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On linear processes of approximation (I)
by

G. FREUD (Budapest) and 8. KNAPOWSXKI (Poznai)

1. Let O, be the space of 2m-periodic continuous functions and
let {T,(f(7); 1)} be a sequence of linear operators over Cs,. Let us suppose
the T,’s to be trigonometric polynomials. Several known theorems state
that for appropriately chosen operator-sequences {T,} every function
satisfying e.g. a Lipschitz condition

(1.1 fE+h)—f@) <oty —w<h<wm, 0<a<l,
admits an approximation

(1.2) [Ta(f(2); ) —F ()] < 0p0am™".

The question of eharacterizing such sequences in general was studied
only recently. An approach to the guestion would be what we are going
to call the method of tesi-functions. This method was in fact introduced,
though not stated explicitly, as early as the first investigations of
D. Jackson. Jackson considers a sequence {T,} satisfying

1.3) IZa (Ol < eallflls

queh that: if functions satisfy (1.1) for « = 1 and te[0, 2x], then these
funetions satisty (1.2) for a =1 and te[0,2x]. He concludes therefrom
(1.2) as a consequence of (1.1) for every 0 <a < 1. This argument may
be interpreted as saying that the class of “test-functions” Lip 1 tests
the degree of approximation of funetions in the clags Lipa, 0 < e <1.
The test is whether the degree of approximation of functions belonging to
the “test-class” is O (L/n). It is easy to see that the test-class in the above
cage can be replaced by the smaller class of continuously differentiable
funetions. The twice continuously differentiable functions form a still
smaller test-class. The degree of approximation required here is O(1 [n2);
this follows from a more general theorem of one of us [1].

If we suppose that each term of {T,} is a positive operation, i. e.,

(14) T.(fyz0 & f=>0,
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we have — as shown by Korovkin [3] — a surprisingly simple test-
class; it consists of three functions

fult) =1,
and the test conditions are
T.(fo;8) =1,

(see [3], also [2]).

The remarkable difference between these two sorts of tests is that
in the latter case the test-class is finite, while in the previous case it is
infinite. It seems almost sure that, if we do not suppose positiveness
od {T,} or something else which would be stronger than (1.3), no finite
set of functions serves as a test-class.

In this paper we shall construct another test-class, consisting of
rather simple funetions, giving in particular a sufficient condition that
(1.1) implies (1.2) in case a << 1. In the forthecoming continuation of this
paper we intend to supply similar test-class conditions covering also
the case of ¢ = 1.

fi(t) = sind,  fy(t) = cost

Tu(fi; 1) = sint+ 0 (1[n%),  Tp{fy; 1) = cost+ O (1/n?)

2, Let X be one of the following normed linear function-spaces,
consisting of 2n-periodic, IL-integrable functions:

(8) IP[—m, w], p > 1, with the usual norm ||f]| = {_flf(r)[’”(lr}””,
(b) Oy with the norm |f] = max |f(z)|.
— LT

It may be noted that either of the above-introduced norms satisfies
the inequality

@D | [Uete—f@ema]< [Ife+rn—f@l e

for every continuous p(w). In what follows, X is one of the spaces (a),
(b), however, it should be remarked that we might be concerned as well
with any other normed space X[—u, =] for which the condition (2.1)
would be satisfied.

Let {B,(f;)} denote a sequence of linear operators mapping X into
X and mapping C,, into C,,. The norms of the operators {B,} are sup-
posed to form a bounded sequence, i. e., ‘

(2.2) 1Ba(f3 Dl < eallfll,

where O depend.s ne_ither_ upon f nor on n. We shall use throughout the
O-nota.‘tmn and it will be understood that constants involved with O are
numerieal after having fixed X and {B,}.
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TusoreM 1. Let {A,} be a monotonously increasing sequence of posi-

tive integers and let us suppose, in addition to (2.2),

(2.3) B,(1;t) =1,
(2.4) B, (€73 1) = 10 (%;),
5 e sa T8 '_ (i) —_
(2.5) B, (¢ sin 5 31)=0 =) F=1,2,..., 2.

Then for every feX
(2.6) 1B ) =0 = 0| [ If(e+y/ ) —F(2)min(L, ydy}.

COROLLARY. Let

@2.7) If 41 —F@] = O(A7), 0<a<1.
Then the statement (2.6) is just
(2.8) 1Bx (F(2); 1) —F @O < csg) .

Examples. As an example of principal interest, let us consider
the Fejér means
() = SoIOFSF bt Bua (1)

"

of the Fourier series of f(z). Inserting o, for B, and n—1 for 1,, a direct
caleulation shows that expression (2.5) vanishes identically, and also (2.3),
(2.4) are satisfied. We obtain the well-known result (see [67):

lowsa (s D— 1@l = O | [ 1F(x+y/m) —f(Dmin L, y)dy}.

This estimate is after investigations of Steckin [5] at least in the case
X = (., best-possible. We conclude from this example that (2.6) cannot
be improved. Inspite of the fact that Fejér kernels are positive, Korov-
kin’s theorem would yield only a less sharp estimate (see [3], D. 75) in
this case. Nevertheless, the estimate above is anticipated in the proof
of the theorem itself.

As a second example let us consider the Rogosingki-sums

T

Butfs 0 = 5[t g+ o - g E B0,

where 8,(f;7) stands for the n-th partial sum of the Fourier series of
f(z) at the point 7 = 4. As well-known these sums satisfy (2.2) (see [4]),
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Putting 4, =n—1, n > 2, the conditions (2.3), (2.4) and (2.5) can be
eagily verified to the familiar effect that

B f; ) —F 0] <2
provided that (2.7) is satisfied.

3. In order to prove our theorem we introduce the TFejér-sumng

(81) oy, =0, (f58) = Z (1— Ikl) pe, = 317; fnf(y)e‘“‘”dy.

1< 2 &
The following estimate may be regarded as classical:

(3.2) oy, (f; D —F @) = 0(1) [ If(v+y/A)—f(=)l|min(L, y=2)dy;

in the case of Cy,-norm see e. g. [5], for LP-norm proof of (3.2) would run
along the same lines owing to (2.1).
‘We use the formula

Bu(f58)—f(t) = {03, (3 ) = F ()} +Bu(f — 03,5 1)+ {Bu(03,; ) — 03, (F3 1)} .

The first term of it can be estimated to the required order by (3.2).
The second term contributes the same owing to (2.2) and (3.2). The only
thing which remains to be proved is that

(8:3)  1Bu(on,; ©)— 0, (f3 1)l = O(1) f[If(ﬂ—?//ln)~f('r)l[min(l, Yy~ dy.
By the linearity of B, we obtain from (3.1)

k -
4502 Boloys0—ap (fi 0 = O (1—12—') ™ 1),
1ol << Ay, "
where

(3.4) (T3 9) Lot (6D gy 1

Using the definition of ay’s we come to

An(f3 t)“‘” jf(y_i—t)m%zn ey (s ¢) (1~~|_]_) dy .

Putting f = 1 the above expression vanighes. Using this fact we get

L F
(8:8) du(fi9) =~ J{f(y+t)~f(t)} Z M (165 t)(l—-u)flJ

1Kl < A,
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We anticipate the estimate
e ; 2 [ . 1\
(3.6) In(t,y) = N ek z)(l_f_}i) - O(mm(ln, 7—2))
wh n WY
which will be shown in the next section to be a consequence of (2.3),
(2.4) and (2.5). From (3.5) and (3.6) we conclude

1
4,(f3 01 = 01 f!f(th —stoimin (1, 7gs) s

using (2.1) we have

- 1
400531 = 001) [17(a-+ 0~ in (1, 753) 8.

Substituting g /2, for y in the above integral, we obtain (3.3) as required.

4., We turn to the last step of our proof, i.e. to the estima-
tion (3.6). Let ay, by, & =0,1,...,», be arbitrary numbers, further
let b,y = b,., = 0. We putb

Ay =ap+a+...Fag, k=0,1,...,v,

-A;cl) = A t+A,+.. .+, E=0,1,...,v,
and further

Aby = by—bpyr, A%y = b— byt biys, E=0,1,..,

Using this notation the following formula may be easily verified :

det . k < k 2 - 1
V1= Z) aeb, = E — ) 4%, AP+ = E Aby AR,
1) % (1 v)akbk (1 w) wAY +”k=1‘ YL

k=0 k=0
Tt we choose @ =1, @& = @3 = ... = &, = 0, We obtain the identity
uy N 1—ﬁ)mbk(k+1)+—2—2”Ab,:+1(k+1) = .
' =V &

Substituting in turn e, = ¢~*¥, which yields

k41 e itk k+1 )
A = 1—e @ -(1—(3‘1'1!)2 (1—e WDy = ] +0(y

we get from (4.1), taking also account from (4.2),

43) Q= -1{'”717 +0(-y~2){§ (1—%)mzbk1+%1§mbk+ll}.
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Setting b, = 9, (k;¢), k= 0,1,...,», v = 1,, and observing that
owing to (3.4) in this case, for £k =0,1,...,4,—2,
Azbk - Bn(e’ikh—t)_26'L'(k'+1)(r~t)+6‘1‘,(7:-{-2)(1:——!); ?)
= 2B, (0D feos (v— ) — 1} ; 1)

— _46—i(lc+])iBn (ei(ls+l)rsin2 ’r;t ),

we get by (2.5)

(4.4) Ao = 0047Y, k=0,1,...,4,—2.
Owing to (2.3), (2.4) and (3.4) we have

(4.5) by=10, b =0(07".
From

Aby = by— by — {42+ A%+ ...+ 4% 3}, *=1,2,...,4,—1
by =bo_{A‘bo+Ab1+--~+/ka-1}7 70:1;21---’}%’
and from (4.4), (4.5)

?

(4.8) Aby, = 0(31), k=1,2,...,4 -1,
(4.7) by = na(k;8) = O(KAY), &=1,2,..., 2.
Substituting (4.4), (4.5), (4.6) and (4.7) into (4.3) we come to
1
(4.8) Q= 0(—/1"—?/2), Yl < =.

Noting that #,(k;8) = n.(—k;t), we find I,(¢ = 040,
that, by (L8), n /03 n B n(t Y) +2, so

1
(4.9) I, y) =0 (W); [yl < .

We al i § initi (1
and (47 )a 80 have as a direct corollary of the definition (3.6) of I'(t, 9)
I'n(ta ") = O(ln)

which together with (4.9) yields the required estimate (3.6).
5. The argument applied in sections 8 and 4 yields also the following

o 4)THEdO(l;E;W’I) 2. bﬂuppose in the notation of Theorem 1 formulae (2.3),
&) and (2.5) to be satisfied only at points belonging o o set T ing
further, the condition (2.2) by ? yng o o set L. Feptaomnd

(61)  Bu(g;t) = 0(1) max 9@ for every geCy and tel,
—nTLT
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we have, for feCy, and teT,
(8.2)  Bu(f; ) =f(H)+0(1) fﬁgx_lf(f—k’y/ln)—f(f)lnﬁn(l,y“")dy-

Using Theorem 2 we can obtain a version of Theorem 1 in which
the condition of 2n-periodicity is dropped.

TarorEM 3. Let {B,(f;1)} be a sequence of linear operators mapping
C[—1,1] — the space of functions continuous on [—1,1] — into diself.
Suppose, further

B.(g;t) = O(maxig(z)]) for all geC[—1,1] and te[—1,1].
lf<1 ’

If (2.3), (2.4) and (2.5) hold for || <1, then, for any feO[—1,1],
te[—1,1],

oo

o(y|l) ,  logi,

(8.3)  Bu(f; 1) =f()+0(1) { ay+ If(l)—f(-—l)i] )
! I J

1

where w(0) stands for the modulus of continwity of f.
Proof. First we extend the definition of B,(p;?) for geCy,:

Bu(p;t) i te[—1,1], where ¢ is restrieted to [—1,1],
B,(p; —=) = Bulp; n) = 0,
linear otherwise.

~ det
B, (p;1) =

This f?n(rp; t) maps C,. into Oy, and is linear. Also
Bups) = OQmaxip(r)l,  tel—w,=].

Then we apply Theorem 2 for the 2n-periodic function f, which we
obtain by defining f;(¢) =f(t), [t <1, fi(2=—1) =f(—1) and fi(?)
linear in [1, 2x—1].

From the definition of f,(f) it follows immediately

wax[f (-+9) (0] < () + LT,
<= T —2

Ingerting this estimate into (5.2) and putting 7 = [—1,1] we come
straightaway to (5.3).

We conclude our paper with the remark that our theorems are ap-
plicable also in cases when condition (2.3) is violated. Let us suppose
for this purpose that the sequence {By(f;?)} of linear operators satis-
fies (2.4) and (2.5), but

Bi(1;t) = 14+e(), eald) = O(1[A).
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We introduce the new sequence of operators,
Balfit) = BIS =85 f f)d,

for which all the conditions of our theorems are satisfied. Thus putting
BY in place of B,, an additional term

kd 1 T
Sl [If@Nde, rep. Slentd] [1f(0de
will oceur in estimates (2.6), resp. (5.2) and (5.3).
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Uber unbedingte Konvergenz der Orthogonalreihen
mit strukturellen Bedingungen

yon

L. LEINDLER (Szeged)

In dieser Note beweisen wir solche Sitze, welche sich aus der auf
die beste Anniherungsgrad von f(z) beziiglichen Bedingung, bzw. aus
dem Stetigkeitsverhaltnis von f(z) ergeben und sich auf die Konvergenz
der Orthogonalreihen beziehen.

Bs sel {g,(x)} (n =1,2,...) ein beziiglich der Verteilung du(z)(*)
im Intervall (a,b) orthonormiertes Fuunkfionensystem. Bezeichne F,
die im Raum I} beste Anniherungsgrad von f(#) mit Linearformen

Dligr(a),

k=1

dann ist nach einem bekannten Satz von Gram [2] (s.z. Alexits [1],
S. 14)

={f(f(m)—20k¢k @) du( “’)}
mit

b
o = [f(2)px(a) dp ()

Sei P(x) eine fir z >0 definierte, positive, monoton wa.chsende
Funktion. Bezeichne RY ({rp,,,(w )}} die Klasse aller Funktionen f(z
fiir welche B, = O{L/®(n)).

Wir werden zuerst den folgenden Satz beweisen:

Sarz I, Ist

ﬂ!

1) 5 < 00,
k
k=1

(1) Derivierte u’(z) verschwindet hiochstens auf einer Nullmenge .
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