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Generalizations of Bohr’s theorem on Fourier series
with independent characters (1)

by
Z. SEMADENI (Poznah)

1. Introduction. A classical theovem of Bohr (1924) states that
if Ya,6* is the Fourier series of a uniformly almost periodic function
f and if A, 45, ... are real numbers linearly independent over the field
of rational numbers, then the series is abgolutely convergent and ' |a,} =
= gup{|f(¢)| : —oo <t < oo}. The theorem may be formulated for an
Abelian group & as follows:

If Yangy is the Fourier series of a uniformly almost periodic function
f on @ and if the characters (%) y,, xa, ... are independent, then Y |ay,| < co.

An exact formulation of this theorem requires a precise definition
of independence of characters. The standard definifion for characters
¢* may be extended to the case of an arbitrary Abelian group in various
ways; the equality 3 |a,| = sup{|f(#)| : f¢ ¢} occurs only when the strong-
est definition of independence is assumed. This fails to include certain
important cases. The best constant K in the inequality } [a,| < K sup |f(#)|
with various notions of independence of y,, xa, ... is discussed in Section 3.

Generalizations of the theorem of Bohr can be obtained by replacing
characters by more general functions. E. g. 8. Mazur and W. Orlicz [17]
established similar theorems for bounded periodic functions on the line
with linearly independent inverses of periods. 8. Bochner ([2], p. 134)
has proved the following generalization of Bobr’s theorem:

Let f ~ Y a(A)é™ be o Bohr function such that A can be decomposed
Aed

into a countable union A = \JA, and ki +...4 k4, = 0, where A ed,,
veey Mpedy and Ty, ..., Kk, are integers, implies ky =... =15k, =0.
Then Y a(d)e™ are Fourier series of Bohr fumctions f, (n =1,2,...),

Aedy,
Dfa=f and Isup|fa < co.

(!) Research partially supported by the National Science Foundation.
(3) By characters we shall always mean continuous characters; . will denote
the unit character. Group operations in @ will be written additively and those in

the dual @ of G—multiplicatively.
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If we consider this question for an Abelian group &, Bochner’s agsump-
tions have a natural group formulation as follows: Let {yi1, x1ay...},
{X21s %22y ---}, --- D& @& sequence of finite or infinite systems of characters
on G These systems @D, = {{umim=1e, . are called independent if

N Iy kn
(1) H Aot = ¢ implies nx;l}cnh =iforn=1,...,¥N
n=1k<1 %=1

for any integers N =1, ki =1,..,ky =21, My =0, 1, +2,...
m=21,...,N; k=1,...,k,). In other words, if [H] denotes the group
generated by H, then the independence of @;, D,,... means that, for
any finite disjoint sets {n,,...,m,} and {m.,...,m,} of indices, the
intersection [UJ @y ] ~[(JPn,] containg only the unit of the group.
Suppose that f is a Bohr funetion on ¢ and

(2) f ~ Ea‘nm Xnw -

7, m

The problem is to find Bohr functions f, such that f = }f, and

(3) Jn ~ %“mn%nm'

M. Jerison and . Rabson [10] have worked out an inferesting
approach to theorems of this kind for arbitrary locally compact groups.
Their method (which is the development of ideas of B. Jesgen [11]) may
be reformulated as follows. Let us assume for simplicity that ¢ is com-
pact and Abelian, and let

Gy, = p Mzeld: gpn(w) =1} and I, =@G/G,.
=1 m

Then (cf. [15], §33A, p.131) pp (B) = pe(n;'B) for any Borel set
BCT, and

[ [fo(w+y)mn<dy>]m<dm) = [f(@) g (do)
n q

T
for feL{(@), where =, is the natural projection of @ onto I, and pp de-
n

notes the normalized Haar measure on H. If ye|J®,, then y(z) = 1 for
k=1

all we@, whence [ydug, =1. If xekU @, then x(w,) %1 for some
=141

@@y, (by double annihilator property) whence f 10ug, = 0 by standard
argument. Thus, if f ~ 3aumxmm and feO(&), then the coset averages

(@) = [flo+y) o, (dy)
Gn

icm
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(defined for we@) are also continuous and they are partial sums of the
Fourier series of f, namely

Fa@) = [ 3] > ton 1m (@) tion (9) 6, () = X Yt g (@),

Gy k=1 m k=1"m

equalities being meant in L,(@). Since f, are averages of f on decreasing
sequence of subgroups @, and since f is constant on MG, }. converge
to f uniformly on @. Finally, f, = f,~f._, are also continuous, f,
D Gun s and 'S, is uniformly convergent to f. This convergence is actu-
ally unconditional because the order of &y, ®,, ... plays no role. Thus,
if each @, contains exactly one character y,, we get Bohr’s theorem.
This method is also valid if @,’s are not independent mutually but if
each P, is disjoint with the group generated by &, u.... &,, though
we do not conclude that the eonvergence is unconditional in this case.

If G is considered as a probability space with respect to Haar measure
4 and if #, denotes the field of all sets of the form =y 1(E), where ¥ is
a Borel set in I7,, then {f,, #,} is a martingale (cf. Doob [3], Ch. VII).
Applying theorems on convergence of martingales, Jerison and Rabson
have proved some theorems on convergence of f, for feL,(G). How-
ever, this belongs to another group of theorems which include the Rade-
macher-Kolmogorov theorem on convergence of Rademacher geries and
its generalizations for independent random variables, first group of
Banach’s equivalences for lacunary orthogonal series (cf. [1] and [12],
P. 250-255) and so on. In this paper we consider only theorems con-
cerning absolute convergence and bounded functions, i.e. theorems
involving the spaces I, and I, like Bohr’s theorem, second group of Ba-
nach’s equivalences and their generalizations.

S. Hartman and C. Ryll-Nardzewski [6] have proved that if &,,
D,, ... are independent and f, fy, f;, ... have the same meaning as above,
then

(4)

Sl < oo

Nme]

where ||f,| = sup{|f,(®)| : #<G}. They embed G into a toroidal group
and show that f, depend on separate variables.

In this paper we give two new proofs of thig theorem. Their starting
point is the following remark. The theorem of Bohr means that if yz,,
%2y --. are independent characters on a compact Abelian group @, then
the class of all uniformly almost periodic funetions with Fourier series
of the form 'a,y, is a closed subspace of (@) and is isomorphic to the
space 1.

Studia Mathematica XXIIT 11
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A similar interpretation is valid for Hartman’s and Ryll-Nardzew-
ski's generalization of Bochner’s theorem. Let us assume, for simpli-
city, that series (2) confains no constant term (i. e., that xum 7 ¢ for all
n and m). (4) means that if &,, ,, ... are independent, then the class
E of all funetions of ¢(@) with Fourier series of the form (2) is a closed
subspace of C(@) and is the l;-direct sum (%) of subspaces H,, H,,... of
functions with Fourier series of the form (3), » ==1, 2, ..., respectively.
Consequently, by Banach’s theorem on the inversion of linear operations,
there exists a constant K >0 such that

(5) Dlifal K|l for all f= Df,ek.

n=1 n=1

On the other hand, if inequality (b) is true for all finite systems
frs fay «.- (i @, such that f, = 0 for n > n,), it is true for infinite systems
a8 well (whenever the series Y |f,|| converges), and & must be the I;-divect
sum of E,, H,, ... Thus, we have only to prove inequality (8) for finite
systems and for some K > 0.

First proof enables us to find the best constant K in (5); it turns
out to be equal to n. The proof iz elementary and uses only the abstract
theorem of Kronecker on solvability of the moment problem |y, (3)—¢,| <e
(n=1,...,N).

The same method can be used for sequences of bounded in-
dependent random variables with expected values 0. It is a natural
generalization of Bohr’s theorem, as independent characters on a com-
pact group are stochastically independent with respect to Haar measure
(D. A, BEdwards [4]).

Second proof does not yield the best constant, but it does not use
the fact that . are echaracters; it uses only some orthogonality re-
lations (with respect to Haar measure on the Bohr eompactification
of @) which follow from (1). Thus, the second proof admits generalizations.

E. Hewitt and H. 8. Zuckerman [9] have established a theorem
that is & simultaneous extension of the theorem of Bohr and of the classi-
cal theorem of Sidon concerning absolute convergence of lacunary Fourier
series. This theorem (proved for arbitrary compact groups) may be for-
mulated for compact Abelian groups as follows. A set V of characters
on @ will be ealled HZ-lacunary if it can be decomposed into a finite num-
ber of subsets V,,..., ¥, so that, for each ¢ (1 < q < p), for each finite

() X being a normed linear space and ¥, X, X,, ... being linear subsets of
X . Y is called the 1,-direct sum of Xy, X,, ... if every element x¢¥ can be uniquely
wnf;ben in the form # = Y, with , ¢ X, and Dll#nll < co. If this is the cage, then
besides the norm induced by X, there is another one in ¥ defined by ||z|l, = 3|lwall-
If (X, |{ > is complete and X, Xy, ... are oclosed, then (¥, || llp> is complete.
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sequence my, ..., My of numbers 0,1, —1 and for each finite set y,, ey AN
of characters of V,, the equality

N
[]XZ% =yeV,
B=1

implies x = x, forgome s < N, my, = 0 for k # s and y's = z_ (). Then,
if V is HZ-lacunary, there ewists an A >0 such that |3,y = A ||ay|
for any xiy ...y xweV and for any complex coefficients ay, ..., ay; more-
over, A > (3p)~*. This includes Bohr’s theorem, for any set of indep-
endent characters is HZ-lacunary. If y is of infinite order (i.e. if 4" =
for all n = 0) and if ngy/n; > o >1, then the sequence {y™};_;,.. is
HZ-lacunary, the converse implication being invalid (ef. [9], p. 8).

The last part of the present paper contains a generalization of this
theorem %o arbitrary bounded measurable functions, algebraic hypothe-
ses about characters being changed to certain orthogonality relations.

The author is obliged to Professors Stanigtaw Hartman, Edwin
Hewitt, Jean-Pierre Kahane and Czestaw Ryll-Nardzewski for several
valuable remarks and suggestions.

2. Elementary lemmas. Throughout this paper, &£ will denote
exp(2nkifn); i e. ey =1, eh,..., sn ' are the n-th roots of unity.

LeMMA 1. The inequality
&

2%,' = %va [
it

=1

sup
1k < e <Hggn

holds for every finite system ay, ..., oy, of complex numbers. The constant
1/~ 4s the best possible; one can approach it considering sequences
=, k=1,..,n, with n - co.

Thig lemma may be formulated for plane vectors as well; it has been
proved as an extremal diagonal property of the convex polygon obtained
by reordering of the vectors (°).

" (9 I {z} is HZacunary, then all products [Tl (6 = 0, +1, —1) are
orthogonal to ¢ unless all dx's are 0.

(%) See A. Rosenthal and 0. 8zész [19], K. Reinhardt [18]., For p-dimensio-
nal vectors (p » 2) we have (A.E. Mayer [18]):

X 1 I'(p/2 1
it sup 12wl _ f o) = — (2/2) ~t
vty =0, Sl 20(84) g Wrl[(p+1)/2] Vamp
i.e. the best constant is equal to one half of the u,-coordinate of the center of gra-

vity of the hemisphere ..
Sy ={w:sw = (Uy,..., up), lull = (2‘“’,%)112 =1, u; > 0},
¢ being the ordinary surface measure on S..

The author is indebted to Professor Jean-Pierre Kahane for a proof of this
theorem. An analogous method is used in the proof of Lemma 2.



GUEST


164 7. Semadeni

Timvma 2. Leb g = 2, ..., s = 2 be any sequence of imtegers, and let
Uy ...y Oy DE ANy SeQUENCE of complex numbers. Then

sup sup akaqk = — y iak[g;csm—
m1=1,...,q1 Mgy =Lyeseslly, =
Proof. We may assume a; 7 0 for & =1,...,n. Then
n n
m, ’_YR My
sup aregt | = sup sup sup o (ayen 6"
0o My =1yl Mg =1s000slly, e

mp=1yeeslp =l

n
f \ || sup Re (‘-Te},’}jre*”) dy

= sup Z sup Re (ay ep,* ") > P

{mg} my}
1 f i 1 \’ )
= o sup Re (¢ e = — lak] cos | min —o||dp
2n ; | k‘o g} Vi 2m £ o | Qe
1 13
=— 2q; 8in—.
7 ‘21; IR A

=2, let

C,=1inf inf  sup \20, gkl

% Flogl=1 mp=1,...q0" ;21

Now, given any integer ¢

Oy=1inf inf inf sup |2ak ez/cl
1 Japl=1 a2 Mp=loll =1

Lemma 3. The following relations hold:
q

e
iy 0, =0, =->sin— =2,3,...
(i) = 0y ﬂsmq for  q=2,3,
2
(i) —=0,<0<
ko
(i) lim 0, = 1.
g0

Proof. The inequalities 0, > 0y > grn"sin (= /q) follow from Lemma 2.

To prove that O, < gn—lsin(r/q), let us consider

a—ie’” k=1 = ql
B = eny =1,...,n, n=dl,

icm°
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1 being an integer; then

1v n
sup  — E &k ek
Mp=1y0ee T

1
3
>~q( E e
Y

k=1 k=1

o 1,2 . —1/2
:-‘q—ll—cosi] [1~cos—r] ~a»isin1 as [ — oo.
n q n T q

Thus, we have proved (i). Conditions (i) and (iii) are obvious.

3. Discussion of the theorem of Bohr. For an Abelian group &,
several definitions of independence of a sequence x, ..., g, of characters
arise naturally. The following ones appear in considerations (my, ..., m,
denote any integers):

I) If H k=1, then my = ... =1m, =0 (full independence).

(Iy) All characters are of the same order ¢ (2 < g < oo) and the

equality H AR =1 implies my == ... =m, = 0 (modq) (g-independence).

m
= et =0

(I1) No g is equal to i, and if H T = ¢, then " =

(rectangular independence or stoohastw independence).
(III) No yx, is equal to any product H 1% (separation independence).

The terminology in (II) and (IIX) Wﬂl be justified in the sequel.
Obviously (I) = (II) = (IIT) and (I,) = (IX). Rectangularly indepen-
dent characters are fully independent if and only if they are of infinite
order, and are g¢-independent if and only if they are of the same finite
order g. Thug, definitions (I) and (IT) are equivalent for a compact group
@ if and only if @ is connected (cf. [7], Theorem (24.25)).

A main tool in our congiderations is an abstraet version of the Kro-
necker approximation theorem (¢).

THEOREM OF KRONECKER. Given o Sequence Xy, ....
on o topologioal Abelian group G and complex numbers ey, ...,
modulus 1, the following conditions are equivalent:

(i) For every e > 0 there ewisis o point i, G such that

s Xn Of characters
on of

(6) Ity —exl <e for k=1,...,n.

(%) If G is the real line and gy (f) = ¢™#, we get a classical theorem of Kronecker.
The abstract form ig very cloge to a theorem of Hewitt and Zuckerman [8], cf. also
['71, theorem (26.15), and has been formulated explicitly by Hartman and Ryll-Nax-
dzewski [5].
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(i) For every system My, ..., My of imtegers
n n
) kam = implies Ho}”’ﬂ =1.
k=1 k=1
If (i) holds, we shall say that the numbers ¢y, ..., o, are compatible

with the characters zi, ..., %». This condition means that if we oconsi-
der the subgroup H of G generated BY xys..-s o (ib consists of the cha-
racters of the form []xi*), then wol [T = [Ier* is a well-defined
character of H. The implication (i) = (ii) is trivial. For a compact group
(6) can be replaced by the equalities y;(f) = ¢, Where 1 i3 2 limit point
of the t’s and the implication (ii) = (i) is an immediate consequence
of Pontriagin’s duality theorem (ef. [7], § 24). Indeed, we extend o,
o a character » on & (& being discrete, o is continuous) and find t<@
such that o(y) = z(t) for all ye& whence y(t) = @ (1) = wolyx) = o
for k=1,...,7n.

If @ is not compact, we may assume it to be discrete, as the topo-
logy of G does not matter in the theorem. Let G be the Bohr compacti-
fication (7) of @; G and @ have the same dual @ and 4, ..., 1, have unigue
extension on @. This reduces the question to the preceding case. There
exists f,c@ such that gg(fe) = ¢ for k=1,...,n. Since G is dense in
@ in the weak topology induced by @, the neighborhood

A0 o) l0] <

contains a point # of G Obviously, |xu(t)—exl <e for & =1,..,%.
LEMMA 4. Let x4, %a, .-- be a countable set of characters on G. Let g
be either equal to 0 or be the least positive integer ¢ such that x% is equal to
o finite 1!»*od'uctﬁﬂc A5 if mo such g emists, let gi be any positive integer.
Then, for any fi;tege'rs 81y .+e18n, the numbers egl, ..., s
Wih Y1y .eny An-
Proof. Suppose that s;,...,s, are given and that

are compatible

n
m;
[l =
Je=1

For each p (1L <p < n), the equality xp? = []xi™" implies m;, =
kD

== 1,4y, Where 1, is an integer. Hence

n n
8pAm, ]
[Jesme = [T =1.
k=1

k=1

(") For the basic properties of the Bohr compactification, see e. g. [7], (26.11).
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In the sequel we shall assume @ to be a compact Abelian group.
This assumption simplifies the proofs and does not decrease the general-
ity, as we may always consider all characters as extended over the Bohr
compactification.
Now, let us consider the following conditions:

(1') Any numbers ¢, ..., ¢, of modulus 1 are compatible with yy, ..., %,.

() gt =1 for k=1,...,n and any numbers g%, ..., g™ are compa-
tible with Y1y ..oy X,-

(IL') % ¢ ond any numbers ¢y, ..., 0, belonging to the ranges of
L1y ooy Xy TESDECHVELY, are compatible with yiy ..., X,-

(X1} x, # ¢ and for any points by, ..., % of G there ewisls a point
te@ such that x,(t,) = x,() for B=1,...,n.

(L") xp, b ol g1y ...y %, ore mutually independent random varia-
bles with respect to Haar measure on @.

(IIL') For each s (L <s < n) there exist t, ue @ such that x(t) =
=y, () for k£ s and x5(t) # gs(u). In other words, no proper subset
Of {41y -+, xu} S€PaTates all points separated by the whole set.

(ITI") There emist integers g >2,...,0, =2 such that for every
sequense Sy, ..., Sy, of indegers the numbers &, ..., & are compatible with
FATREEEY A

ProposITION 1. The following equivalences hold: (I) <= (I'), (I,) <
< (L), (II) < (IT') < (I1") < (II'""), (III) < (IIT") < (II1").

Proof. The equivalences (I) < (I), (I,) < (Ig), (II) < (II') < (II")
are well known and follow from the theorem of Kronecker. Implica-
tions (ITI") = (III') = (III) are obvious. (ITT) = (III") is & consequence
of Lemma 4.

Bquivalence (II) <> (II") hag been proved by D. A. Edwards
[4], but it seems worth while to give an elementary proof of the impli-
cation (II) = (XI'""). Let xy,..., %, be independent in the gense (IT).

Suppose that xi,..., xp are of finite orders ¢, ..., ¢p, respectively, and
that gpiqy-.., xn are of infinite order. Leb
2—1 2141
Q% ={"G= pult) = e, BT o @]
m m

and
Xk
Pl],...,ln = ngaklk .

It is enough to prove that

n
)  w(Py.y) =[[p@m) F=1,m k=10 am),
Kol
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where g1, -+, ¢ are arbitrary positive integers. By (II), there exists
% = Up,.1, @ such that x(u) = gk for b =1,...,n. Consequently,

.....

% K - i
Qete = oo+ and Py,.,1, = Po,..o%- Since

a " q n
Uqul=G=U--~U—Pll ..... Ty,
1=1 =1 Ip=1

and these are decompositions of @ to disjoint sets and since y is invariant,
!‘(ngklk) = QI:I and .u(Pl],.”,ln) = (... gu)"t for all I =1,..., g, which
gives (8).

We shall say that an infinite set of characters iy independent in the
sense (1), (L), (IT) or (IIT) if any of its finite subsets is independent in
the sense (I), (I), (II) or (ILT), respectively.

TasorEM 1. Let Yoy, be the Fourier series of a function feL®(G.
Then (8)

(i) If there ewists an indew ny such that {y, tnsn, 18 Jully independent,

I = 0l

Conversely, if (9) is satisfied for all functions f = Dany, with (an)ely,
then there exists ny such that {3 }n.n, ¢ fully independent.
(i) If {gu} 18 g-independent, then

then
(9)

1
(10) I < Xleal <51l
q
where the constant 07" is as in Lemma 3 and is the best possible.
(iii) If {y,} is independent in the sense (IL) or (II), then

(1) 1) < Xlaal <141

amd, the econstant =[2 is the best possible for either class.

(iv) If {x,} s independent in the sense (II) and the order of each x,
g greater than or equal to g, q being an integer and q > 2, then (10) holds.

Proof. In each cage the reasoning is as follows. First we prove that
the desired inequality holds if f is a linear combination of & finite num-
ber of characters of {y,}. Next we conclude that }|a,| < oo for each
fel®(@) with f~ Ya_y (cf. [9], p. 14) whence, by the completeness of
the orthogonal system of all eharacters, f = }a,y, almost everywhere

(®) Throughout this paper, the symbol || || will always mean the sup norm,

i.e. {ifll = sup |f(t)] for continuous functions and |f| = es sup |[f(¢)| for bounded
measurable functions.

icm
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and we may assume that fe0(G). Thus, by Fejér’s theorem, f can be
uniformly approximated by finite sums by, and the corresponding in-
equality must hold for infinite sums as well (the same argument is used
in the proof of Theorem 3; if one of |f||, } |a,| is finite, so is the other),

Proof of (i). We may restrict ourselves to the case where {yi, ..., %}
is not fully independent but {y,, ..., .} i8; given complex numbers

@y = 1167, ..., Gy = 1,6 and f = 26,7, we have only to prove that
o1

IIfil = 3 lox|, the converse inequality being obvious. There are integers
My, ..., My Such that my >0, Il X;':" = and m, is the least integer with

_this property. Hence, by Lemma 4, the numbers sfnl, 1,1,...,1 are

compatible with gz, ..., %, and, by Kronecker’s theorem, there exist
by oeeytmy 0 G such that xi(te) = e and x,(6) =1 for k=2,...,n,
s=1,...,mj. Lot p = Ymupy/>my. By (I'), there exists ue@ such that
ge(w) = ¢~ for k = 2,..., n, whence

n

My Pot oo+ My P —P (Mgt ...+ M) i

; @, 619 Pk)
My ] - 2 ® !

k=2

flu) = alafnlexp[

where &, appears as a result of taking m,-th root while caleulating ().
Thus, f(u—1t,) = €+ (|@y]+...-|a,]) whenee [ffl >3 |azl-

We have now to prove that if no {y,}n.n, is fully independent, then
there exists a sequence (ay)el, such that | Ya 7|l # 3 la,|. By reordering
we may assume that there exist integers ms, ..., My, by, ...y Iy such that

n n
my >0, I, >0, nx;;’k:L and ”ﬁf:z.

F==l k=2

Consider f = ayy,+ o+ ..., Where ay = ¢*", o being irrational,
and a, = ... = a, = 1. We elaim that [|f] < }|as = n. Indeed, if there
existed ¢, such that [f ()| = n, then there would exist y such that a, ;1 (%) =
= 2alty) = ... = 1, (t;) = ¢'* whence y = 2rs(ly+...+1,)*, s being an
integer, and « would be rational. Thus, we have proved (i).

In order to prove (ii), (iii) and (iv), it is enough to show the follow-
ing facty: 1° Tf y, are separation independent, then (11) holds. 2° If they
are rectangularly independent and their orders are greater than or equal
to g, then (10) holds. 3° For each ¢ >> 2 and ¢ > 0, there exist a compact
group @, ¢-independent characters yy, ..., %, on & and complex nuinbers
@y, ..., Gy such that || Na, x| < (Og+e)3lacl (notice that sup{0;': ¢ =
=2,8,...} = n/2).

Proof of 1° Let ¢i,...,q, satisfy (TII"). Then, for each
system s;,...,s, of integers, there exists a point Ty, € O STUCH that
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Ly (bapyr ) = gk for k=1,...,m. Consequently, by Lemma 2 and
by O, >2/x,

[
A
ah xk

k=1

™
<3

“

’

whenee we have (11) for finite sums.

Proof of 2° is similar: we apply Lemmas 2,3, 4.

Proof of 3° Let Z, be the cyclic group of order ¢ and let & be
the Cartesian product of ¥, copies of Z, (with produet topology), i.e. ¢
consists of the sequences u = (Uj, s, ...) Where u, = gy 1 <8, < q.
Every character of G is of the form

2(u) = wd (w) g (w)  (m =0, ..., ¢—1),
where y, (w) = u, are elementary characters of @, generators of G-
Obviously, i, %s,... are g-independent and (for az = efy)

1 1 & - 1

X koL 3
— & =— 8 28 efl=— & :0-{—0(——).
g Hg na Xi, nq l;,_.:o,...I,)q..l . ngfq ng ; ng [ "

4. Main theorem. Complex-valued functions fi,...,fn. on a set §
will be called rectangularly independent if for any points #,...,% of §
there exists #,¢8 such that fi(t,) = fr(f) for k =1, ..., n; this means
that

{FAGR "",.f”(t)) 1te8) = {fi(B): 18} X ... X {fu(t): £eS}.

‘We shall say that the values of a complex-valued function f on §
surround zero if 0 belongs to the convex hull of the image of the function
fyi. e. Occonv {f(?): te8}.

ProrosrrioN 2. Let 8 be ¢ compact Hausdorff space, feC(8) and let
M be the set of all non-negative Radon measures on 8 such that u(S) = 1.
Then the values of f surround zero if and only if there exists uwe M such that

fau =0.

Proof. Sufficiency iz trivial, to prove necessity let wus consider
D (p) = [fdp as » map &: M - conv f(8). Obviously, H(M) is econvex,
compact and eontaing f(8) whence & is onto conv f(8§).

- TomoREM 2. Let 8 be compact, fiy...,fneC(8) and let |fyll = ... =
=l = 1. If fi,...,f, are rectangularly independent and their values
surround zero, then the inequality
1 ™
>= D} wl
k=1

n
l]Z“kfk
P
.y @y Of complex nuwmbers.

holds for every sequemce a, ..

icm
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Proof. We may assume ap # 0; let g, = apf;, and g = > g,. There
exist points &1, ..., .S such that [[fill = |f, (&) for k=1,...,n. Let
N1y - M D€ @ sequence of numbers 0 or 1 such that sup|> g, (#,) is
attained, i.e. {3

w
sup | ' 8ugu(te)] = 0],  where

Op=0.1 " fr1

n
b= ngk(tk) .
=

Suppose ;= 0. Then <L{gi(),d> >n/2 where <<a,d) denotes
the non-oriented angle between o and b treated as veetors. Since g; has
values surrounding zero, there oxists w;¢8 such that either g (u) = 0
or I{gpw), by < /2. Let A = {I: 5 = 0}. Henee,

either

D) =0 or  x(Y glm),b) <2

led led

Let v = t it np = 1 and v, = g if u, = 0. By rectangular indepen-
dence, there exists eS8 such that fi(t) = fir(vs) Whence gi(t,) = gr(s)
for k =1,...,n. Consequently, by Lemma 1,

DYEPNAGESUE w|o+ Y i)

kwsl led
= w}fgk(m! = nlg(ta)] < nl{kznlakfku.
fo=al =

TurorREM 3. Let @, = {X,,} be independent systems of characters
and y,, ¢ for all m, k. Then, if o function feC(Q) has the Fourier series
of the form (2), then there exist functions fy, fo, ... in O(G) such that (3) and
Dl < =llfll Rold. The constant = s the best possible, if one considers
all @,’s and all compact Abelian groups.

o

Proof. Let Py = > 'tmpyme. Then Py, ..., P, are rectangularly inde-
Toes)

pendent (by the theorermn of Kronecker) and, by Proposition 2, their
values surround zero bovause [Py, du = 0, 4 being the Haar measure on 6.
So we have ZHPm” S TVHZ—PMHA

Now, let H,, bo the uniform closure of the clags of all linear com-
binations of characters of @, and let H,, be the I-direct product of By,
By, ... Then | Yfull < Slfull < =l 3l holds on J, and this means that
the norm || |, defined by ||fllo == 3 ifull for f = X fu B, is equivalent to
Il I B being complete with respect to || ||y, it is complete with respect
to || || and closed in C(@) as well. On the other hand, by Fejér’s theorem,
the class B, is dense in the class B of all functions of O(G) with Fourier
series of the form (2); hence both classes coincide.
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‘We have also to show that = is the best constant. Let @, be the real
line and, for any 0 < 6 <%, let

1 for k<t <k+6, k=0, £1, +2,...,

1) =
o) =1 _ 51— 5 elsewhere on tho line,

and let h,,(f) = €, 05(A,t) where A, ..., 4, are rationally independent
real numbers. Then ~
T
lim (27)~ [ ho(t)dt = 0,

Teroo _r

hm| =1 for m =1, ..., n, and
n n
” Z hm” = sup l 27]711,3:?
M=1 Im=01" =1

so the ratio ||} hull (3 lal)~ can approach 1/r arbitrarily as 6 — 0,
7 —» oo. Approximating the functions h,, by suitable trigonometric poly-
nomialg

10(ns) = %+ o(n) +0(nd),

hedpt
fm = ya'm/ce "

k20

we can approach 1/x with polynomials over independent sets of ¢haracters
By, = {6y 1,40, (Without constant terms); finally we pass to the
Bohr compactification.

5. Independent random variables. Actually, the method of Hartman
and Ryll-Nardzewski [6] is founded on the tollowing fact which is worth
while stating explicitly (®):

PRrOPOSITION 3. Let @, = {A e} H=1,,... De independent systems of charac-
ters on a compact Abelian group @ (i. e. let (1) be satisfied) and let the Fourier
series of fumetions f,, fo, ... of Ly(&) have the form (3). Then fisfay ... are

mutnally independent random variables with respect to Haar measure u
on G.

Proof. Let
Gy = p{tsG: Yt =1},

The homomorphisms

?@) = e (@nimrees (@) = {1, (@)} eora,..

. kﬂ
(*y The following problem arises: Suppose fu = 3 ankynr are independent
k=1

mdom’va.riables ong n=1,..,n. Must &,, ..., Py, be independent in the sense
(1)1 Evidently, the auswer is yes if we require the independence for all possible ayy.
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map & into some toroidal groups and @, is the kernel of y. G being
compact, v is open (cf. [7], 5.29) and generates an isomorphism from
@Gy onto H =y(G). Since H =y, (G)X p,(G) X ... (cf. [6], p. 291), the
polynomials ]
‘0
P, = ﬂ‘g,: G, Xy

correspond to functions on H which depend on different variables in the
product ,(G) X po(6¢) X ... The Haar measure 1 on H is the product of
Haar measures 4, on w,(G), whence the functions Py, o, Poyt, L.
ave independent with respect to 1. Since A(4) = u(p~14) for any Borel

set A in H, Py, Py, ... are independent with respect to u. Finally, since
Py~ fu a8 ky -> oo (convergence in measure), f,, f,, ... are also indepen-
dent.

ProrosIrion 4. Let fy,...,f, be independent complex ocontinuous
random variables on & compact probability space (8, F, ) such that WeF
and u(W) 5 0 for any open non-void set W in S. Then fiy ooy fo ave vectan-
gularly independent.

Proof. The sets A = {{f,(t),..., u(t)): teS} and A4, = f,(8) are
compact. If 4 differed from 4,X...Xxd,, there would exist relatively
open sets Vy,..., ¥V, of complex numbers such that & s V,C 4; and
(ViX...xV,)~n4 == @, whence

0 [Julf*(Va) = wIOA7 (V0] = w@) = 0.

It is known (cf. [6], p. 291) that if hy, hy,... are independent
bounded random variables with expected values zero and if 2, (@) con-
verges a. ., then }'|h,| < co, where ||f]| = essup [f(t)]. This may be also
treated as a generalization of the theorem of Bohr. On the other hand,
Theorem 2 can be applied to this case as well.

TurROREM 4. Let fi, fy, ... be bounded mutually sndependent random
variables on a probability space (2, F, p) and let B(f,) =0 for n =1,

2,... Then
99.‘ 931 1 e
P DA PN
Nl Tewnel Pyma]

whenever 3'f, converges . e. The constant L[m is the best possible, if one
considers all sequences fy,fy, ... and all probability spaces.

Proof. First let us consider a finite sequence fy, ..., f,. Let § be the
Stone space of the Boolean algebra #/# where J = {d: u(4) = 0}.
The functions f,,...,f, correspond to some continuous functions
J1y-.y 9y o0 § and u corresponds to a measure A on § which does not



GUEST


174 %, Semadeni

vanish on open non-void sets. Thus, by Proposition 4, Proposition 2
“and Theorem 2, we get ||} full < ZHMH 2llgmll < WHZ Inll = 1| X full
for finite sums.

We have to show that if f= }f, is cssentially bounded, then

=1
Z”fn” < co. Let Sn =f1+ . "+fn7 Pn =f-—-,gn and. ¢ = E(f). Then.
Fuye--sfns Ta— ¢ are esgentially bounded and independent, and B(r,—¢) =0,

whence, by the first part of the proof,

Zufmn

Mm=1

7 fsn+ra—eil = wllf—ell < 2n[if]l < oo.

2 [lfll+ lrn—ell <

M=

The lagt part of the theorem follows from previous considerations.

6. Multiplicative-orthogonal systems. In this section we ghall give
another proof of the theorem of Hartman and Ryll-Nardzewski. It is
valid for bounded measurable funetions; consgidering § as the Bohr com-
pactification of &, u as the Haar measure on § and ¢, as characters,
we get that theorem as a special case.

In the sequel § will be any set with a measure u on a o-field of sub-
gets and u(S) =1. L, will mean the complex space L ( , #) with norm
Ifl = essup {If(5)]: te8}. Let a™ = a™and 4™ = a™ for m =1, 2,.
and let a” =1, e being a complex number,

THEOREM B. Let {@uitn w1y, be & family of uniformly bounded measur-
able fumctions on 8 such that, for any integers my;, (n =1,...,N; k=
=1,..,k),

Nk
2) [[]]]osman £ 0 implies ]’]¢g¢¢nk>~1 for m=1,..,N.
8 To=1

n=1 k=1

Next, let f be any function of L, such that there exists a sequence hy,
of linear combinations of funations gu, (n,k =1,2,...) convergent to f
boundedly almost everywhere, i. e.
(13) b —>f a6 on 8 wnd |h) <O for m=1,2,...

Then there ewist functions fﬂsL such that f = >'f,. ¢, o being a con-
stant, g Jnlu =0 for n=1,2,..., each f, can be appromimated in Il

by linear combinations of ¢ny, Puy, ..., and

lel+ D ifall <91

icm°
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Proof. Let ¥ denote the sot of all polynomials of the form

.
Py(t) = a'l()n)"l" Za%iw-:mr H [‘Fnk(t)](mk>1

where the summation is extended over a finite number of systems m,, ...
.., m, such that f [oii®> 1. Then

JIT20autn = [Jo =[] [rom0

n=1 g
for any Ppe¥, (n =1,..., N). (In particular, if no P, have constant

terms, then they form a multiplicative-orthogonal system.) Consequently,

| ﬁ P = ﬁ WPl

Indeed, @,, = |P,[* =
and

e

The closures Y, of ¥, in L, are subrings of L, and |[]fall = []lfall
ig still valid for f,eY,. Thus, arguing as Mazur and Orlicz do in [17],
we get (for rea,l Foe ¥a)

P, PSP belong to W, for p =1, 2,...,

= 11111 If[[ Qup @ ]1/2” ~[] llm [wid,u]mp ” (1Pl

n=1

o8 bup Z Tu = \ 08 sup Frs cs inf Z fn = 2 esmf fu-
M=l b N=1 =1
Indeed, expf,eY,, whence exp(essupf,) = essup (expf,) =

I[Texpfull = [Jes sup(expfn) = [Jexp(essupf,) = exp(} essupf,). If we
consider complex-valued f,e¥, such that [f,du =0, then, arguing as
Hartman and Ryll-Nardzewski do in [6] (p. 292), we get

e sup (Ref,) = 0 = esinf (Refy,),

whence
EHR@]’HH < Do aup(Refn)—Z esinf (Ref,)
<2 max lZes sup (Refy), — D es inf(Re fn)]
== 2 6§ BUP lrx.l&x(Z‘l%efn,»Zl%efn)] = ZRefﬂH.

A similar relation holds for imaginary parts, whence Y|full <
< 41 3l for fe Y, with [f.dp = 0. If we consider any functions g, Yy,
we may write f = 3 g, uniquely in the form f = 3'f,+ ¢ where f,eB, =
={ge¥,: fgdu = 0}, ¢ is a constant, |o| = |[fdu| <|fl, and [f] <
< 2lfall+ lo] < 4lf —ell+lol <IIIF-
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The next reasoning is as in Theorem 3. Nevertheless, we have to
prove that the I;-direct product E of Ey, B, ... is closed not only with
respect to || || but also with respect to the convergence (13); this can
however by proved by two-norm methods, cf. [21].

We shall now prove a generalization of the quoted theorem on HZ-
Jacunary sequences. It is also a gemeralization of Bohr’s theorem, as
any sequence of separation-independent characters is HZ-lacunary.
‘We find Theorem 6 to be close to Theorem 5, bub neither is a special
case of the other. Namely, condition (12) will be assumed only for pro-
ducts of funetions and their adjoints, but not for higher powers of them.
Of course, this assumption is not enough to prove that the span of the
functions in question is the I,-direct product of corresponding subspaces
(example: characteristic functions of digjoint non-zero sets in 8), but
an additional assumption infsf |ful?dp >0 will be.

THEOREM 6. Lét {f,}eu be a family of functions of L (S, u) satisfying
the following conditions:

(14) Il <1, [fudu =0 for aed;
5
{15) f [fa(D)2du = 0 unless f, is real-valued;
5 ~

(18) If F = {ay,..., an} 98 any finite subset of A, if 8,,..., 8, are equal

to 0,1 or —1 and if BeA, then the condition
fnfé}’,'”fﬁdﬂ #0
8

implies 0, = 0 for o # f.
Then the inequality

| St > Lint] [inaa] 3
k=1 I k=1

holds for any finite system a, ...,a,cA and for any comples num-
bers ay, ..., Gy.

Proof. Let

a7

= [Ifl2du

and  x = infx, >0.
8 o

Let Q Dbe the Stone space of the Boolean algebra of u-measurable
subsets of § considered up to sets of p-measure 0. The spaces Lo (8, )
and 0(Q) are isometrically isomorphic. Let ¥, be the continuous functions
on £ corresponding to f, (eed) and let A be the Radon measure on 2

icm
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which corresponds to u. Conditions (14)-(17) may be written for , and
4 in just the same form as for f, and u; so we can apply the methoda e
by Hewitt and Zuckerman in [9).

Let {¢,} be any complex-valued function on 4 such thas sup e
Let F' be any finite set of indices of 4. We define generalized
duects: .

h(w) == 2 [ [0+, Re(owp, ()] [T 114+ b Re (o) (u)],

ael'n ael'y

ul .

Riesz pro-

gr(w) = [ 11+ 2 T (e, (u)],

)
aely

where #, is the set of all aelF yuch that p, is real-valued and F, = PN\ P,
(it ¥y or F. i void, let the corresponding product be equal to 1). Then

Zx;'lRe(oa)%—}—R,

"
aelly

he =24 Dl oot D oy,
aslg

aelly
where £ is a linear combination of products [Ty’ such that D =2.
uell
Hence, by (14), (15) and (16),

0 if Bek,,
} hypppdd = Ree, it Bk,
0 i Ber.
Similarly,
. Ime it BeF,
f Jrppdd = ’ . . .
. 0 if pek, orif B¢ F.

Since le,pa(h)] < %4, hp and gy are non-negative on Q. Consequently,
the funetionals

En(@) = [w(u)[hy(w)+igr(u)]di(v)

(e
are linear on (J(£2) and their norms [ g~ igw] @A do not exceed 3. Hence,
by compaetness argument, there exists a functional £(z) = J#d of norm
< 8 and such that &(p,) = [y.dA = o, for every aed. Thus, (17) is & con-
sequence of the following lemma (1): :

LmMMA 5. Let T be a compact Hausdorff space and let {g,}eq be @ family
of eontinuows funetions on T such that llg)l <1 for acA and there ewist
biorthogonal Radon measures {pylpeq on T (i.e. [g,duy = 8y for a, Bed).
Then, given M >0, the following conditions are equivalent:

(1) This lemma is u generalization of an equivalence known for orthogonal
systems (Kahane [137, p. 310, lewitt and Zuekerman [9], p. 14, Rudin [20], p. 207).

Studia Mathematica XXIII 12
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(a) The inequalily

> M Dol
Ie=1

|30

holds for any finite sysiem of indioes 0y, ..., apeA and for any complex
NUMDEFS gy ooy Qn.

(b) For every bounded complex function {0gaca 0N A there exists a boun-
ded complex Radon measure 4 on T such that [g,di = ¢q for acd and
[A{(T) < M sup|oal.

Proof. Let Z be the class of all functions of the form z = 2 afy
with {a,}el(4) (summation is actually countable), and let ||zlly = >'|aq
(the existence of {ug} yields uniqueness of such representation). Then
llo|l < |lflo for all weZ and (a) means that |||, < M*|jz]l, 1. e. that the
norms are equivalent. If this is the case, then any bounded funetion {e,}
determines a linear functional &(z) = X @,¢, on <Z, | [|> which can be
extended to a linear functional &(z) = f zdi on CO(7) so that f g, 02 =
= £(g.) = &(ga) = ¢, and [A[(T) (being the norm of £ on C(T)) is equal
to the morm of & on <Z,|| |> and does not exeeed M~'-suple,.
Conversely, if for every bounded {c.} such a 1 exists, then the conjugate
spaces to <Z, || [> and <Z,] [l,> coincide and || = Ml@l,.
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