lines. Tirst of all we shall prove in
this section an inequality which will imply the Franklin’s theorem from
[6]. Then, an analogous inequality to the Bernstein-Zygmund classi-
cal one will be proved ([10], p. 11, (3.18)). Finally, an application of that
Bernstein’s inequality to the best approximations will be giyen.

Let us denote by B, (x) the best approximation, of the continuous
funetion £¢0¢0, 1), by the n-th degree polynomials of polygonals, i. e.

B, (2) = inf[z— g,
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where the infimum is taken over all ¢ defined by (5) with a fixed par-
tition {;}.

THEOREM 1. Let y, be a polynomial of the n-th degree (n = 0,1, ...)
determined for a given xe¢C (0,1 by the condilion

(6) 7 —wolls = inf Jr —gll,,
where g is defined by (5). Then l
(7) hwoli << 3 llll-
Proof. Let us put u,(t;) = &, ¢ = 0, ..., n. Then we get from (6)

611%—9"”3)
e T =0
( aE; ;'.k’usm‘ ’
1. e.
8 8, ’J
Dewmy %1 2 g g
3 70 T 6 3 lt‘cj 1(7)(1 t)dz,
ii ORIl WY _‘S.’E_l £,
(8) .
1 U3 1
- fm(r)(r—tk‘])dr—}— f.v(f)(tk“—r)dr for k=1,...,n—1,
O, [ F
k-1 'k
5 5 1 F
TEL+ W == [ a@—t,
G 3 "’tﬂ_71

where §; = #;—1#,_;, i =1,...,n. Now it is easy to see that equations
(8) imply
1267+ &%) < 3l

S . I
e D TR MO 280 < B,

— k=1,...,n—1,
O+ Or 1 O+ O 41 i
[EL 4280 < 3lalj;
hence 2y, < 3|2||+ llwoll, and this proves the theorem.
THEOREM 2 (The inequality of Bernstein-Zygmund type). Let

@ be given by (5). Then the inequality

G fie'ily < 4 max lelln

n b—1t

holds for 1 <p Koo, n=1,2,...
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Proof. By easy computations one gefs for p < oo

n i

o= > [wora

=1 tog

= Z 5% () — o (1)
=1

—op N o[ RGP+ )P T
v Yo ]

sl

<2" [2 f\vﬂ dt]

=

n

<4”Z—;% Iflw(t)li’dt

‘(4 max —) j | (8)[P dt.

1<isn d;

To complete the proof we pass with p to infinite.

Now, we are going to specify the partitions appearing in the defini-
tion of polynomials of any order. In the cage of n = 1 the partition
(ty, 1) is determined: ¢, = 0 and #, = 1. In the general case (n >1)
there exists exactly one non-negative integer m such that 2™ < n < 2™,
Let n = 2"+%. Then we shall put

i .
—?:m for ’L=0,...,2k,
(10) b=
i—k .
o for 4 =2k+1,...,m.

Note that a polynomial ¢ defined by (5) with {;} defined in (10),

according to (4), has a unique representation in the form :

(11) et) = D meu(t),
1==0

where ¢; are the Schauder functions defined in (2). In the sequel only
polynomials of that type will be considered.

Theorem 1 can be generalized to the spaces I <0,1) by the argu-
ments given in [9], p. 12-13, and this result may be stated as

Orthonormal Franklin system 145

THrOREM 1. Let weLP<0,1)>. Then
(12) 182 [2lp <3Bllell,  for n=1,2,..;1<p<

Theorem 2 ean be stated, for the particular polynomials of type
(31) in the form of

THEEOREM 2. If , = ¢ is given by (11), then

”'P;A”p < 877'”?’41”;; for n=0, L.

or betier
(13) ”'/’;”p < 8'27”“%1”:1 for o= 2,3, 2" <n g 2m+1,
where 1 <p <

The followmg two theorems will concern the best approximation

B, (z). The first one is an analogne of the Jackson theorem for the best

approximations by trigonometric polynomials. The second one is a eor-

responding analogue of the S. Bernstein theorem (compare [8], p. 119
and p. 132).

THEOREM 3. Let #eC{0,1). Then

1
(14) Bi(2) < w(l), E,(z) <2m(;) for n>1,
or
I3 1 T m4-1
(147 E"(m)<m—2? for n>2, 2™ <n 2™,

Proof. Obviously

B, (2) < llo—ou (@),
where

on(@)(t) = 2(0)+ 3| [ w(2) o (2)] gut),

i=1 0
and
Tn () (B) = 2(t)
for {t;} given by (10). This completes the proof.
TEEOREM 4. If for some z¢(<0,1) and for a given o (0 < a < 1)
the inequalities
M
EB.(z) < P 1,2,... (M = const.)

hold, then

o(d) <ed for 8e(0,1),

with some positive constant c.

Studia Mathematica XXIIT 10
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The proof of this theorem is quite similar to that for theA case of
trigonometric polynomials (see e.g. (8], p. 132-‘135). Repeaftmg that
proof step by step we use the inequality (13) with p = oo {nstead of
clagsical Bernstein’s inequality. We shall leave out the details of the
proof.

4. Properties of the single Franklin function. In the sequel we
shall need the following resulf:

LeMMA 1. The inequality
var S,1[V/2"e.) < 2
@1
holds for n = 2, 3, ..., where the integer m is determined by 2" < n < 2™,

Proof. It is very easy to check the case n =2 (m = 0). Indeed,
in this case §;[@,] = %. Therefore, suppose m >1. For the proof let
us put

(15)

==, _1[1/2—1"%] and g =w(E) for 0 <i<a,
where
2—,:;1— for i=0,...,2v—2,
@—_;wj—l for §=2%—1,...,0—1,

with v = n—2™.

Obviously, #; satisfy the equations (8) with & = 2"p,, and with n
replaced by n—1. For this gpecial function we get
i

B
- f VI (o) (et = = | VI pulo) i 0)de
k-

&
[/ 1
1
Iy for & =2v—1,
0 for k=£2v—1,1<k<<n—1.

Thus, equations (8) will get the following forms:
The first case, 1 <» < 2™, m >1:

20+ ey =0, k= 0;
Me—1F 4Nt Ny =0, k=1,...,20—3;
(16.1) 18t = 2, k=20—2;
M1t 4t = 3, k= 2—1;
M1+ 4t g1 =0, k=2v,...,0—2;
M1 +2m =0, k=n-1.
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The second case, v =1, m >1:

27+ M = &,
N1+ 47+ Mepr = 3, k=1

(16.1T)
M1t 4t Ny =0, Ek=2,...,n—2;
M1 t29, =0, Ek=n—1
The third case, v = 2™, m >1:
29+ fep1 =0, k=0;
(16.11T) Tom1t &Mty =0, E=1,...,n—3;
%ﬂk—1+3ﬂk+ Nep1 = £, k= n—2;
Ne—1+2m =%, k=n—1.

One can easily read the properties of #; from equations (16). In each
of these three cases we get

Ney—g > — Mgz > ees > —M >7]o >0,
N1 > =gy > .00 >(—1)" M, 5 > (—1)"g,1 > 0.
Moreover, from (16) we easily obtain

1n

Nap—z > Map—1 for

Nas—2 < Tap—1  fOT

(16.I) and (16.11),
(16.I11).

(18)

Let us consider now the first case. Using (17) and (18) we get
(19) Z)aﬁ"‘l’ = y—271+ 29— ...+ 21_s—
—27721+2’72v+1+~“+(_'1) _1277n—2+(-‘1)ﬂ"7n—1-

Now, we multiply the %-th equation in (16.I) by (—1)**! and then
add the first 2»—1 equations. The result we get is

(20) No—2M+ 20— .. — 2%, 3+ 27,2 = §+$ 72,5 — Nouo1e

In the similar way, using the next n—2v+|1 equations, we get

(21) =270, 42901 — o+ (=120 3+ (= 1) 7y = 3 =870, 1 — a3
Now, eombining (19), (20) and (21) we obtain

ml; p= %+ (%_ 47721—1_ ﬂ21—2) + i‘ N2v—3)

hence by the 2»-th equation and by (17)

vary = -+ 4, -+, < §.
<0,1>
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A similar argument gives in the gecond case
vary = {371 < %,
<01

and in the third case

vary = $-4+ na, s 71 < 1.
0,1

This completes the proof of lemma 1.

The next lemma concerns the total variation of the Franklin function.

LEmMA 2. Let n=2"+4v, where 2™ <n < 2™, Then the in-
equality
(22) varf, <i{ var f,

€0,1 ((r— 1)/277", 2",

holds for n = 2,3, ...

Proof. This inequality is obvious for #» = 2, i.e. for m = 0. Let
m >1. The definition of f, and (3) imply

(23) j'n = Jun, {q%‘“Sn—l [‘T"nJ}:
hence
! |
(24) var fo, < Aun T + var Sy_1[@al}-
0,1y V2 <0,1> ]

Note that uniqueness in (4) and in (3) gives

1

(25)  Awn = [ 2a(®)ful7)

0

— 2y—1 y—1 v | — .
= I/2 [2fn (W) —-—f.n (—2T) _f'n (W)] < ]/2"" var fn'
((r—1)2"™, pj2"y
We shall complete the proof applying Lemma 1 to (24) and then
majorizing ., in (24) by the right side of (25).
The next lemma gives the points at which the absolute maximum
of |f,| is attained.
Lemma 3. Let m = 2™+v, 2™ < n < 2™, Then

—fym 4, (0) for v =1,
R I A L
—fom 4, (1) for v =2™

for n >3,
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Moreover, for n=0,1,2 we have

Ifoll = fol®) =1,
Ifill = —f£2(0) = £,(1) =3,
Ifall = —f2(0) =fo(3) = —fu(1) = V3.

Proof. It is easy to get the last three equalities by direct compu-
tations:

fo(t)’-:—ly
(26) fil) =V3(@2—1),
V3(41—1) for te<0, 1),

fz(t) = —
V3(3—4t) for te<i, 1)

For n > 3 we shall get the proof from (17), (18), (23) and (16). Accor-
ding to (23) and (17) the only question is at which point of the three
ones: %y, 5, 3(sy_s-t+Fs_;) and %, ,;, the maximum is attained. The
functions f, and g = V’2""<p,,-—1p, where y = S',,_l[]@tp,,], attain the
minimum and maximum at the same points. By the definitions of y
(see the proof of Lemma 1) and ¢ we have

glt) = = for =2-2, W1,
g(i2r—2+ Zﬂv—l) — 1— N2y—2— Nas—1
2 2 T

In the first case (2™ < » < 2™*') we have, by Lemma 1 and (17),
— Ngy_z < %, hence (16.T) implies

$— 373 = 3Napat My < 1.
Therefore, the last inequality and (18) imply

( iﬁv-—i + Z21:—1
gl —

3 — > Pl
3 )>772 2 > Moy

This proves the lemma in the first case.

The other cases have very similar proofs. Indeed, let » =1 and
let m >1. Then by (16.IT) and by (18) we have £ = 25,4 7, < 37,,
hence 75, > %. This implies #,+% >1, i.e. 3n,+ 7, >1, hence 75, >
> }(1—5,—1,). Finally, let v = 2™ and m > 1. Then, by (18), #,_; >
> fp-p and, by (16.II), £ =9, a-+2%, 4 < 39,_y, hence 7, 5 >1.
Therefore, 7,1+ % = 3#p1+ fp—e >1 implies 7,3 > $(1~ g1~ 1n—2),
and this completes the proof.
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Luvma 4. Let n > 2, 2™ <0 < 2™, and n = 2™y, Then

2v—1 —1 Y
T ( ST ) f,,( ) >0 and fn( it ) fn('éw) >0.
Proof. For 1 < v < 2™ this lemma is implied by Lemma 3. If » =1

we have, according to (18),

(fo'f"-h) _ 1—250— "M
N\ 2

1
> T e

Moreover, (17) and (16.1X) imply 29, < 27,+ 7y = § hence 7, < }.

Therefore
b+ )
§ (—2' >0

In the third case, i. e. when v = 2™, this lemma can be proved in
a gimilar way.
LeMMA 5. Let n be any non-negative integer. Then

Ifalls < Chunlipalls  and  Aunllguly < 3llfnllo
wherel <p < oo; and
ool =1, llpdly = (0+1)7";
1 1 m m M1
llpall, = for m=202"1y, "< n<L2™, m=0.

2(1+p )1/1: om(1f2+1/p)

Proof. We shall leave out the easy computations leading to the
values of the norms |pyll,.

One gets the first inequality easily from (23) and (12). The second
one is more difficult to prove. Let g be defined as in the proof of Lemma 3.
Then we write the second inequality in the equivalent form

= V2" pully-
Furthermore, by the proved part of Lemma B this inequality is

equivalent to the following one:

1‘ 1 1
6° pi+1 2™’

llgllo

lgliz >

The last inequality is implied by the next one

?7.-—-1
1 11
| gwpras > e

lgyma
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In order to check this inequality we easily find that

IR T o ek .
Toy—2 p+L 2" eyt N+ s
101 . » .
= PYRE {(rain (7, , 7)1°+ [min (4, 7.,-1)1}
1 1 [min(yy, n)+min(y, 5,-1) |’
Zp+1 o™ 2 ’
where 5 = $(1— 72,—a— 2y—1)-

Now, we shall discuss this inequality seperately in each of three
cases (16.I), (16.IT) and (16.ILI) respectively.
First case. According to Lemma 3 we have 5 > 1;,_, and 5 > 13, 1.
Therefore
By
J la@prar >
Z21»‘2

Now, by (16.I), we have
33+ 3% 2t 101 = 1,
Mzt 401+ 1y = 15

1 _1_ Nas—st ﬂzv—l)p
p+1 2™ 2 :

hence

Nas—1F Mav—z __ E 1 3

2 =8 LT g P

Finally, (17) implies

Nap—at Mor—1 _]£ =
2 TRk
and this gives the required inequality.
Second case. Again by Lemms”3 we have u, > and 27, > .
Applying (16.1I) and (17) one gets

Notdn+n. = 1,
N+ 31+ (m+ 1) = %
o+3m <E<1,
n<7.
Thus 5, > % > 1,, consequently

o 1 1 [(mtn\?
iof[.q<r)|">ﬂ?2;( Ly,
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Now, applying again (16.II) we get
mo=7G—2m) and g =547,
hence, by (17),
n4n 11 39, 11 1
5 86 28 ~ 566

Third case. Lemma 3 gives 7, > 7 and ,_; > 7. Moreover,
from (16.III) we get

Mozt 20y = %,
3z < £,
Nz < %.
Combining the last inequality, (16.XXI) and (17) we get

1 3
—2“ s+ 3Nzt Ny = 2’

Mgt N1 < — + "7%— <1.

Therefore 7, _, < 9 < #,_; and

ty
T oepars 2 (=)
b P12 2

Using once more (16.IIT) and (17) we easily find:

_ 3 1
Nn—2 = 35— 5 Nn-33

Np—y = % +f16 Nn—3;
hence
7+ R 17 3 17

0 T Mn—s >§>“‘6—.

T2 T80 %

Thus Lemma 5 ig proved.
LevmA 6. Let n =2, 2™ < 5 < 2™, Then

and var f, =0, varf, = 2V3.
For the proof let us apply Lemma 4 and (25) to get

o
Vo var  fy,.
<-1)/2™, ]2

iom°
Orthonormal Franklin system 153

Now, the left inequality iy obvious and the right one follows from
Lemma 2. We leave out the computations for the cases n = 0, 1.

Lewvna 7. Let n be a non-negative integer. Then
1 3
T S g < el
”‘Pﬂ”g H‘Pn”z
The values for |lpyl, are given in Lemma 5.

Proof. The right inequality follows from Lemma 5 with p = 2.

The left inequality can be proved by taking a scalar product of (23)
with f,; then

1 = (fas fn) = Aanlfn, @) <
Thus, the proof is complete.

< Aun [l @nlls-

5. The main inequality. In this section we shall prove the following
THEOREM 5. For n >0 and $e{0,1)> we have

ot

k_,z [fymys (] < 2°V3 V2"

Proof. We deduce from (12), with p = oo, for any £¢(C<0,1) the
following inequality:

” 2"‘+Ic’ w)fzﬂ-r-k” 6 Jlaff.

Obviously, the last mequality remains true after replacing || || by
| lo @8nd 2 by the following function of #:

271
D gt i () — anrt g (D752, ®

i=1
where u is & parameter, %<<0,1), #;(u) denotes the i-th Rademacher
function, i.e. 7;(u) = x,(2""'u). Thus, we obtain

(27) ! 22: (fz'n_,.kJ 22 (x2n+1+2¢_1—Zzu+1+2i)"i(’“)) f2"+k(t)l < 61/5”_"“1
k=1 fa=1

Now, we eagily infer that

o7t

g2n+k(u) = (f2n+k; y (Zin-i-l_;_g,__l Zzn+l+ﬁ)7i(“))
‘i..
on

o 2{[f+k ()t () |+

4V
2i—1 24
-+ [f2w+k (%—) _f2ﬂ+k (Em)]} i (u) .
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Therefore, for almost all #e<0,1> we have
1, (2k—1 2%—2
==t [f2“+k (7%—1) o (“ém‘r)] +
2k—1 2k
+ [fmk (—27»4—1—) —Fos (gm)] I -
1 & 2i—1 -
= 2[!f2"+k( P ) o (_2?,7;12_)
4V2 m:}h i 2
=1

2%—1 24
Tonn (“WT) ~Fnin (W) ]

Applying Lemmag 2 and 4 we conclude that

+

1
9pyp®) | > ——=  var fn  ———=varf
o AV ooy T TE AV oy TR

1 { 7
=] var Fom +[— var fon,,— var ]}
41/2n+1 4 Clom 1)/ 2> oMtk 4 o1/ Hiz> pUS 3] 01 oMt o
1

> —— var f n
16V (o gyyammy "2

holds for almost all «, hence, again by Lemma 4, by (25) and by Lemma 7,
it follows that

1 1 /3
9n (W) > V2 o Fonspanan > —8—]/3- .

Now note that
(29)

(28)*

SlEN Gy p (W) = — 15 (w)

holds for almost all u. Indeed, this follows immediately from Lemma 2
and from the definition of g,, 1 Finally, according to (29), for any fixed
te(0,1> we find a %e(0,1) such that signf,, (1) =signg,,, (u). We
haive used here the stochastic independence of the Rademacher functions.
Therefore, for any « chosen in this way we obtain, by (27), (28) and
(29), the required inequality:

2% g
OV 2| a0 0] = 3l 0 a0

1_/3 &
>3V 5 S el

iom°
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6. Approximation and absolute convergence. We shall now prove
the following

THEOREM 6. Let eC<0,1>, m >0, n = 2"+ & and 2™ < n < 2™+,
Then )

fo—Sm,al < 0 ()
Proof. It is sufficient to apply (12) with p = oo and (14") to get
[0S 5]l < 16— By @)+ 18 [6— B, )]
< LoDy, @) <0 ().

COROLLARY. Let n = 2™-+F, m > 0, 2™ < n < 2™, Then for every
2eC{0,1) we have

. 12v3 (1
@y, ()] <”‘1/é7 o5

1
where a,(z) = [ @(7)fu(r)dz.

0

To prove the corollary we ghall note that, by Lemmas 5 and 7, we

get
gl _ V3 o

szm.g.k]lg 3

1 1
Wil = ?}m llpym gl 2 3

Thus, Theorem 6 tdgether with the last inequality imply

e ~—8ym g I+l —8myp il

[azm+k(w)] <

I gmrll
tod/e™) o2 12V3 ( 1
< (1/‘3’ /3) omi2 < ompe o 2m) .

TEEOREM 7. Let x<C<0,1) satisfy the inequality

M
(@ (@) < ST (M >0)

for some a, 0 < a <1, and form >0,k =1,...,2". Then

23 1
21 2"

o — 8 ym.y (@)] <

holds for k=1, ...,2"; m=0,1,...
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Proof. Since # is continuous, we have

(=] o
>
L= Za’nfn = ngqu(a")"!‘ ;}./ Wy
n=0 Pl kg
Now, by assumptions,

v 1
”mvszmﬂc(w)“ < M Z ST

P =

?

[
T=1

hence, by Theorem B,
w23 1

1
TJll<

o
”m_‘SzmMH <V3 'M'zs'z 2

D=
and the theorem is proved.
COROLLARY. Let 0 < a <1. Then the following three conditions are
equivalent: '
. 1
(@) lo—8u(@)] = O(F) as n - oo;
()  w(d) = 0(6") as 6 0,;

(i)  Jan(®)] =0 (;Flﬁ) as n —» oco.

Proof. Note that (i) implies (ii) by Theorem 4, (ii) implies (iii) by the
Corollary to Theorem 6, and (ifi) implies (i) by Theorem 7.

Finally we shall say a few words about the absolute convergence
of th.e Fourier-Franklin series. There can be established, by the results
of this paper, theorems similar to those corresponding ones for the Fourier-
-Haar series (compare [5]). Here, we shall state only two of them.

TuworEM 8. Let 2eC0,1>. If

- 1
2ol <

then

D lau(@)fa(t)]

n=0
conwerges uniformly in {0,1>.
7/
THEOREM 9. Let 2eC{0,1), and lot

0

~ 1
Z anlzw(ﬁ) < oo.

M=

Then

Zla,,] < oo,

N=0
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7. Remarks. There are still several properties of the Franklin fune-
tions to be known, for instance: Lebesgue functions, convergence almost
everywhere, local properties of the Fourier-Franklin expansions, Frank-
lin system as an unconditional basis in I,, p > 1, ete. The author belie-
ves that most of the properties of Haar functions could be established
also for Franklin functions. The results of this paper can be used to prove
the main result of [4].
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