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Metric properties of normed algebras
by

E. STRZELECKI (Wroctaw)

An algebra A over the real field E is a vector space over B which is
closed with respect to a produet sy which is linear in both » and y and
gatisties the condition A(xy) = (Ar)y = #(dy) for any A< R and z,y < 4.
The product is not necessarily associative. In the present note we assume
that the algebra 4 contains a unit element e, i. e., an element satisfying
the equation ex = we = » for any 4 ¢ A. Given any subset B of 4, dim B
will denote the linear dimension of B, i.e., the power of a maximal set
of linearly independent elements of B. Further, [B] will denote the li-
near set spanned by the elements of B. For arbitrary elements ,, @3, .-, @5
by A(®y, @y, ..., %,) We shall denote the subalgebra generated by o, 25,
..v, @, An algebra 4 is called power associative if A () is associative for
every ¢ in 4. An algebra A is said to be alternative if for every pair «, y
from A the equalities #?y = @(xy), y»® = (y#)« hold. If only one of the
above conditions is satistied, then 4 is said to be one-sided aliernative.
A. A. Albert has proved ([1], p. 318-328), that every one-sided alterna-
tive algebra is power agsociative. An algebra is called algebraio if A (w)
ig finite dimensional for every & in 4. An algebra is called normed if it
is & normed space over R under a submultiplieative norm || [, i. e., & norm
satisfying in addition to the usual requirements the condition |jwy] <
< ||z ly|| for any # and y in A. Moreover, in this paper we assume that
flel = 1.

The aim of the present note is to disecuss the relation between metric
and algebraic properties of normed algebras.

In the sequel by K we ghall denote the unit ball of the normed space
in question, i. e., the set {v: & <1} and by 8§ the unit sphere, i. e., the
boundary of K. By the well-known Hahn-Banach extengion theorem
for every @ < § there exists a linear functional f guch that f(a) = 1 and
If(@)] < |l for any @ ¢ A. The functional f induces a hyperplane P con-
gisting of all elements o satisfying the equality f(z) = 1. This hyper-
plane gupports the unit ball at the point a. An element a e S is said to
be regular if there exists exactly one hyperplane P supporting the unit
ball at the point a. There exist algebras whose all elements of the unit
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sphere are regular; e.g. clagsical algebras: the real field, the complex
field, the quaternion algebra and the Cayley algebra under the Euclidean
. norm.

LEMMA 1. An element o S is regular in A if and only if it is reqular
in the subspace [a,b] for each element be A linearly independent of a.

TLemma 1 is a direct consequence of the Hahn-Banach extension
theorem.

Lemma 2. Let aeS and b be linearly independent elements in A, P
hyperplane supporting the ball I at the point o and f(w) such o functional
that P = {&: f(z) = 1}. Then the intersection Pr[a,Db] consists of all
elemenis a+ye (v € R) where ¢ is a fived element of the space [a, b].

Proof. Let U be the subspace of all elements u satisfying the equa-
tion f(u) = 0. Each element belonging to the intersection P~[a,b] can
be written in the form a-+w, where u ¢ U~ [a, b]. To prove our Lemma it
is sufficient to show that dim{U~[a,b]} = 1. Since « and b are linearly
independent, the element —jf(b)a-D is different from 0. Moreover,
—f(b)a+b eUn[a,b]. Hence dim{Un[a, b]} > 1.If dim{U~[a, b]}=2,
then, of course, Un[a,d] = [a,b]. Hence it follows that @ e U and,
congequently, f(z) = 0, which iz impossible. Lemma 2 ig thus proved.

The set of elements a+yc (y « R) will be called a line and denoted
by p(a,¢). Let P be a hyperplane supporting the ball K at the point a.
If p(a,0) = Pn[a,b], then we shall call p(a, ¢) a line supporting the
unit ball Kn[a, b] at the point a. If p(a, 6) is a line supporting the ball
EK~la,b] at the point a, then there exists a linear funectional f(z) on
[a, b] such that f(a+ye) =1 for each y e R and f(x) < |lz|| for each
w e [a,b]. Consequently, for any y ¢ R we have the inequality

1 la+vel = fla+yo) =1.

Let ¢,b (4 ¢ 8) be two linearly independent elements. The element
b is called gquasi-orthogonal to a, if p(a,b) is a line supporting the ball
Kn[a,b] at the point a. We note that if an element b is quasi-orthogo-
nal to @, then inequality (1) is true, i.e., |[a-+yb|| > 1 for each y ¢ &.
The converse implication iy also true. Namely, if |laf| =1, b s 0 and
for each y ¢ R

2) la+ bl =1,
then the element b iy quasi-orthogonal to a.

In fact, since b + 0, from (2) we obtain the linear independence of
the elements @ and b. We define the linear functional f on [a, b] by the
formula f(ae+pb) =a (a,f ¢R). For a # 0 from (2) we get

(3) f(aa+pB)| = |o| < la|-

a+%b“ = llaa+ .
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Since f(b) = 0, inequality (3) is also satisfied for a = 0. The fune-
tional f(z) can be extended to the whole space A without increasing
its norm. Hence it follows that p (a, b) is a line supporting the ball K~[a, b]
at the point a, i.e., that the element b is quasi-orthogonal to ¢. Con-
sequently, we have proved the following

LEMMA 3. An eement b =0 is gquasi-orthogonal to an element a < 8
if and only if for cach y < R the imequality |la+ bl =1 holds.

TEMMA 4. If a is reqular and b is quasi-orthogonal to a, then |la+ b =

—1+40(p) (i.e, lﬁiﬂl%{ﬂw--ﬁb!l—l} = 0) and o(8) = 0.

Proof. Since a is regular, the line p(a,d) = a-+-yb is the only line
supporting the ball K n[a, b] at the point a. Consequently, taking into
account the linear independence of clements b and b—as (a % 0), we
infer that the line p(a, b—aa) does not support the ball Knia,b] at
the point a. Therefore, there exists yo ¢ B such that [la+y,(b—aa)f <1.
Since for ya < 0 we have the inequalify

la+y(—oa0)| = (1—ay)|a+t b“ >1l—ay =1,

1—ay
we infer that yoa > 0. Now let us suppose that a« >0 and y, >0. The
remaining case o < 0 and y, <0 can be dealt with analogously.

Since @ e K n[a,b] and a+y,(b—aa) e K~[a, b], for each number
y satistying the condition 0 <y <y, we have lla+y(b—aa)| <1.
Furthermore, we can choose such a number y, that the inequalities
0 <y <oy l—ay, >0 are spatisfied. Thus, for 0 <y <y, We have
the inequality

G- a+1_yaybﬂ = Ja+y(b—aa)| <1,
which. implies
Y ay
< el 2 It
0 <|e 1—ay H 1—ay
and, consequently,
a+—-—»’i«b” —~1
(4) . 1—ay <
Y
1—ay

Sinee y is an arbitrary positive number, we have, according to (4), the

relation |la- pb|| = L+ o0(B). Finally, since the element b is quasi-ortho-

gonal to @, we have the inequality |la-+ gbfj > 1, which implies o(f) 0.
Define #* =, 4"+ = a's (b =1,2,...).
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LEMMA B. If an element j e A (j 7 0) satisfies the equation j* =0,
then for each v e R (p-# 0) the inequality |le--jll =1 holds.

Proof. Of course, to prove our statement it is sufficient to show
that for each non-zero y ¢ R the formula lim [le-+¥j|" = co holds. But

N—>00

thig formula iy a direct consequence of the inequality

lle+ il = (e+v3)"ll = lle+mnyjll = nly|-|3li—lle]-

From Lemma 5 we get the following
COROLLARY. Fach non-zero element j ¢ A satisfying the equaition j2 =
is quasi-orthogonal to the umit element e.

LeMMA 6. If the normed algebra A contwins an element j =4 0, with
42 =0, then the unit element e is not regular.

Proof. Contrary to this, let us suppose that ¢ is a regular element.
From Lemma 4 and Corollary to Lemma b it follows that for each g 0
the equation ||e+ j|| = 1+ |B]- n (8) holds, where #(8) > 0 and ?n(r)l n(f)=0.

Thus,
1+2181-9(2p) = lle+ 28]l = ll(e+ BN < lle+ Bjl*
= [1+18l-n(B)* = 1+-21B]-n(B)+ B> n*(B),
21Bl-m(28) <21B1-n(B)+ 6 1*(B),

and

7(26)

1+ ﬂ n(6)

n(6) =

Moreover, there exist positive numbers M and 6 such that 0 < 5 (8) < M
whenever 0 < f < 4. Consequently, for each f satisfying the condi-
tion 0 < B << 0 we have the inequality

__n(2p)

1+~lé]—M

(B} =

which implies the following ones:

B 7(28) (28)
(5) 77(7) = n = ! no=1,2 "')'
) % B mlM) wp(pin T
k=1
Hence we obtain the relation Limy(8/2") >0, which contradicts Lem-

. Ner00
ma 4. Lemma 5 is thus proved.
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An element o of the algebra A is called an idempotent if a® = q.
Lemma 7. If an element ey in A is an idempotent different from zero
and from the wnit clement, then e, is quasi-orthogonal to e.

Proof. By Lemma 3, it is sufficient to show tha.t for each y ¢ R

lim ||(e-Fye,)"|| # 0. Since ¢ commutes with e, and e =e¢,, we have
'nrme

the equation

- (6+ve,)" = o4 [(1+ y)"—1Te,.
Thus
oo it y< —2o0ry>0,
lim [[(64ye)"| = lle—ef i —2<y<o,
T-»00
llel it y=0

and
I(e—2e,)"|| = min (]|, lle—2e4]))

which completes the proof.

LemMA 8. If the normed algebra 4. contains an idempotent e, different
from zero and from the unit element ¢, then e is not regular.

Proof. First of all we note that the elements ¢ and e, are linearly
independent and, consequently, the elements e, and ¢, = ¢—e, are also
linearly independent. Since ¢, # 0, 6, 7 ¢ and & = (6—e,)? = 6—e, = 6y,
by Lemma 7, the elements ¢, and e, are quasi-orthogonal to the unit
element e. Consequently, the element e iy not regular in [e, ¢,]. Applying
Lemma 1 we infer that ¢ is not regular in A4 either. '

Now we shall quote some elementary concepts of the theory of finite
dimensional associative algebras. Let 4 be suh an algebra. If two non-
zero elements a,b ¢4 satisfy the equation ab = 0, then each of them
is called a divisor of zero. The algebra ig said to be a division algebrs if
for every a,b in A, with @ s 0, the equations ax = b and ya = b are
golvable in A. It is well-known that any finite dimensional associative
algebra without divisors of zero is a division algebra; see e.g. [9, XVI,
§ 114]. An element @ belonging to the algebra A is called a nilpotent if
there exists such an integer n that a™ = 0. An element a ¢ A is §aid to
be a proper nilpotent if the elements o and az are nilpotents for every
# in A. The get of all proper nilpotents is called & radical. An algebra is
said to be semisimple if its radioal containg only zero element. It can be
proved that each finite dimensional associative semigimple algebra has
a unit element [8, § 9, Theorem 12]. It is clear that an algebra which
has no nilpotents different from zero is a semisimple algebra.

TaroreM 1. A finite dimensional associative normed algebra w@th
o regular unit element is algebradoally isomorphic with one of the following:
the real field, the complew field, the gquaiernion algebra.
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We note that the unit element is regular in all classical algebras:
the real field, the complex field and the quaternion algebra considered
under the Eueclidean norm.

Proof. We shall prove first that the algebra A in question ig semi-
simple. Contrary to this let us suppose that there exist an element 2 ¢4
and an integer # such that #™ # 0 and 2™ = 0. Setting j = a”, we have,
by the associative law, j* = 0. Thus, according to Lemma 6, the unit
element of 4 is not regular, which contradicts the assumption of our
Theorem.

Now we shall prove that the algebra A containg no divisors of zero.
Contrary to this let us assume that there are non-zero elements a,b e 4
guch that ab = 0. The subalgebra A(a) generated by the element a iy
finite-dimensional, associative and semisimple. Thus, A(a) contains
a unit element e, which is, of course, a non-zero idempotent. Furthermore,
¢, i8 & divisor of zero, because for any = ¢ 4 (a) the equation #b = 0 holds.
Since the unit element ¢ of algebra A is not a divisor of zero, we infer
that e, # e and, consequently, e, is an idempotent different from zero
and from ¢, Hence, by Lemma 8, the unit element ¢ is not regular, which
iz impossible. Thus, we have proved that the algebra A containg no
divisors of zero. Consequently, the algebra A is a division algebra. Now
the assertion of our Theorem is a direct consequence of the well-known
Frobeniug Theorem; see e.g. [6, X, § 52].

T Lewma 9. If the normed algebra A contains such an element i that
02 = —e¢, then the element 1 is quasi-orthogonal to e.

Proof. Obviously, the subalgebra A (f) ig isomorphic with the com-
plex field. The absolute value |ae- i = Va”-l—ﬂ“ of the eomplex number
ae--- B¢ i8 a multiplicative norm in 4 (7). Evidently, for y = 0 we have
the equation

6) lim [(s-+3)"] = Hm(14")""= oo.

N—00

Since the algebra A(4) is finite-dimensional, the morms | | and | |
are equivalent in A(d); i. e., there exigt two positive constants m and
M such that m|z| < |lo| < M|z| for any @ < A(4). Thus, by (6), we have
lm [|(¢+ yi)*| = oo for each y 0. Consequently, for each y 70
T

the relation Um [le+yi[" = co holds. Therefore for each y ¢ R the in-
N—>00

equality [e--yi] >1 is true, which completes the proof of the Lemma.
Levma 10. If the normed algebra A contains an element i such thai
i? = —e and the unit element ¢ is o regular one, then for each pair o, f ¢ R

flae+ il = Vart g2,
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Proof. To prove our Lemma it is sufficient to show that [lee+ pif| = 1,
whenever a®*+ 82 = 1. Consider the element§ 7 — ¢'co8p-+4-sing. We
know thﬁ:i:ﬁ both norms | | and | || are equivalent in 4 (2). Consequently,
there exists a positive number m for which the inequalities

(N " >m (0 =1,2,..)

hold. Sinee the norm || | is submultiplicative,
inequality |le-cosa+-i-sing|| > 1. Suppose th
@ for which the inequality

inequality (7) implies the
at there .exigts a number

lecospy+ising,|| = ¢ >1

holds. Without loss of generality we may suppose that @ > 0. Let {y,}
denote the sequence of elements

Po

Yp = ecosﬂ’— +isin— (0 =1,2,..).
n n

We choose such an index N that for each #n > N the condition 0 <
< @o/n < w/2 is fulfilled. Thus for each n >N we get the equation

llyall = cos 22 e+itg 22,
n n

Furthermore, according to Lemmas 4 and 9, we have the formula

(8) lyall = eos%}[ 140 ( tg2 )]

Henee, taking into aceount the submultiplicativity of the norm || ||, we
obtain the inequality

n n
(9) lymll > V- cospe+i-sing, = V.
For each #n > N from (8) and (9) we get the inequality
Po - Po
o(tg " ) 1/9——0057
> .

P =
1o Bl]lﬁ
N n

tg

But the right-hand side of this inequality tends to log /9o, When n — oo,
which gives a contradietion. Thus fle:cosp-+i-sing|| = 1 for any ¢, which
completes the proof.
Now we shall prove the following generalization of Theorem 1.
THEOREM 2. Fach algebraic one-sided alternative-normed algebra with
@ regular unit element is isometrically isomorphic with one of the following:
the real field, the complex field, the quaternion algebra or the Cayley algebra.
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Proof. We guppose that the algebra 4 is lef’ﬁ~a.1temative: The case
of right-alternative algebras can bo discus_sed anfmlogously: If fhm A =1,
then, of course, the algebra A is isometrically 1s'omorp1uc with the I'eg.l,l
field. Now let 4 eontain an element a 1ine.a.r.1y m.clepel%dent of the. u.mt
element ¢. Then the subalgebra A«(a) is flmte-dlmenmonajl, assom_a.t.lve
and commutative. Consequently, the subalgebra A(e,a) is also finite-
dimensional, associative and commutative ([1], p. ?»19!. Moreover, by
TLemma 1 the unit element e is regular in [e, a]. Taking into account the
inequality dim A(e, a) > 2, we infer, by Theorem 1, th_at the subalge-
bra A (e, ) is algebraically isomorphic with Ehe complex field. Thus there
exists an element i, ¢ A(e, @) such that & = —e fmd every element
zeA(e,a) can be written in the form. @ = ow—l‘—ﬂﬂu1 (a, B e R). Henee,
by Lemma 10, we obtain the isometric 1son}orphlsm of A (e, a) and the
complex field. Thus, our Theorem is proved. in the cage d.lm A = 2. Now
we congider the case dim A > 3. Let ¢, a, b be three linearly indepen-
dent elements of A. From the firgt part of the proof it follows tha._t there
exist elements 4, and i, such that & =45 = —e, a < A(4;), b e 4 (4,) and
llae—+ Bisll = llag+ Bisl| = Va2+-p2 for any a, § in . i o

Tn the sequel by 2, we shall denote every element of .4(4,) satisfying
the equation (2,)2" =e. We shall prove that

(10) llendli = 11211+

Since A (i) is isometrically isomorphie with the complex field and
(#.)" = ¢, we have the equation

(11) H%Hzl (7":071727'-')

We shall prove formula (10) by induction with respect to =.
For n = 0 formula (10) is true in virtue of the equality 2, = ¢. Now we
suppose that (10) holds for every n < k. Since

k ol4-1
[(zk-m)z]2 = (%41) = 6,

the element 2, = (2,,,)* satisfies (10). Taking into account (11), the
left-alternative law and the submultiplicativity of the norm, we have
the relation

Bl = Mo 1bll = l2ns (@ra D) < gl o1 Bl
= P41 bll < llgwall- [0 = [1B],
which implies the equation |2, b = ||b}|. Equation (10) is thus proved

From (10) and (11) it follows the equation

12) llenDll = lieall- |21l
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Since A(¢;) is isomorphic with the co

mplex field and (z,)" = ¢
each element 2, is of the form

?

we . m
2y = 6008 2T2n+zlsm2—ﬂzr:,
where m is an integer. Hence it follows that the elements 2, (n = 0,
1,2, ...) form a dense set in S~[e, 4,]. Thus, by the eontinuity of the
multiplication and (12), we have the equality

(13) lI281] = Jlel| - |
for every 2z e Sn[e, 4,]. Since the norm [l is homogeneous, i. e.

= |a|- [} for each a ¢ R and = ¢ 4, equation
In particnlar, we have the equation

y llam| =
(13) holds for any 2 e A(3).

labll = llall- 3]

In other words, A is an absolute-valued algebra ([2], p. 495). There-
fore Theorem 2 is a direet consequence of Albert’s Theorem ([31, p. 768).
Now we shall give two examples of algebras not isomorphic with

the four classical algebras; they show that some agssumptions of The-
orem 2 are emgential.

Example 1. We consider an x-dimensional (n > 2), associative,
commutative and normed algebra 4 (e,, e,, «++y €;) in which the product
is defined by the formulas
0 if rss,

e if r=s.

€r6; = €56, =

n
The norm of the element z — 2, a6, is defined by means of the
Pl
formula

loll = max|a,| (r=1,2,...,2).
r

Since the algebra A4 contains the idempotents e, (r =1, 2,...,n) dif-
n

ferent from the unit element ¢ = D e., the element e is not regular (see
=1

Lemma 8). All the other assumptions of Theorem 2 are gatisfied.
Therefore the assunption concerning the regularity of the unit element
is essential.

‘Example 2. Let A(e,e,,e6,...,6,_,) be an n-dimensional nor-
med. algebra (n > 3) with ordinary Euclidean norm, where ¢, é;, ..., éy_;

Studia Mathematica XXIII z. 1 4
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form an orthonormal basis. The multiplication of elements is defined
by means of the formulas

ee, =66 =¢ (r=1,2,...,n~1),
6= —e (r=1,2,...,n—1),
66, =66, =0 if 7 £s.

It is very easy to verify that the morm is submultiplicative. But
the algebra A is not one-sided alternative. Indeed,

ey = —ey, e(e6) =0,

6,6 —61,  (6163)62 = 0.

I

Consequently, one-sided alternativity of algebras is an essential
condition in Theorem 2.

A normed space A is said to be metrically homogeneous if for any
pair «,y ¢ S there exists an isometry 7' of A preserving § such that
T(z) =y. As a consequence of Theorem 2 we get the following result,
which is an answer to a problem raised by K. Urbanik:

THEOREM 3. Hwery metrically homogeneous finite dimensional one-
sided alternative algebra is isometrically isomorphic with one of the follow-
ing: the real field, the complex field, the quaternion algebra and the Cayley
algebra.

Proof. Since the unit ball K is convex, the sphere § contains at
least one regular element ([5], p. 228). By Mazur and Ulam Theorem
[7] each isometry T of finite dimensional linear normed space, with
T(0) = 0, is & linear transformation. Since .4 is metrically homogeneous,
all elements of the unit sphere are regular. In particular, the unit ele-
ment is regular. Now our statement is a direct consequence of Theorem 2.

THEOREM 4. For finile dimensional omne-sided alternative normed
algebras the following conditions are equivalent:

(i) the unit element is regular,
(i) the algebra is metrically homogeneous,
(i) the morm is induced by an inner product.

) Proof. The implication (iii) — (ii) is obvious, because the unit gphere
is then simply an Euclilean sphere. Furthermore, in the proof of The-

orem 3 we have shown that (i) implies (i). Finally, the implication (i) —
(iii) follows from Theorem 2.

References

[1]1 A. A. Albert, On right alternative algebras, Annals of Mathematics 50
(1949), p. 318-328. :

[2] — Absolute valued real algebras, ibidem 48 (1947), p. 495-501.

icm°

Normed algebras 51

[3] — Absolute valued algebraic algeb
o, 768 360, g2 0 algebras, Bull. Amer. Math. Soc. vol. 55 (1949),

[4] 8. Banach, Sur I i inéai i
o11.0m0 ur les fonctionnelles linéaires, I, Studia Math. 1 (1929), p.

[6]1 J. Favard, Sur les cOTPS convexes,
appliquées 98 (1933), P. 219-282.
[6] A. I. Kypom, Kype ewcwei asze6py, Mockpa 1949,

[71 8. Mazur, 8. Ulam, Sur les transformations isométri
] . > ns wsoméiriques d'espaces wvecto-
riels, normés, Comptes Rendus de 1’ bmi i i L
riels, mo p us de I'Académie des Sciences (Paris) 194 (1832), p.
[8] H. I. YeGorapén, Beedenue o meopuio axze6p, Mocksa 1949.
[9]1 B. L. van der Waerden, Moderne Algebra, II, Berlin 1940.

Journal de mathématiques pures et

Regu par la Rédaction le 3. 3. 1962


GUEST




