

Metric properties of normed algebras

by

E. STRZELECKI (Wrocław)

An algebra A over the real field R is a vector space over R which is closed with respect to a product xy which is linear in both x and y and satisfies the condition $\lambda(xy) = (\lambda x)y = x(\lambda y)$ for any $\lambda \in R$ and $x, y \in A$. The product is not necessarily associative. In the present note we assume that the algebra A contains a unit element e, i. e., an element satisfying the equation ex = xe = x for any $x \in A$. Given any subset B of A, dim B will denote the linear dimension of B, i. e., the power of a maximal set of linearly independent elements of B. Further, [B] will denote the linear set spanned by the elements of B. For arbitrary elements x_1, x_2, \ldots, x_n by $A(x_1, x_2, ..., x_n)$ we shall denote the subalgebra generated by $x_1, x_2, ..., x_n$..., x_n . An algebra A is called power associative if A(x) is associative for every x in A. An algebra A is said to be alternative if for every pair x, y from A the equalities $x^2y = x(xy)$, $yx^2 = (yx)x$ hold. If only one of the above conditions is satisfied, then A is said to be one-sided alternative. A. A. Albert has proved ([1], p. 318-328), that every one-sided alternative algebra is power associative. An algebra is called algebraic if A(x)is finite dimensional for every x in A. An algebra is called normed if it is a normed space over R under a submultiplicative norm $\|\ \|$, i. e., a norm satisfying in addition to the usual requirements the condition $\|xy\| \leqslant$ $\leq ||x|| \cdot ||y||$ for any x and y in A. Moreover, in this paper we assume that ||e|| = 1.

The aim of the present note is to discuss the relation between metric and algebraic properties of normed algebras.

In the sequel by K we shall denote the unit ball of the normed space in question, i. e., the set $\{x\colon \|x\|\leqslant 1\}$ and by S the unit sphere, i. e., the boundary of K. By the well-known Hahn-Banach extension theorem for every $a\in S$ there exists a linear functional f such that f(a)=1 and $|f(x)|\leqslant \|x\|$ for any $x\in A$. The functional f induces a hyperplane P consisting of all elements x satisfying the equality f(x)=1. This hyperplane supports the unit ball at the point x. An element x is said to be regular if there exists exactly one hyperplane x supporting the unit ball at the point x. There exist algebras whose all elements of the unit

sphere are regular; e.g. classical algebras: the real field, the complex field, the quaternion algebra and the Cayley algebra under the Euclidean norm.

Lemma 1. An element $a \in S$ is regular in A if and only if it is regular in the subspace [a,b] for each element $b \in A$ linearly independent of a.

Lemma 1 is a direct consequence of the Hahn-Banach extension theorem.

LEMMA 2. Let $a \in S$ and b be linearly independent elements in A, P hyperplane supporting the ball K at the point a and f(x) such a functional that $P = \{x: f(x) = 1\}$. Then the intersection $P \cap [a, b]$ consists of all elements $a + \gamma c$ ($\gamma \in R$) where c is a fixed element of the space [a, b].

Proof. Let U be the subspace of all elements u satisfying the equation f(u)=0. Each element belonging to the intersection $P \cap [a,b]$ can be written in the form a+u, where $u \in U \cap [a,b]$. To prove our Lemma it is sufficient to show that $\dim\{U \cap [a,b]\}=1$. Since a and b are linearly independent, the element -f(b)a+b is different from 0. Moreover, $-f(b)a+b \in U \cap [a,b]$. Hence $\dim\{U \cap [a,b]\} \geqslant 1$. If $\dim\{U \cap [a,b]\}=2$, then, of course, $U \cap [a,b]=[a,b]$. Hence it follows that $a \in U$ and, consequently, f(a)=0, which is impossible. Lemma 2 is thus proved.

The set of elements $a+\gamma c$ $(\gamma \in R)$ will be called a *line* and denoted by p(a,c). Let P be a hyperplane supporting the ball K at the point a. If $p(a,c)=P\cap [a,b]$, then we shall call p(a,c) a line supporting the unit ball $K\cap [a,b]$ at the point a. If p(a,c) is a line supporting the ball $K\cap [a,b]$ at the point a, then there exists a linear functional f(x) on [a,b] such that $f(a+\gamma c)=1$ for each $\gamma \in R$ and $f(x) \leq ||x||$ for each $x \in [a,b]$. Consequently, for any $\gamma \in R$ we have the inequality

$$||a+\gamma c|| \geqslant f(a+\gamma c) = 1.$$

Let a, b ($a \in S$) be two linearly independent elements. The element b is called *quasi-orthogonal* to a, if p(a, b) is a line supporting the ball $K \cap [a, b]$ at the point a. We note that if an element b is quasi-orthogonal to a, then inequality (1) is true, i. e., $||a+\gamma b|| \ge 1$ for each $\gamma \in R$. The converse implication is also true. Namely, if ||a|| = 1, $b \ne 0$ and for each $\gamma \in R$

$$||a+\gamma b|| \geqslant 1,$$

then the element b is quasi-orthogonal to a.

In fact, since $b \neq 0$, from (2) we obtain the linear independence of the elements a and b. We define the linear functional f on [a, b] by the formula $f(aa + \beta b) = a$ $(a, \beta \in R)$. For $a \neq 0$ from (2) we get

$$|f(aa+\beta b)| = |a| \leqslant |a| \cdot \left\| a + \frac{\beta}{a} b \right\| = \|aa+\beta b\|.$$

Since f(b)=0, inequality (3) is also satisfied for a=0. The functional f(x) can be extended to the whole space A without increasing its norm. Hence it follows that p(a,b) is a line supporting the ball $K \cap [a,b]$ at the point a, i.e., that the element b is quasi-orthogonal to a. Consequently, we have proved the following

Lemma 3. An element $b \neq 0$ is quasi-orthogonal to an element $a \in S$ if and only if for each $\gamma \in R$ the inequality $||a + \gamma b|| \geqslant 1$ holds.

Lemma 4. If a is regular and b is quasi-orthogonal to a, then $\|a+\beta b\|=1+o(\beta)$ (i. e., $\lim_{\beta\to 0}\frac{1}{\beta}\{\|a+\beta b\|-1\}=0$) and $o(\beta)\geqslant 0$.

Proof. Since a is regular, the line $p(a, b) = a + \gamma b$ is the only line supporting the ball $K \cap [a, b]$ at the point a. Consequently, taking into account the linear independence of elements b and b - aa ($a \neq 0$), we infer that the line p(a, b - aa) does not support the ball $K \cap [a, b]$ at the point a. Therefore, there exists $\gamma_0 \in R$ such that $||a + \gamma_0(b - aa)|| < 1$. Since for $\gamma a \leq 0$ we have the inequality

$$\|a+\gamma(b-aa)\|=(1-lpha\gamma)\left\|a+rac{\gamma}{1-lpha\gamma}b
ight\|\geqslant 1-lpha\gamma\geqslant 1,$$

we infer that $\gamma_0 \alpha > 0$. Now let us suppose that $\alpha > 0$ and $\gamma_0 > 0$. The remaining case $\alpha < 0$ and $\gamma_0 < 0$ can be dealt with analogously.

Since $a \in K \cap [a, b]$ and $a + \gamma_0(b - aa) \in K \cap [a, b]$, for each number γ satisfying the condition $0 < \gamma < \gamma_0$, we have $||a + \gamma(b - aa)|| < 1$. Furthermore, we can choose such a number γ_1 that the inequalities $0 < \gamma_1 < \gamma_0$, $1 - a\gamma_1 > 0$ are satisfied. Thus, for $0 < \gamma < \gamma_1$ we have the inequality

$$(1-a\gamma)\cdot \left\|a+rac{\gamma}{1-a\gamma}b
ight\|=\|a+\gamma(b-aa)\|\leqslant 1,$$

which implies

$$0 \leqslant \left\| a + \frac{\gamma}{1 - a\gamma} b \right\| - 1 \leqslant \frac{a\gamma}{1 - a\gamma}$$

and, consequently,

(4)
$$0 \leqslant \frac{\left\| a + \frac{\gamma}{1 - \alpha \gamma} b \right\| - 1}{\frac{\gamma}{1 - \alpha \gamma}} \leqslant \alpha.$$

Since γ is an arbitrary positive number, we have, according to (4), the relation $\|a+\beta b\|=1+o(\beta)$. Finally, since the element b is quasi-orthogonal to a, we have the inequality $\|a+\beta b\|\geqslant 1$, which implies $o(\beta)\geqslant 0$.

Define
$$x^1 = x$$
, $x^{k+1} = x^k x$ $(k = 1, 2, ...)$.

LEMMA 5. If an element $j \in A$ $(j \neq 0)$ satisfies the equation $j^2 = 0$, then for each $\gamma \in R$ $(\gamma - \neq 0)$ the inequality $||e + \gamma j|| > 1$ holds.

Proof. Of course, to prove our statement it is sufficient to show that for each non-zero $\gamma \in R$ the formula $\lim_{n\to\infty} ||e+\gamma j||^n = \infty$ holds. But this formula is a direct consequence of the inequality

$$||e + \gamma j||^n \ge ||(e + \gamma j)^n|| = ||e + n\gamma j|| \ge n|\gamma| \cdot ||j|| - ||e||.$$

From Lemma 5 we get the following

COROLLARY. Each non-zero element $j \in A$ satisfying the equation $j^2 = 0$ is quasi-orthogonal to the unit element e.

Lemma 6. If the normed algebra A contains an element $j \neq 0$, with $j^2 = 0$, then the unit element e is not regular.

Proof. Contrary to this, let us suppose that e is a regular element. From Lemma 4 and Corollary to Lemma 5 it follows that for each $\beta \neq 0$ the equation $\|e + \beta j\| = 1 + |\beta| \cdot \eta(\beta)$ holds, where $\eta(\beta) > 0$ and $\lim_{\beta \to 0} \eta(\beta) = 0$. Thus,

$$\begin{split} 1 + 2 \, |\beta| \cdot \eta(2\beta) &= \|e + 2\beta j\| = \|(e + \beta j)^2\| \leqslant \|e + \beta j\|^2 \\ &= [1 + |\beta| \cdot \eta(\beta)]^2 = 1 + 2 \, |\beta| \cdot \eta(\beta) + \beta^2 \cdot \eta^2(\beta), \\ 2 \, |\beta| \cdot \eta(2\beta) &\leqslant 2 \, |\beta| \cdot \eta(\beta) + \beta^2 \cdot \eta^2(\beta), \end{split}$$

and

$$\eta(eta) \geqslant rac{\eta\left(2eta
ight)}{1+rac{|eta|}{2}\cdot\eta\left(eta
ight)}.$$

Moreover, there exist positive numbers M and δ such that $0<\eta$ (β) < M whenever $0<\beta<\delta$. Consequently, for each β satisfying the condition $0<\beta<\delta$ we have the inequality

$$\eta(eta)\geqslantrac{\eta\left(2eta
ight)}{1+rac{|eta|}{2}\,M}\,,$$

which implies the following ones:

(5)
$$\eta\left(\frac{\beta}{2^n}\right) \geqslant \frac{\eta(2\beta)}{\displaystyle\prod_{k=1}^{n+1}\left(1+\frac{|\beta|M}{2^k}\right)} \geqslant \frac{\eta(2\beta)}{\exp\left(|\beta|M\right)} \quad (n=1,2,\ldots).$$

Hence we obtain the relation $\lim_{n\to\infty} \eta(\beta/2^n) > 0$, which contradicts Lemma 4. Lemma 5 is thus proved.

An element a of the algebra A is called an idempotent if $a^2 = a$. LEMMA 7. If an element e_1 in A is an idempotent different from zero and from the unit element, then e_1 is quasi-orthogonal to e.

Proof. By Lemma 3, it is sufficient to show that for each $\gamma \in \mathbb{R}$ $\lim_{n\to\infty} \|(e+\gamma e_1)^n\| \neq 0$. Since e commutes with e_1 and $e_1^2 = e_1$, we have the equation

$$(e+\gamma e_1)^n = e+[(1+\gamma)^n-1]e_1.$$

Thus

$$\lim_{n o \infty} \|(e + \gamma e_1)^n\| = egin{cases} \infty & ext{if} & \gamma < -2 ext{ or } \gamma > 0, \ \|e - e_1\| & ext{if} & -2 < \gamma < 0, \ \|e\| & ext{if} & \gamma = 0 \end{cases}$$

and

$$||(e-2e_1)^n|| \geqslant \min(||e||, ||e-2e_1||).$$

which completes the proof.

LEMMA 8. If the normed algebra A contains an idempotent e_1 different from zero and from the unit element e, then e is not regular.

Proof. First of all we note that the elements e and e_1 are linearly independent and, consequently, the elements e_1 and $e_2 = e - e_1$ are also linearly independent. Since $e_2 \neq 0$, $e_2 \neq e$ and $e_2^2 = (e - e_1)^2 = e - e_1 = e_2$, by Lemma 7, the elements e_1 and e_2 are quasi-orthogonal to the unit element e. Consequently, the element e is not regular in $[e, e_1]$. Applying Lemma 1 we infer that e is not regular in A either.

Now we shall quote some elementary concepts of the theory of finite dimensional associative algebras. Let A be suh an algebra. If two nonzero elements $a, b \in A$ satisfy the equation ab = 0, then each of them is called a divisor of zero. The algebra is said to be a division algebra if for every a, b in A, with $a \neq 0$, the equations ax = b and ya = b are solvable in A. It is well-known that any finite dimensional associative algebra without divisors of zero is a division algebra; see e. g. [9, XVI, § 114]. An element a belonging to the algebra A is called a nilpotent if there exists such an integer n that $a^n = 0$. An element $a \in A$ is said to be a proper nilpotent if the elements a and ax are nilpotents for every a in a. The set of all proper nilpotents is called a radical. An algebra is said to be semisimple if its radical contains only zero element. It can be proved that each finite dimensional associative semisimple algebra has a unit element [8, § 9, Theorem 12]. It is clear that an algebra which has no nilpotents different from zero is a semisimple algebra.

THEOREM 1. A finite dimensional associative normed algebra with a regular unit element is algebraically isomorphic with one of the following: the real field, the complex field, the quaternion algebra.

Normed algebras

We note that the unit element is regular in all classical algebras: the real field, the complex field and the quaternion algebra considered under the Euclidean norm.

Proof. We shall prove first that the algebra A in question is semi-simple. Contrary to this let us suppose that there exist an element $x \in A$ and an integer n such that $x^n \neq 0$ and $x^{n+1} = 0$. Setting $j = x^n$, we have, by the associative law, $j^2 = 0$. Thus, according to Lemma 6, the unit element of A is not regular, which contradicts the assumption of our Theorem.

Now we shall prove that the algebra A contains no divisors of zero. Contrary to this let us assume that there are non-zero elements $a, b \in A$ such that ab = 0. The subalgebra A(a) generated by the element a is finite-dimensional, associative and semisimple. Thus, A(a) contains a unit element e_1 which is, of course, a non-zero idempotent. Furthermore, e_1 is a divisor of zero, because for any $x \in A(a)$ the equation xb = 0 holds. Since the unit element e of algebra A is not a divisor of zero, we infer that $e_1 \neq e$ and, consequently, e_1 is an idempotent different from zero and from e. Hence, by Lemma 8, the unit element e is not regular, which is impossible. Thus, we have proved that the algebra A contains no divisors of zero. Consequently, the algebra A is a division algebra. Now the assertion of our Theorem is a direct consequence of the well-known Frobenius Theorem; see e.g. $[6, X, \S 52]$.

Lemma 9. If the normed algebra A contains such an element i that $i^2 = -e$, then the element i is quasi-orthogonal to e.

Proof. Obviously, the subalgebra A(i) is isomorphic with the complex field. The absolute value $|ae+\beta i| = \sqrt{a^2+\beta^2}$ of the complex number $ae+\beta i$ is a multiplicative norm in A(i). Evidently, for $\gamma \neq 0$ we have the equation

(6)
$$\lim_{n\to\infty} |(e+\gamma i)^n| = \lim_{n\to\infty} (1+\gamma^2)^{n/2} = \infty.$$

Since the algebra A(i) is finite-dimensional, the norms | and | | are equivalent in A(i); i. e., there exist two positive constants m and M such that $m|x| \leq ||x|| \leq M|x|$ for any $x \in A(i)$. Thus, by (6), we have $\lim_{n \to \infty} ||(e+\gamma i)^n|| = \infty$ for each $\gamma \neq 0$. Consequently, for each $\gamma \neq 0$ the relation $\lim_{n \to \infty} ||e+\gamma i||^n = \infty$ holds. Therefore for each $\gamma \in R$ the inequality $||e+\gamma i|| \geqslant 1$ is true, which completes the proof of the Lemma.

LEMMA 10. If the normed algebra A contains an element i such that $i^2=-e$ and the unit element e is a regular one, then for each pair $\alpha,\beta\in R$

$$\|ae + \beta i\| = \sqrt{a^2 + \beta^2}$$
.

Proof. To prove our Lemma it is sufficient to show that $||ae + \beta i|| = 1$, whenever $a^2 + \beta^2 = 1$. Consider the elements $x = e \cdot \cos\varphi + i \cdot \sin\varphi$. We know that both norms || and || are equivalent in A(i). Consequently, there exists a positive number m for which the inequalities

(7)
$$||x^n|| > m \quad (n = 1, 2, ...)$$

hold. Since the norm $\|\cdot\|$ is submultiplicative, inequality (7) implies the inequality $\|e \cdot \cos \alpha + i \cdot \sin \phi\| \ge 1$. Suppose that there exists a number φ_0 for which the inequality

$$\|e\cos\varphi_0 + i\sin\varphi_0\| = \varrho > 1$$

holds. Without loss of generality we may suppose that $\varphi_0>0$. Let $\{y_n\}$ denote the sequence of elements

$$y_n = e\cosrac{arphi_0}{n} + i\sinrac{arphi_0}{n} \quad (n = 1, 2, \ldots).$$

We choose such an index N that for each n>N the condition 0< $< \varphi_0/n < \pi/2$ is fulfilled. Thus for each n>N we get the equation

$$||y_n|| = \cos \frac{\varphi_0}{n} e + i \operatorname{tg} \frac{\varphi_0}{n}.$$

Furthermore, according to Lemmas 4 and 9, we have the formula

(8)
$$||y_n|| = \cos\frac{\varphi_0}{n} \left[1 + o\left(\operatorname{tg}\frac{\varphi_0}{n}\right) \right].$$

Hence, taking into account the submultiplicativity of the norm $\|\ \|,$ we obtain the inequality

(9)
$$||y_n|| \geqslant \sqrt[n]{e \cdot \cos \varphi_0 + i \cdot \sin \varphi_0} = \sqrt[n]{\rho}.$$

For each n > N from (8) and (9) we get the inequality

$$\frac{o\left(\operatorname{tg}\frac{\varphi_0}{n}\right)}{\operatorname{tg}\frac{\varphi_0}{n}}\geqslant \frac{\sqrt[n]{\varrho}-\cos\frac{\varphi_0}{n}}{\sin\frac{\varphi_0}{n}}.$$

But the right-hand side of this inequality tends to $\log \varrho/\varphi_0$, when $n \to \infty$, which gives a contradiction. Thus $\|e \cdot \cos \varphi + i \cdot \sin \varphi\| = 1$ for any φ , which completes the proof.

Now we shall prove the following generalization of Theorem 1.

THEOREM 2. Each algebraic one-sided alternative-normed algebra with a regular unit element is isometrically isomorphic with one of the following: the real field, the complex field, the quaternion algebra or the Cayley algebra.

Normed algebras

49

Proof. We suppose that the algebra A is left-alternative. The case of right-alternative algebras can be discussed analogously. If dim A=1. then, of course, the algebra A is isometrically isomorphic with the real field. Now let A contain an element a linearly independent of the unit element e. Then the subalgebra A(a) is finite-dimensional, associative and commutative. Consequently, the subalgebra A(e,a) is also finitedimensional, associative and commutative ([1], p. 319). Moreover, by Lemma 1 the unit element e is regular in [e, a]. Taking into account the inequality dim $A(e, a) \ge 2$, we infer, by Theorem 1, that the subalgebra A(e, a) is algebraically isomorphic with the complex field. Thus there exists an element $i_1 \in A(e, a)$ such that $i_1^2 = -e$ and every element $x \in A(e, a)$ can be written in the form $x = ae + \beta i_1 (a, \beta \in R)$. Hence. by Lemma 10, we obtain the isometric isomorphism of A(e, a) and the complex field. Thus, our Theorem is proved in the case dim A=2. Now we consider the case dim $A \geqslant 3$. Let e, a, b be three linearly independent elements of A. From the first part of the proof it follows that there

In the sequel by z_n we shall denote every element of $A(i_1)$ satisfying the equation $(z_n)^{2^n} = e$. We shall prove that

exist elements i_1 and i_2 such that $i_1^2=i_2^2=-e,\ a\ \epsilon\ A(i_1),\ b\ \epsilon\ A(i_2)$ and

$$||z_n b|| = ||b||.$$

 $\|ae + \beta i_1\| = \|ae + \beta i_2\| = \sqrt{\alpha^2 + \beta^2}$ for any α, β in R.

Since $A(i_1)$ is isometrically isomorphic with the complex field and $(z_n)^{p^n} = e$, we have the equation

(11)
$$||z_n|| = 1 \quad (n = 0, 1, 2, ...)$$

We shall prove formula (10) by induction with respect to n. For n=0 formula (10) is true in virtue of the equality $z_0=e$. Now we suppose that (10) holds for every $n \leq k$. Since

$$[(z_{k+1})^2]^{2^k} = (z_{k+1})^{2^{k+1}} = e,$$

the element $z_k = (z_{k+1})^2$ satisfies (10). Taking into account (11), the left-alternative law and the submultiplicativity of the norm, we have the relation

$$\begin{split} \|b\| &= \|z_{k+1}^2 b\| = \|z_{k+1} (z_{k+1} b)\| \leqslant \|z_{k+1}\| \cdot \|z_{k+1} b\| \\ &= \|z_{k+1} b\| \leqslant \|z_{k+1}\| \cdot \|b\| = \|b\|, \end{split}$$

which implies the equation $||z_{k+1}b|| = ||b||$. Equation (10) is thus proved From (10) and (11) it follows the equation

$$||z_n b|| = ||z_n|| \cdot ||b||.$$

Since $A(i_1)$ is isomorphic with the complex field and $(z_n)^{z^n}=e$, each element z_n is of the form

$$z_n = e\cos\frac{m}{2^n}2\pi + i_1\sin\frac{m}{2^n}2\pi,$$

where m is an integer. Hence it follows that the elements z_n (n=0, 1, 2, ...) form a dense set in $S \cap [e, i_1]$. Thus, by the continuity of the multiplication and (12), we have the equality

$$||zb|| = ||z|| \cdot ||b||$$

for every $z \in S \cap [e, i_1]$. Since the norm $\| \|$ is homogeneous, i. e., $\|ax\| = \|a| \cdot \|x\|$ for each $a \in R$ and $x \in A$, equation (13) holds for any $z \in A(i_1)$. In particular, we have the equation

$$||ab|| = ||a|| \cdot ||b||.$$

In other words, A is an absolute-valued algebra ([2], p. 495). Therefore Theorem 2 is a direct consequence of Albert's Theorem ([3], p. 768).

Now we shall give two examples of algebras not isomorphic with the four classical algebras; they show that some assumptions of Theorem 2 are essential.

Example 1. We consider an *n*-dimensional $(n \ge 2)$, associative, commutative and normed algebra $A(e_1, e_2, ..., e_n)$ in which the product is defined by the formulas

$$e_re_s=e_se_r=\left\{egin{array}{ll} 0 & ext{if} & r
eq s,\ e_r & ext{if} & r=s. \end{array}
ight.$$

The norm of the element $x=\sum\limits_{r=1}^{n}a_{r}e_{r}$ is defined by means of the formula

$$||x|| = \max_{r} |a_r| \quad (r = 1, 2, ..., n).$$

Since the algebra A contains the idempotents e_r $(r=1,2,\ldots,n)$ different from the unit element $e=\sum_{r=1}^n e_r$, the element e is not regular (see Lemma 8). All the other assumptions of Theorem 2 are satisfied. Therefore the assumption concerning the regularity of the unit element is essential.

Example 2. Let $A(e, e_1, e_2, \ldots, e_{n-1})$ be an *n*-dimensional normed algebra $(n \ge 3)$ with ordinary Euclidean norm, where e, e_1, \ldots, e_{n-1} Studia Mathematica XXIII z. 1

form an orthonormal basis. The multiplication of elements is defined by means of the formulas

$$egin{array}{ll} ee_r = e_r e = e_r & (r=1,2,\ldots,n-1), \\ e^2_r = -e & (r=1,2,\ldots,n-1), \\ e_r e_s = e_s e_r = 0 & ext{if} & r
eq s. \end{array}$$

It is very easy to verify that the norm is submultiplicative. But the algebra A is not one-sided alternative. Indeed,

$$e_1^2 e_2 = -e_2,$$
 $e_1(e_1 e_2) = 0,$ $e_1 e_2^2 = -e_1,$ $(e_1 e_2) e_2 = 0.$

Consequently, one-sided alternativity of algebras is an essential condition in Theorem 2.

A normed space A is said to be metrically homogeneous if for any pair $x, y \in S$ there exists an isometry T of A preserving S such that T(x) = y. As a consequence of Theorem 2 we get the following result, which is an answer to a problem raised by K. Urbanik:

THEOREM 3. Every metrically homogeneous finite dimensional onesided alternative algebra is isometrically isomorphic with one of the following: the real field, the complex field, the quaternion algebra and the Cayley algebra.

Proof. Since the unit ball K is convex, the sphere S contains at least one regular element ([5], p. 228). By Mazur and Ulam Theorem [7] each isometry T of finite dimensional linear normed space, with T(0) = 0, is a linear transformation. Since A is metrically homogeneous, all elements of the unit sphere are regular. In particular, the unit element is regular. Now our statement is a direct consequence of Theorem 2.

THEOREM 4. For finite dimensional one-sided alternative normed algebras the following conditions are equivalent:

- (i) the unit element is regular,
- (ii) the algebra is metrically homogeneous,
- (iii) the norm is induced by an inner product.

Proof. The implication (iii) \rightarrow (ii) is obvious, because the unit sphere is then simply an Euclidean sphere. Furthermore, in the proof of Theorem 3 we have shown that (ii) implies (i). Finally, the implication (i) \rightarrow (iii) follows from Theorem 2.

References

- [1] A. A. Albert, On right alternative algebras, Annals of Mathematics 50 (1949), p. 318-328.
 - [2] Absolute valued real algebras, ibidem 48 (1947), p. 495-501.

- [3] Absolute valued algebraic algebras, Bull. Amer. Math. Soc. vol. 55 (1949), р. 763-768.
- [4] S. Banach, Sur les fonctionnelles linéaires, I, Studia Math. 1 (1929), p. 211-216.
- [5] J. Favard, Sur les corps convexes, Journal de mathématiques pures et appliquées 98 (1933), p. 219-282.
 - [6] А. Г. Курош, Курс высшей алгебры, Москва 1949.
- [7] S. Mazur, S. Ulam, Sur les transformations isométriques d'espaces vectoriels, normés, Comptes Rendus de l'Académie des Sciences (Paris) 194 (1932), p. 946-948
 - [8] Н. Г. Чеботарёв, Введение в теорию алгебр. Москва 1949.
 - [9] B. L. van der Waerden, Moderne Algebra, II, Berlin 1940.

Reçu par la Rédaction le 3. 8. 1962