

Entire functions in B_0 -algebras containing dense division algebras

1

S. ROLEWICZ (Warszawa)

Let R be a B_0^* -algebra, i. e. locally convex metric linear algebra, in which operations of addition and multiplication are continuous with respect to both arguments. If R is moreover complete we say that R is B_0 -algebra. In this note we shall consider only B_0^* -algebras over complex scalars. Without loss of generality we can assume that R possesses the unit e, i. e. such an element e that ex = xe = x for all x belonging to x.

The topology in a B_0^* -algebra R may be introduced by means of a denumerable sequence of pseudonorms satisfying

(1)
$$||x||_i \leqslant ||x||_{i+1}, \quad i = 1, 2, \ldots,$$

and

$$||xy||_i \leqslant ||x||_{i+1} ||y||_{i+1}$$

([9], Theorem 24). A sequence x_n tends to x if and only if

$$\lim_{n} \|x_n - x\|_i = 0, \quad i = 1, 2, \dots$$

If we can choose a sequence of pseudonorms satysfying (1) in such a way that we can replace (2) by

$$||xy||_{i} \leqslant ||x||_{i}||y||_{i},$$

then we say that R is a multiplicatively convex algebra, briefly m-convex algebra [1], [4].

We say that a B_0^* -algebra is a division algebra if each element x is invertible, i. e. there is an element x^{-1} such that $xx^{-1} = x^{-1}x = e$. If the operation of the inversion $x \to x^{-1}$ is continuous, then the given algebra is isomorphic to the algebra of complex numbers [2].

If a division B_0^* -algebra is *m*-convex, then it is isomorphic to the algebra of complex numbers ([4], Proposition 2.8).

If a division B_0^* -algebra is complete, i. e. is a B_0 -algebra, then it is isomorphic to the algebra of complex numbers [10]. But in the general case of B_0^* -algebras this is not true. First counter-example has been constructed by Williamson [8].

Let

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an arbitrary entire function of the complex variable z. We say that the function $\varphi(x)$ is determined in a B_n -algebra R if for each x belonging to R the series $\sum_{n=1}^{\infty} a_n x^n$ is convergent.

If in a B_0 -algebra R there are determined all entire functions. then R is m-convex [5]. It implies that if in the completion \bar{R} of a division B_0^* -algebra R all entire functions are determined, then R is isomorphic to the algebra of complex numbers. It is not known. whether it is possible to replace the assumption that all entire functions are determined in the completion \bar{R} by the assumption that all entire functions are determined in R.

The following question arises: is a division B_n^* -algebra R isomorphic to the algebra of complex numbers, if in its completion \bar{R} there is determined some entire function (for example e^x).

In this paper a negative answer to this question is given. It follows from

THEOREM. For every entire function

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n$$

there exists a commutative B_0 -algebra R_m containing a dense division B_0^* -algebra non-isomorphic to the algebra of complex numbers, such that the series $\sum_{n=0}^{\infty} a_n x^n$ is convergent for each $x \in R_{\varphi}$.

Obviously, if B_0 -algebra contains a division algebra non-isomorphic to the algebra of complex numbers, then there are no multiplicative linear functionals. Hence we have the following

COROLLARY. For each entire function

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n,$$

there is a commutative B_0 -algebra R_m such that the function $\varphi(x)$ is determined in R_{σ} and in this algebra there are no multiplicative linear functionals.

This corollary contains the negative answer to Problem 1 of paper [5]. The proof of the theorem is based on the following construction which is an extension of the construction of Williamson [8] on the one hand, and of the construction used in paper [5] in the proof of the Proposition 2.5, on the other hand.

Let f(u) be a non-negative function determined for $u \ge 0$, increasing, equal to 0 in 0 and tending to infinity at infinity. Let f(u) satisfy condition Δ_2 , i.e. there is such a constant C that $f(2u) \leq Cf(u)$ (1). Without loss of generality we can assume that C is an integer.

Let

(p = 1, 2, ...)

Let $L(a_{p,n})$ denote the space of all sequences $x = \{x_n\}$ of complex numbers such that

$$||x||_p = \sum_{n=-\infty}^{\infty} a_{p,n} |x_n| < +\infty.$$

 $L(a_{n,n})$ is a B_0 -space with respect to the topology induced by the pseudonorms $||x||_p$ (see [3] and also [6]).

LEMMA 1. If we determine multiplication in $L(a_{p,n})$ as convolution, i. e. z = x * y, $x = \{x_n\}$, $y = \{y_n\}$, $z = \{z_n\}$, $z_n = \sum_{k=0}^{\infty} x_k y_{n-k}$, then $L(a_{p,n})$ is a B.-alaebra.

Proof. First, we shall show that for each p there is such an r that

$$a_{p,\,n+m} \leqslant a_{r,\,n} \, a_{r,\,n}$$

for all n and m.

Let $n, m \ge 0$. Then

$$a_{p,\,n+m} = e^{-f(n+m)/p} = e^{-f(n+m)/2p} \, e^{-f(n+m)/2p} \leqslant e^{-f(n)/p} \, e^{-f(m)/p} = a_{2p,\,n} a_{2p,\,m}.$$

Let n, m < 0. Then

$$a_{n,n+m} = e^{pf(|n+m|)} \leqslant e^{Cp[f(|n|)+f(|m|)]} = a_{Cp,n} a_{Cp,m}$$

Let $n \ge 0$, m < -n. Then

$$a_{n,\,n+m} = e^{pf(|n+m|)} \leqslant e^{yf(|m|)} = e^{2pf(|m|)} e^{-f(n)/2p} e^{f(n)/2p} e^{-pf(|m|)} \leqslant a_{2p,\,n} \, a_{2p,\,m} \, ,$$

because

$$e^{f(n)/2p-pf(|m|)} \le e^{(1/2p-p)f(n)} \le 1$$

Let
$$n \geq 0$$
, $-n \leq m < -n/2$. Then $a_{p,n+m} \leq 1$ but
$$a_{Cp,n} a_{Cp,m} = e^{-f(n)/Cp} e^{Cp f(|m|)} = e^{Cp f(|m|) - f(n)/Cp}$$

$$\geq e^{Cp f(|m|) - f(2|m|)/Cp} \geq e^{(Cp - 1/p)f(|m|)} \geq 1.$$

⁽¹⁾ We have obviously f(m+n) < C[f(m)+f(n)] for m, n > 0.

Hence $a_{p,n+m} \leq a_{Cp,n} a_{Cp,m}$.

Let $n \ge 0$, $-n/2 \le m \le 0$. Then $n+m \ge n/2$ and

$$a_{p,\,n+m} = e^{-f(n+m)/p} \leqslant e^{-f(n/2)/p} \leqslant e^{-f(n)/Cp} = a_{Cp,\,n},$$

hence $a_{p,n+m} \leq a_{Cp,n} a_{Cp,m}$, because $a_{Cp,m} \geq 1$.

Therefore for $r = \max(C, 2)p$ we have

$$a_{p,n+m} \leqslant a_{r,n} a_{r,m}$$

for all n and m.

Now, we can estimate the pseudonorms of the convolution:

$$\|z\|_p = \sum_{n=-\infty}^{\infty} a_{p,\,n} \Big| \sum_{k=-\infty}^{\infty} x_k y_{n-k} \Big| \leqslant \sum_{n,\,k=-\infty}^{\infty} a_{p,n} |x_k| |y_{n-k}|$$

$$\leqslant \sum_{n,\,k=-\infty}^{\infty} a_{r,\,k}\; a_{r,\,n-k} |x_k| \, |y_{n-k}| = \sum_{k=-\infty}^{\infty} a_{r,\,k} \, |x_k| \, \sum_{m=-\infty}^{\infty} a_{r,\,m} \, |y_m| \, = \, ||x||_r \, ||y||_r \, .$$

Hence $L(a_{p,n})$ is a B_0 -algebra, q. e. d.

Let M be a set of functions, analytic in the set $\{z\colon 0<|z|< r_x\}$, where r_x depends on the function x(z) and such that $\lim_{z\to 0} x(z)$ exists, finite or infinite. The set M is a division algebra with respect to the pointwise multiplication. By \tilde{M} we denote the set of all sequences $\{\ldots,0,\ldots,0,x_{-k},\ldots,x_0,\ldots,x_n,\ldots\}$ of coefficients of expansions of the functions $x(z)\in M$ in the Laurent series

$$x(z) = \sum_{n=-k}^{\infty} x_n z^n.$$

Obviously, the multiplication in \tilde{M} is determined by convolution, and \tilde{M} is a division algebra.

LEMMA 2. If $f(n)/n \to \infty$, then $\tilde{M} \subset L(a_{n,n})$.

Proof. Obviously it is enough to prove that the series

$$\sum_{n=0}^{\infty} a_{n,n} |x_n|$$

is convergent for each p. But x(z) is analytic in the set $\{z\colon 0<|z|< r_x\}$ whence the series

$$\sum_{n=0}^{\infty} x_n \left(\frac{r_x}{2}\right)^n$$

is convergent. Since $f(n)/n \to \infty$, $a_{p,n} < (r_x/2)^n$, for sufficiently large n, therefore series (5) is convergent.

It is easy to see that \tilde{M} is dense in $L(a_{p,n})$. In the example of Williamson f(n) was equal to $(n+1)\ln(n+1)$.

LEMMA 3. Let $M_1,\,M_2,\,\dots$ be a sequence of positive real numbers such that

$$\frac{M_n}{n} \to \infty.$$

Then there exists such an infinite-dimensional commutative B_0 -algebra R, containing a dense division algebra, that for each complex sequence $\{b_n\}$, $n=0,1,2,\ldots$, satisfying

$$\sum_{n=0}^{\infty} |b_n| e^{M_n} < \infty$$

and for each $x \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} b_n x^n$ is convergent in \mathbb{R} .

Proof. Let

$$\Gamma(n) = \inf_{k>n} \sqrt{nM_n}.$$

Then $\Gamma(n)$ is increasing and

$$rac{\Gamma(n)}{M_n}
ightarrow 0 \,, \quad rac{\Gamma(n)}{n}
ightarrow \infty \quad (n
ightarrow \infty).$$

From Lemmas 2.1 and 2.2 of paper [5] it follows that there is a function $\Omega(u)$ such that

- 1. $\Omega(u)$ is a convex function,
- 2. $\Omega(u)/u$ is increasing and tends to infinity when u tends to infinity.

3. If
$$i_j \ge 0$$
 and $\sum_{j=1}^n i_j = k$, then

$$\Omega(k) \leqslant 8 \sum_{i=1}^{n} \Omega(i_i) + \Gamma(n).$$

If in the definition of $L(a_{p,n})$ we put $f(n) = \Omega(n)$, we obtain the algebra which satisfies the conclusion of Lemma 3.

Property 3 implies that $\Omega(u)$ satisfies condition Δ_2 for $u \geqslant 1$, hence Properties 1 and 3 and Lemma 1 imply that $L(a_{n,n})$ is a B_0 -algebra.

Lemma 2 and Property 2 imply that $L(a_{p,m})$ contains a dense division algebra.

Let $x = \{x_n\}$ be an arbitrary element of $L(a_{p,n})$. Let

$$x = y + z, \quad y = \{y_n\}, \quad z = \{z_n\},$$

where

$$y_n = \begin{cases} x_n & \text{for} & n \geqslant 0, \\ 0 & \text{for} & n < 0, \end{cases}$$
 $z_n = \begin{cases} 0 & \text{for} & n \geqslant 0 \\ x_n & \text{for} & n < 0 \end{cases}$

Obviously $||x||_p = ||y||_p + ||z||_p$.

From Property 2 it follows that

$$\varOmega \Big(\sum_{j=1}^{n} i_{j} \Big) \geqslant \sum_{j=1}^{n} \varOmega \left(i_{j} \right).$$

Hence $||y^n||_p \leq ||y||_p^n$. On the other hand, in the same way as in Proposition 2.5 of paper [5] we can show that $||z^n||_p \leq e^{pT(n)}||z||_{3p}^n$. Therefore

$$\begin{split} \|x^n\|_p &= \|(y+z)^n\|_p = \Big\| \sum_{k=0}^n \binom{n}{k} y^k z^{n-k} \Big\|_p \leqslant \sum_{k=0}^n \binom{n}{k} \|y^k\|_{p+1} \|z^{n-k}\|_{p+1}, \\ &\sum_{k=0}^n \binom{n}{k} e^{p\Gamma(n)} \|y\|_{p+1}^k \|z\|_{\mathbb{B}(p+1)}^{n-k} \leqslant e^{p\Gamma(n)} (\|y\|_{p+1} + \|z\|_{\mathbb{B}(p+1)})^n \\ &\leqslant e^{p\Gamma(n)} (\|y\|_{\mathbb{B}(p+1)} + \|z\|_{\mathbb{B}(p+1)})^n = e^{p\Gamma(n)} \|x\|_{\mathbb{B}(p+1)}^n. \end{split}$$

And in the same way as in Proposition 2.5 of paper [5] we end the proof of the lemma, q.e. d.

As a corollary we obtain the proof of the theorem. In fact, if

$$\varphi(z) = \sum_{n=0}^{\infty} b_n z^n,$$

then it is easy to construct such a sequence of positive reals that (6) and (7) hold. We can thus define R_{α} as algebra R constructed in lemma 3.

The radical of a B_0 -algebra R is defined as the set $A_1 = \{x : \text{ for each } y \in R \text{ the element } (e + yx) \text{ is invertible} \}.$

In *m*-convex commutative algebras the radical is equal to the set $A_n = \{x: \text{ for each number } t \text{ the element } (e+tx) \text{ is invertible} \}.$

Obviously, $A_1 \subset A_2$, but if R contains a division algebra R^* non-isomorphic to the algebra of complex numbers, then $A_1 \neq A_2$.

Indeed, $A_1 \cap R^* = \{0\}$, because if $x \in R^*$, putting $y = -x^{-1}$ we obtain e + yx = 0 and it is not invertible. On the other hand, if $x \in R^*$ and $x \neq te$ for all t, then $e + tx \in R^*$ and it is not equal to 0, hence it is invertible and $A_2 \cap R \neq \{0\}$. Therefore $A_1 \neq A_2$.

In an m-convex commutative algebra the set A_2 is equal to the set $A_3=\{x\colon \text{for each } t \text{ the series } \sum_{n=0}^\infty t^nx^n \text{ is convergent}\}.$

Obviously $A_3 \subset A_2$, but if a B_0 -algebra R contains a division algebra R^* non-isomorphic to the algebra of complex numbers, then $A_2 \neq A_3$. Indeed, let $x \neq te$ for all t and x belongs to R^* , then x and x^{-1} obviously belong to A_2 . On the other hand,

$$||x^n||_{p+1}||x^{-n}||_{p+1} \ge ||e||_p$$

whence x and x^{-1} cannot simultaneously belong to A_3 .

In the algebra $L(a_{p,n})$, also $A_3 \neq A_1$, because the element

$$x = \{x_n\}, \quad ext{where} \quad x_n = egin{cases} 1 & ext{for} & n = 1, \ 0 & ext{otherwise}, \end{cases}$$

belongs to A_3 . But we do not know the answer to the following

Problem 1. If a B_0 -algebra R contains a division algebra non-isomorphic to the algebra of complex numbers, is there at least one element $x \in A_3$?

The preceding considerations give a negative answer to a part of the questions raised in Problem 5 of paper [7], but further remains open

Problem 2. If x belongs to the radical of a commutative B_0 -algebra R, must the series $\sum_{n=0}^{\infty} y^n x^n$ be convergent for each $y \in R$?

With radical it is also connected

Problem 3. Let a B_0 -algebra contain a dense division algebra. Is the radical of this algebra equal to $\{0\}$?

References

R. Arens, A generalisation of normed rings. Pacific Jour. Math. 2 (1952),
 455-471.

[2] - Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), p. 623-630.

[3] G. Köthe, Die Stüfenräume, eine einfache Klasse linearer vollkommener Räume, Math. Zeitschr. 51 (1948), p. 317-345.

[4] E. A. Michael, Locally multiplicatively-convex algebras, Mem. Amer. Math. Soc. 11 (1952).

[5] B. Mitiagin, S. Rolewicz and W. Zelazko, Entire functions in B₀ algebras, Stud. Math. 21 (1962), p. 291-306.

[6] A. Pietsch, Verallgemeinerte vollkommene Folgenräume, Berlin 1962.

[7] S. Rolowicz and W. Zelazko, Some problems concerning B₀-algebras, Tensor (New Series) 13 (1963), p. 269-276.

[8] J. II. Williamson, On topologising of the field C(t), Proc. Amer. Math. Soc. 5 (1954), p. 729-734.

[9] W. Zelazko, On the locally bounded and m-convex topological algebras, Stud. Math. 19 (1960), p. 333-356.

[10] -- A theorem on the B_0 -division algebras, Bull. Acad. Pol. Sci. 8 (1960), p. 373-375.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 9.3.1963