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The general sieve
by

N. ¢. AvkeENY and H. Onissr (Cambridge, Mass.)

Introduction. The sieve is a method used to derive bounds on the
number of elements in a set of integers which are not divisible by any prime
number in another set.

Tet us suppose we are given a set S of integers, a set T' of prime num-
bers, and M (S, T) denotes the number of integers in S not divisible by
any prime in T. We would now like to derive bounds on M (S, T). For
example, if Sy ={m|m <N}, Tyx = {p{p < VN } where p ranges
over all primes and N is positive, then M (Sx, Tv¥) equals the number
of prime numbers > VN and < N.

To formulate the problem more precisely, define

(i) Sx as a set of N integers, for every positive integer N,

(ii) T as an infinite set of primes, Ty as the set of primes in T less
than a real number Y.

We are prepared now to observe the behavior of the funetion
M(8y, Tn?) for some fixed 1 > 0, as N — oo. In order to do this we im-
pose restrictions on the sets Sy, Tr. These regtrictions cover not only
the classical cases of the sieve, but also several new cases.

Let d denote a square free integer all of whose prime factors are in T.
‘We require the following assumpbions: !

(A) For each N, there exists a real valued positive multiplicative fun-
ction fy(d) such that

N1 = Nfw(@ 7 +Ra\N),  meSy, dim
m
(3.6. fldids) = f(@d)f(ds) when (dy, dy) = 1).
(B) There ewist positive real numbers a, 6, ¢y, Cy such that fx(p)~
<1—6 for all peT,
N pfyip)t < CiX(logX)™  for X <log¥,
p<X
| S (pfap)—a)| < X(og Xy for log¥ <X <.

1
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(©) 3 & By such that if »(d) denote the number of prime factors of d,
then
20§;<d>§13d| = O(N(ogN)™%, A< N1, Oy =066".

We let limsupp, = f.

Pirst, a few remarks about these assumptions should be made.
Although the assumptions arve listed separately they are interdepen-
dent and must be considered simultaneously. For example, (A) would
be meaningless without (C).

Roughly speaking, f(d)~' could be congidered as the probability
measure that an element in S is divisible Ly d. The condition that f(d)
is multiplicative indicates that, if (d;, d;) = 1, the probability of being
divisible by d, is independent of the probability of being divisible by d,.

Specifically however, the presence of the “error term” R;(N) indi-
cates that the problem cannot be formulated in a completely probabil-
istic manner. Hence, the ordinary probability argument is not applicable,
except in a heuristic manner. This is then the basis for the sieve, to mo-
dify the probabilistic method to dampen the error terms Rg(N).

The interpretation of (C) is first to bound the probability fy(p)™
away from 1, and to guarantee some uniformity of the probability den-
sity X fn(p)"-

" To derive our bounds on M (Sy, Tyr) we demand that the numbers
a, B, 8,0y, 0y, are independent of N, although the functions fu(d) may
change with N. :

In order to state the main result, let I'(a) denote the I' function,
y is Euler’s constant, and

By(N) = I(a) [ [(1—f(p) ") (1—p7")™% peT and p < N*.

THEOREM 1. Suppose that the sets {Sy} and {Tni} satisfy (A), (B),
and (C). Then as N - oo,

M(8y,Tyt) < Bo(N) N (log N)™"A~J,(327") ! (140 (1)),
M (S, T} = (T(a)e™) 7B, (N) N (log N) ™A {L— G (: A} 1-1 0 (1).
Also there ewists a constant K such that
(loglog N)F < B,(N) < (loglog N)¥.

The functions J,(u) and G,(u) are continuous functions of u (sce
Chapter II), and

3im Jo(u) = I'a)e™, lim@, (u) =0,

U—>00

I 0<u <1, then J,(u) = o %

icm®
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For a fixed « > 0, the function 1-—G,(#) has a unique simple zero
@ = ¢,. Hence, M (Sy, Tx?) > 0 for 27" > 287'¢, and N sufficiently large.
If 2> {,, we can easily rewrite
©

1—6,(X) = (I(a)e”)az™" ] Jal— 3 " du

> (P(@e)d (a— 1) L — (G Y)-

Hence, for a 1 with the property that 3pit > £,+1, the upper and
lower bounds are fairly close.

Thus, to complete our knowledge of the lower bound of the sieve
we must have at least an upper bound on ¢,. In Chapter IT we prove

lima™'g, = 1.22...

For « =1, 1.5, 2, 2.5, and 3 we have computed ¢, (see tables). The tables
indicate that a'¢, rapidly approaches 1.22... In Chapter II we also have
proved a uniform upper bound on- £,.

Theorem 1 has thus reduced the sieve bounds to fairly simple for-
mulae, where the only invariants are a,f, and B.(N). Also, B,(N) is
independent of N in most applications.

Some results can be derived if condition (C) is weakened. For example,

©) If 3 fylp) 't =o(X(ogX)l), for logN <X < N, then
ES

M(Sy, Tx2) >‘0 for any fived 2> 0 and N sufficiently large.
(C.) If limsup( 3 fa(p) "X M (log X)) = o, logh¥ <X < N, then
Ed P<T

Theorem 1 is still applicable.

Because of the paper’s length, it might be useful to give a brief outline.

1) Chapter I gives the method of A. Selberg to derive an upper
bound on M (S, T) in terms of sums involving fx(n). We prove that this
immediately gives a lower bound involving these sums.

2) Chapter IT studies properties of a family of functions z,(w) de-
tined by a difference-differential equation. Mainly we need information
about the asymptotic behavior of 7,(u), and this is applied to yield our
results concerning J,(w), G.(u), and .. This chapter is independent of
the previous results and is of some interest in itself.

3} Chapter III combines the results of the two previous chapters,
and completes the proof of Theorem 1.

4) Chapter IV gives several applications of Theorem 1. In the
applications it is often possible to sharpen the results by using both
the lower and upper bound. (See especially the first example of Chap-
ter IV). It is then possible to derive a stronger result than by only using

the lower bound.

Acta Arithmetica X.1 3
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1. Selberg’s sieve

§ 1. The upper bound. Let § = Sy, T = Ty be sets swtisfying a8~
sumptions (A), (B), and (C). We shall define a bet of variables {gz} in a re-
gion defined by “Mobius inequalities” (1.1) and (1.2). An upper bound for
M(8,T) can then easily be stated in terms of gz (1.3). Our problem is
then to find a minimum of the linear function D gaf (@)~ eonsistent with

@

our inequalities. There are several ways of doing this, the most effective

is that of A. Selberg. Namely, we replace {oz} by new variables {1} via

a quadratic transformation. Condition (1.1) is then zmtomamcally gatin-

fied, and (1.2) is replaced by a stronger condition (1.5). The linear func-

tionZ’gdf(d)*l becomes a positive definite quadratic form in the variables
[

{23} The minimum of the quadratic form subject to the conditions (1.5)
can then be found by standard methods.

The lower bound, or more sophisticated sieves, can then be automat-
ically computed from the upper bound, and these bounds are derived
in the latter part of this chapter. Thus, whatever fault there is in the
upper bound (replacing (1.2) by (1.5)) is compounded for the lower bound.
The methods are still effective, but whatever the best possible “results
are remain a mystery except in a few cases.

Let {os}, d|P, P = g p, denote a set of variables satisfying

pely

(1.1) =1, 3 oz=0, for al t|P,

2
d|

(1.2) og =0 for

where z will be chosen later.
We shall let d,d,,ds, s,t be positive integers dividing P, m runs
over all elements of §. Then

o= 3 )

d >z,

(1.3)  M(8,T) = < M Nop= Vo 31

(mfz;)Jal ne dpn mo dim " i
= N oa{Nf(d) "+ Ry} = N Y af(dy 4
a ' I
where H = Y|, R,|. 7
Define t‘;w variables { g} in terms of new variables {2,} by
(1.4) 0a = dZﬂ My, Ld,dy] =d
1,62

([d,, d»] denotes the least common multiple of d, and d,) where we impose
the condition
(1.5) h =1,

Ja=0 for d>7Vz.
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Now

Also if d > 2, [d,, dy] = d, then either d; > Yzor dy > 1z . Hence, gg = 0
for d > z. Thus in terms of {24} the {g;} defined by (1. 4) antomatically
satisty (1.1) and (1.2).

We now wish to minimize (1.3).

If s = (dy, ds) {the greatest common divisor of d, and d), then

F(ldy, d1) = F(d)f(de)f(s)™" . Define
f= E/l(ir".\')f(s),
EX}

By the Mébius inversion formula,

floy = M f. |
1is |
Hence, |
16) Nof@ = Vi@ N date, = N a2 f((h D7
- i |y d=d drs
= NV () 2y (d) T F (5 o)
dy.da
= N ) fld) S 0
«ll dy ti(dy,da)
= N7 {Ezdf(d)”‘}z.
i td

Note for a fixed s,

) Nu Y 2afla)y

st 124

P ult) = p(s) Afis)”

sTd s

= N af(d)
sid

It we apply Schwarz’s inequality to (1.7) for s = 1, we have using (1.5)

‘ > () v7df a)”

4
= _)j (MF O (1 ”-“Vi/ﬁf )
(N Nrol S i@
T3 7 td

or

(1.8) Nrof{Y a4
1

i
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for

a={Yro7

1<V
Conversely, if we let

(1.9) 1@ = @ ()74, s < Vi,
ajs
then, for a fixed ¢,

D, af(d)™!

[T

@) S1 674

1 ais

b

D Y u@) = Auf ()

g tid|s
Thus, for Az defined bgi (1.9), )
a0 Frw(Sus@) = (Zrw)a = {, > U
Also by (1.9)
2al = HF (@7 3] f1(d)7) A <fdf @)

s<Vzjd

And

l‘ll}‘dz < Z Mdllz Mdt/d |
[d1,d3]=4 aa i 1

<f@f@™ Y Y ofw

LA
= Ja)f @72 @ Y if e
tad
=f(d)f’(d)"12""l’l—[ (137 ()f (p) )
P\d
< ﬂ 2(L+£(p)™") (14 3 (2)f (9))
< (667D = U
by the definition of ¢, in Assumption (C). Hence,

(1.11) By(e) = >lealRal < Y OV |Ry.
da<z

a<z

To state our result in final form let

QI) = {nln = [To#:mex, 00 > of,  fn) =] ]fim).

i

icm®
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Then
St =Y Fla—fe7) = X rmT neQ.
(o¥z [ nit n<Vz
Combining (1.6) and (1.10) with (1.11) yields
(112) s, 1) < ¥ Yf T+ EE

where n < l/;, ne@; d <z, d|P.

Let us now utilize assumption (C). As T = {pjp < ¥} and ¥ < N,
it we let z = N®! in (1.12), we have

TaworeM 1.1. M (Sy, Tx) <N{Zf(n,rl}"+0(N(1ogzv)—°4) where

n

n < NP neQ.

§ 2. We shall now utilize (1.12) to derive other sieve bounds. The
sets § and 7' are as before.

DerINrTioN. Let k|P, »(h) the number of distinct prime divisors

of I, pr(m) the largest prime divisor of m in T'; then
Sy(h) = 8(h) = {m|h|m, meSy}.

For every peTyi, consider the set of meSy for which p{m and m
has no smaller prime divisor in Tyz. The number of elements in such
a set is M(S(p), T,). These sets are obviously disjoint for distinet p,
and the union is the set of m which have at least one prime divisor in T'y2.
ITence,

(1.13) I (Sy, Ty) = N— > M(8(p), Ty), Ppelyt
P
It (d,p) =1, d|P, then
1= 31 =) )@+
neS(v) mnes
dam dp|m

Thus, (A) holds for the sets S(p) and T',. We can now apply (1.12),

changing # into zp~’, and yielding,
_1)-t ’
(1.14) A(S,, Tp) < Ni@) L D0+ YRyl
[ d
where n < I:E, ne@(I'nr), d < ap~t, po(d) << p. We note

V3 IR,ION < ,,,2 |[Ral ()05 < (dZ\RleZ‘i))(logZ)-
<z <2

" rl<'zp_1

Hence, if we sum (1.14) over all peTy:, and use (1.13) we have
proved for z = N,
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TaEOREM 1.2. We lave

M8y, Ty) > N1 Ny (M) 1oV dogy) * )
N "

where peTyt, n < (NP WP e (1)),

For more complicated sieves we would proceed as  [ollows,
Let M, (S, T') denote the number of elements in § having at most » prime
factors in T';

T(h) == {plpeTyr, pth};
27(h) = {p|peL'nt, pXh, p < pp(h)].
It is then easy to prove that, for h|P,
(1.15) Mo (8, 1) = 2 M(S(hY, T(hY);  w(h) - r,
2
(1.16) M8, 1) = Z.M‘(S(h), THRY);  w(h) == e 1
12

We could then utilize the upper bound (1.12) to derive upper and
lower bounds on M,(8,T) by the above method. A slight revision is
needed in the definition of f,, as our error term is slightly larger. We laayve
these proofs to the reader.

Our immediate task will be to evaluate the sumy appearing in the
above theorems, and particularly to find a criterion in Theorernn 1.2 to
guarantee M (S,T) > 0, Thiy objective will be pursued in the follow-
ing two chapters, and the final results appear at the end of Chapter 117,

II. The functions 7,(u)

' §1. The functions 7,(u). This chapter concerns the Tamily ot fune-
tions {r,(%)} defined below, and various functions derived from T, (),
‘We shall couple these results with the sieve in Chapter IXI, but this ehap-

ter will be independent from Chapter I. Only an elementary knowledge

. . » . o
of analysis iy required of the reader, except for the evaluation of [ r ()t
t

which is derived by Laplace transforms, '
DEriNtiion. For every o> 0 define the funetion

) 0 it g

(2.1) To(w) ={ vowsd,
w0

(2.2) To(W) = —u " ar,(u 1) - (@ 1) 7, (%)}

(7o(w) is to be continuous at u = 1.)
If ¢ > 1, 7,() is & continnous function everywhere und differcutiuble

e§cept,a{b =10.If « <1, 7,(u) is continuous except at w0, and
differentiable except at w = 0 and 1, ‘
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Thus our functions v.(u) are integrable over any finite interval.
We may restate the difference-ditferential equation (2.2) in the equiv-
alent form
%

(2.3) el (n) = j 7 (8) dt .

U1
The equivalence of (2.2) and (2.3) is seen by taking the derivative of both
sides of (2.3), noting it satisties (2.2), and that the two functions agree
for 0 =iu < 1.

Next we prove v,(u) >0 for all ¥ > 0. If not, let %, be the greatest
lower bound of % >0 for which 7,(#) < 0. By (21), % >1, and by
continuity of owr function for » >1, 7,(%;) = 0. However, by (2.3),

ul
0 = ula"']ru(ul) = f 7, (2)dt.
wy—1
This implies that 7,(#) < 0 for some u < u,, a contradiction to the choice
of u;, thus u, is nonexistent.

If o <1 then, by (2.2), 7(%) <0 for u > 0, or 7,(u) is monotoni-
cally decreasing for % > 0. By (2.1) this is not obviously not the case
when o> 1. By (2.3),

ITence, 7,(w) has at least one zero in the range (¢a—1, a). We prove
LeMMA 2.1, If « >1, 7.(u) = 0 has & unique simple zero. Call this
root .. Then max(l, a—1) < u, < a.
Prootf. Differentiating (2.2) gives
(2.5) v (u) = —u Har,(u—1)— (a—2) 7 (u)}. -
Let u, be the least zero of 7.(u), we shall prove that it is a unique and
simple root. If u, were a multiple root, then by (2.5), To(,—1) = 0,
o contradiction. Now let v, be the next smallest zero of ,(u). If w»,
U,k 1, substitute u = v, in (2.2), giving 0 = (a—1)7.(v,) — at(vy—1),
or r,(m) > 7.(v,—1). This is false as 7,(u) is decreasing in the range
[ty 0] and w, <o—1 <0, If w, <o < #%,+1, substitute w =
in (2.5), giving 7. (p;) = -0y 'Ta(v;—1). As T (u) >0 fm;“ U< Uy,
we have 77 (v) < 0. But 7(u) < 0 for w, < w < wv. Thus 7.'(v) >0,
again proving that o, does not exist. This completes the proof of Lqmma
2.1 by the discussion at equation (2.4). (Note that w, >1 by (2.1).)
Next we prove that 7,(u) is integrable over the range [0, co]. By
Lenuna 2.1, z.(w) is decreaging for « > a, hence by (2.3) for w = a1
u
to(a) = r(u—1) > [ w()d = w7, (w).
U--1
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Hence, for u > a+3,
() < 'z, () {u(u—1)(u—2)}"".
This immediately implies the integrability of ¢,(u) over the range [0, oo].

§ 2. The functions 7,(u). Define the funetion F,(u) by

-]

[ (.

%

(2.6) Fo(u) =

We are going to concern ourselves with the rate of decrease of F (u)
for large «. In terms of F,(u) we may rewrite (2.3) a

(2.7) —F(u) = auw " {F (u—1)—F,(u)}.

Using (2.7) and integrating by parts we infer

fmmm

= —ulF (u)— f tF, ((B)dt
= —uF.(u)+a [ (F(t—1) = F(0)d
[ Py

-1

= —yF (u)+a

or

fp 1ydt > uF, ().

Ifu>at+l>u+1

] ) , then F,(¢) is convex in the interval [w—1, u]
(Le. Fo(t) <0, F, (1) >

0). Hence, for u > a1,

P (u—1)+F,(u f F,(1)dt > o ul,(w)
(2.8) —Fo(u) = aw™ (B, (u—1)— F (u))
= au™ (B (u—1)+F,(u)—2 P (u)
> au™ (207 P (u) — 2F,(u))
=2(1—au™ ") F,(u).

Lewma 2.2. If a <1, thin F,(u) <
then &, sueh that &, < (e—1)a and

Fo(u)e" < Fu(&)e'e  for

F (L)e"™ for w = 1. If w1,

w £,

icm®
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Proof. If a
by (2.3),

< 1, then 7,(u) is a decreasing function for « > 0. Hence,

we T, (u) < T, (u—1) for w >1.
Thus, by (2.2), —7v.(u) = eu 'r,(u—1) > 7,(u). Hence,
F ) = [ wat)dt < — [ wi(t)it = z,(u) = — Fy(u).
u w

We immediately have the first part of Lemma 2.2,
If «>1, we note by (2.9) that for » > 2a,

—F () F(u)™ > 1.
Ifu<i,
—F(w)F o (u)™" = w7 (F,(0)— ™ "u) 7,
or

—Fo(u)F(u) <1 for sufficiently small u > 0.

Let wu;, us be respectively the smallest and the largest zeros of
—Fo(u)F,(u)"' =1. Let & = & De the real number in the interval
[#;, u>] such that

F (8¢ = max (F,(u)e").

Uy SULUy

We now prove that

F (u)e" < F. (&) for all u.

Assume the contrary, namely let u, be such that F,(u,)e™s > F (&)¢.
By the definition of £, u; << u; OF s > Uy. If uy < u;, then —F.(u) P, (u)""
<1 for wy < u < wu;, and by integration this gives

log (F(ug) Fo (1)) < 1ty — 113
or
F(us)es < F(u,) e < Fy(£)¢f
The same argument holds for ws > u,, proving the claim.
To prove & < (e—1)a, we note that
&

(2.9) f P dt < Fu(8) [ a0 = F (&) (e—1).
&1

-1
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Clombining (2.8) and (2.9) completes the proof of Lemma 2.2,
§ 3. The functions @, (). We need define one more function which
is important in evaluating the lower bound in the sieve.

(2.10) G (0) = ax™® f w® B (10— ) {F(0) = Py (- )
r
(. (2) is clearly a decreasing function of @. To prove a positive lower
bound for the sieve we would like to find ¢,, the value for which ¢, (Z,) == 1.
THEOREM 2.1. If « >1, @ > (e—1)a-+}-+log(le—1)/(e2)), then

Q.(z) < 1.
Proof. By Lemma 2.2 and the fact that F, (u) is decreasing, we have

Gulit) = " [ B = D0 = By (- ) d
;

~

< wr B ()T FL(0)—F (e b)) [ e i

B

o0
4172 A RS BT
< aft L R e [yl gy
o

‘We note that

o0
ju”“‘e‘" de < e F(@+1—a)t  for >
T

Hence,
(2.11) Go(@) < a(m41— )l TIET (L TR

By our hypothesis,

< 1
= 0y

eEﬁr»l/:’.—x(l - essrl/-z".-c) 1

ale+1l—a)" <L alle—2)at+ Y < (e—2)t.

These inequalities coupled with inequality (2.11) completes the proof of
Theorem 2.1.
THEOREM 2.2, Ifa, § >0, then

u

Tasp(¥) = (a+ ) ()7 T(B)" f Ta(t) Ty (u—1)dt

0

where I'(a) is the classical gamma function,

The general sieve 43

Proof. By (2.1) and (2.2), we have

1

. (2.16) _; b (ut) Ty (u (1 — £))dt

1 1

- . ufl{aﬂf ot~ 1)rﬁ(rz,(1—t))dc—(a~1)6[‘ Tu{ut) T fu (1 — 0) de}
1 1

= —u Mo [ (ut—1)7, (1~ t)dt—(a—1) [ To(ut) Tyl (1)) dt}

= —(u—1)u" u J T (e —1)8) Ta{(u —1) (1 —5))ds
0

+(a—1yu? [ t(ut) [ (1 —1))dt,
0
by letting ut—1 = («—1)s. Hence, if we let
1

gu) = u f T (ut) Ty (u(1—10)dt,

0
we find by (2.16) tjmt
glu) = —u {lat B g(u—1)— (at p—1)g(u)]

or that g(w) satisfies the same difference-differential equation (2.2) as

Tapp (). Also g(u) =0 if u <0, and if 0 <u <1,
1
g = [ () @ — )" dt
0
1
=yt f M1 —t) a
0
= () (B (a+p) P2,
Thus :
Taya() = Da+B) (@) (B) " g(u)
= D(atB)I(a) " T(B)" [ alt) Ty(1 1)t
0

In the proof above we assumed the derivatives existed at all posi-
tive values, which is not the case when a or § << 1. The proof can be justi-
fied in these cases by suitably splitting the integral and will be left to

the reader,
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The last theorem is not important in itself but suggests that we
might examine the Laplace transform of owr function. Let

(2.17) j tydi
o

(i.e., L,(2) is the Laplace transform of z,(t)). We know that 7,(¢) is of bound-
ed vana,tmn and its integral is uniformly convergent. Thus

1 04100
T.(1) = P L, (2)dz,

a—loc

(2.18) o =0, u>0.

We can now explicitly evaluate L,(z) by the difference-differential

equation (2.2). Namely,
Ii(z) = — fw e, (1) di.
Hence, '
2L.(2) = — f e Matr, (1) = fm e~ o, (t—1) — az,(8)} dt
h h
= foe‘zlrﬂ(t—l)dt—— aL,(2) = a(e*—1) L, (),
B

by (2.1). Hence,
(2.19) L.(2) =C,exp {a f(e"”—l)s"ids},

b
where

Y

0o =L,(0) = [ w(t)it

0

= Fa(o)y

the constant we wish o evaluate. Substituting (2.19) into (2.18), we
have an explicit formula for =,(u),

a-+ico ]

f exp {zu+ a f (6*

a—ico

(220)  7,(u) = C,(2mi)™" —1)s7 ds}dz

If y denotes Huler’s constant, then

-—Je

'lcls—f e *s™ ds.
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Thus, as the integrals are analytic,
exp{ay—}-af (e"s—l)s‘ltls} = exp {u [ (" ~1)s7 ds—a [ e “‘s’l(ls}

0 1 1

=expl—alogz—a [ e 'ds
l g
8

oo

= 2z %exp { —a f e“ss“lds} =z "4+ K(2),
where K (z) is defined by the relation
expl—af e 7ls| = 1—K(z) = 1+ 0(= "¢ *).

Hence,
K(z) = 0(]s " ¢77).

Placing these results in (2.20) yields

o+100 64100
(2.21) 7,(u) = O (@mi) [ 2T de+Cue ™ (2mi) [ K (2)de.
o—1oo a—1ico
It 0 < <1, we claim
a+’£w
| €“K(2)dz = 0.
o"teo

Ag, it ¢ >1, and we let Cp be the arc of the circle |z] = T from o— T
to o+ 47T, Re(z) > 0, then

| [ R (9)de| < T1e= T < T 0.
Cp

This proves the elaim as K (z) is analytic for Re(z) > 0. Hence, by
(2.2) for 0 <<u <1,

a4 'lDQ
f ™ dz.

g—ioo

7, (u) = C,e”" (2mi)~

But
uo4ico

1,a~1 {

2 = (2md) e~ % de = T {a)”!

o100 Us—100

But 7,(u) = u*" for 0 <wu <1, giving

0o

THEOREM 2.3. F,(0) = [ r,(t)dt = I'(a)e™.
0

Utilizing (2.20) we could derive the asymptotic behavior of 7,(u)
when a is fixed and u — oo, by the method of steepest descent. One could
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then generalize the result of de Bruijn for =;(u). For the proof, see de
Bruijn [5]. However, we wish a result which is uniform in «.
Let us now return to (2.20). We note that if |Re(2)| is bounded and

2] —» co, then Re(— { (¢e7*—1)s 'ds) >elogls|. Hence, by moving
[

the line of integration and changing 2 into -—z we may rewrite (2.20)

in the form

od-Tea K

2)  T.(u) = (2wi) ' F.(0) ] ex| { — S [ (e%--1)s ‘rlx} s

o

(2
a-ins u
for ¢ =0, u >0.
Ifence, for v > --a, o >0,
(2.23)  (2=d) FL0)7 [ 2, (0 T du
)

=3

= f w"”‘(lﬂf (*X])-{—/[:Jra f (¢ —1)s ']«l.s‘} dz
[ i

= l exp {u f (¢ —1)s ‘(Is} f w T exp - axd da
) I} [y
o ieo 2
= I(a+7r+1) ﬁsz exp{auf(v‘* 1) 'ds}.:‘ s,

The interchanging of the integrals in the above equation is casily
Jjustified. This identity now enables us to prove the following important
theorem about the moments of 7, (u).

THEOREM 2.4, If r is fixcd,

log 2

€ = f (¢ —1)s~'ds~—loglog2,
0
then as a — co

oo
F(0)! f (W) du ~ eya P (A r 4 1) exp fae)
)
for some constant c,.

E-2
Proof. Let g(z) = [(¢—2)s7'ds, o, =log2. Then g'(a)) = 0

a

ooy =27, > 0. Also

o,
. . sin 11— ¢o81
Re(—glopiny =2 [ SOy
; d o1 +y
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Hence, if |t > 4,
Re{—g(o,+it)} > ed,
and if ¥ > 2,
Re{—g(oy+1t)} > cloglt|

for some positive constant e.
Therefore, if § = a2,

(2.24) j exp{ag (o, -+it)H o+ ity dl = O(exp{—da'"})
S<itj<2
and

f exp {ag (oy+ it)} oy +it) "Vt = 0(274).
1#>2
Finally,
8

(2.25) [ exp{ag(oy+i)}(or+it) "t
-8

&
= ;" [exp{—ug (0) BHL+ O () + O(8)) di
s
=o7"" [ exp{—ay (o) 1A+ O(a)

— Vo (2oya) PO ).

To prove Theorem 2.4, we note that by (2.24) and (2.25)

61+ Teo ?
(2.26) f expla [ (=15 tasl e 7 e
D7 ) . J
ay—1co 0
1 « a0
= g exp {a ‘ (e“‘fl)s‘](lxﬁuj 8 ‘dsi J explag (o, + i)} oy + i) "t
= 0 I By

= o7 " Rexpae 1+ 0 (),
291

where
1 P
ey == (=20, ¢ = f (¢"—1)s™ ' —loglog?.

™ 0

LS

™

Clombining (2.26) with (2.23) yields Theorem 2.4.
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COROLLARY. If K =exp{e,—1}, ¢ defined in Theorem 2.4, ithen
there ewist constants ¢, and ¢, such that

o
[ () us=" du ~ oy Fo(0) o K,
0

f Fo(u)n*"tdu ~ e, F(0)a“ " K".
0

Proof.

f F(u)u'du = ot J 7, ()t d.
0 0
Hence, our corollary immediately follows from Theorem 2.4 by using
Sterling’s formula.
THEOREM 2.5. (1) {,~ oK as a - co where K =1.22...
Proof. If 4 is a constant, d < K, # = da, then

G () = an™ f W R (e — ) {F(0)— B, (i — 1)}
> ar"F,(0)7! f ", (w)dae
@
4;13
> ar™"F,( l(f w* L, (u) du — 2" IJ r(,(n)du)
0
a(K[d)—a—>o00, a8 a->oco.

Conversely, let d > K, # =da. If > #, then

°-1/2 )
F (O —Fo(u—3) = [ z@)dt <o [, @ =o(F,0) as a > co.

0 0
Hence,

Go(®) = az™ [ W', (n—3) (P (0) — Foln— ) du
z
< ar F(0) [ w T, (u— })du
x

<ar™"F,(0)” a8 o> o0o.

f w T () du < o(E|d)" > 0

The above inequalities complete the proof of our theorem.

(1} Theorem 2.5 was first proved by Dr. H. C. Rumsey by quite a different
method.
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I

§1. We shall now evaluate the sums introduced in Chapter I (e. g.
Dfn) vhele 7 <@ and all prime factors of neT). Let us set a,n~*
=fn

We restate Assumption (B) in terms of {a,}. Thus, to each N let
{a,} be a set of non negative real numbers satisfying

(3.1) Dla, < ¢, X(logX)™', X <logV,
DT
(3.2) _V: (ay—a) < C,X(logX)™, X > log¥,
DX

for some constants Cy, C,. There exists a positive § independent of N
such that

(3.3)
(3.4)

ay < (1—9d)p,

ay=a, p>N,21>0.

We now define a, multiplicatively from a,. (3.4) is introduced to
artificially define a, for p > N*. If p < N* but p¢T, we let a, = 0.

Tn the following, K, (,,(,, ... are positive constants independent
of N and Y. We define
(3.5) w(

X, Xo)

= Ea"”J: n < Xy, p(n) < X,
n

where p(n#) denotes the maximum prime divisor of .
Tiurorem 3.1. If

%
Tuu) = [ ()dt,
’ 0
then

p(X" X) = A, (M) (@) ', (u)(log X)"+0((loglog ¥ D, (X) (loglog X)),
where
4,0 = [[@—=ap)y @—p)
]

and

l (logX)*  for ax>1,

D, (X) = {loglogX  for a«a=1,

ll for 0 <a<1.

Also

(loglog N')~%< 4,(N)

Acta Arithmetica X.1 4

< (loglog N)™.
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Proof. The O terms appearing above are independent of , X, N
and K depends only upon O and ;. For 0 < % <1, then by defnutlon,
(XY, X) = p(X% X%, and J,(u) =« 'w". Thus, it is sufficient to
prove our result for 0 < % < 1 only when # = 1, by replacing X by X"
Let § = o+ it be a complex variable, Re(s) = ¢ > 1; then

gn(s) = Y an™ = [[(1—a,p™)"
Ne=] 3

We note via (3.4) that a, < 3™, so the Dirichlet series in (3.6) con-
verges for Re(s) >'1. Also by (3.4) our infinite product converges in this
range, and thus the equality in (3.6).

{(s) denotes the Riemann Zeta funetion.
for ¢ > 1, 80 for 0 > 1,

(3.6)

By (3.3), 1—a,p ® #0

(8.7)  logpn(s)i(s)™* = ~ '((log(1—a,p™*)— alog(1—p~"))
v
= 3 Y(a—a)e'p=®.
e=1 P
Again by (3.3) for ¢ =1,

| D D= wep™ < Yapp a—pT) a1

e=2 P P
(Note: By (3.1) and (3.4), 3 a; <( } apf = O(X*(log X)™%).)
p<® <
By partial summation using (3.1) and (3.4), ¢ >1, then Y (a,— a)p "%
7

pwl)_l ES U/a.-

converges and

(3.8) ] 2 (ag— a)p“’““l = O(logloglog N + log (|t + 1).
»

Hence, for some constant K
(3.9)

(loglog Ny ¥ < A, (N) < (loglog V¥,
It is well known that Z(s) is analytic for ¢ %1,
() =(s—1)7"+0(1), [|s—1|<1,
log|¢(s)] = O(log (1t +1)), o>1, [t >1
ngce, by (3.7) and (3.8) for ¢ =1
= A.(N)(s—1)""+0((loglog N)* s —1'~¢),

O(loglog M)*[t%), |t| > 1

ex(8) |3___1| <1

on(s) =

icm
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We now quote the following result, typical of various Tauberian
Theorems.

LevMa 3.1. If for Re(s)>1, ¢(s) = %o‘b n“’, b, =0, o(s) 4
N= 1
analytic, g(s) = (s— 1) "+0(Qjs—1]""%) for s—1| < 1, |p(s)] = 0(21sF)
for |t] >1, ¢ =1, then
}_;b“vn U= I(a+1)""(log X)"4 0{QP,(X)).

Proof. The proof only differs slightly from the usual Tauberian
proofs associated with the prime number theorem it will not be given
(see Chapter 3 of Titchmarsh [18]).

Applying Lemma 3.1 to gx(s) where Q
3.1 for < 1.

We now complete the proof for % > 1. We shall give the complete
proof only for a > 1, the case a <1 varies only in minor detail.

Agsume that for a given positive integer r, and for all X;, X,, and
u = (log X;)flog X, where r—1 < u <7, then

= (loglog N)X proves Theorem

(3.10)  [p(Xy, Xa)— A, (N)(log Xo)*T (o) o(w)] < dr(log Xy)**(log Xo) ™',

where d; = (;(loglog N NE, dy..y = 2d, for small r, and dy,, =d, for r
sufficiently large.

We have seen vie Lemma 3.1, that (3.10) holds when 7 = 1. We
shall proceed by induction on » but first need certain formulae.

Let X >log¥, r—1 <wu <r, and ¢ runs over all primes between

X and XY Then by (3.2)

(3.11) N a,q (logg)a((log X" /g) logg)
4
XUl
=a [ J.((logX*")/(logt)—1)(logt)*” Yidi 4 0((log X))
£
u+1
~ a(u+1)(logX)* [ J,(t—1)r " dt-+0((log X)*7Y),
U
(3.12)

N aq log X )" (logg) ™ < 2ea log X)
[

By the definition of 7,(u) (see (2.3)),
¥
w)) = 7o (u) = ou™ ‘ T, (t)dt

w1

d

"Z-?_; {Ja (

au (o (w) =T {u—1)),
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hence,

d —a —a--1

701—11—{“ () = — aw™ W (u—1),
or

@} 1

(313)  Ju(w+1) =1+, (w)—alut+1)" [ T dr

We now note
(814) (@, X) = p(X", XM= Mo

where n < X", X < p(n) < X1,
- 1P(Xu+l’ Xlu/u_ Za‘qq‘lza’n“wl;
0] n
where n < X*“g, p(n) < ¢
(X'url X1+1/u Za’qq ’/’ Aupl/q,q
The right-hand side of (3.14) falls with the hypothesis of (8.10)

(e.g. (log X"*'/q)/logqg < w as ¢ > X); hence, we can apply (3.10). Using
(3.11), (3.12), and (3.13) we have by (3.14)

Ip(XH, X)— A, (V) (log X)*I'(a)™ ", (u+1)]
< d, (log XY w1+ u™ ") ' 4- 200~ 1}
< 2d,(log X)* "' (u+1)"

and < d,(log X)*'(u41)* for » sufficiently large. This completes the
proof of (3.10). To complete the proof of Théorem 3.1 we must achieve
4 sharper inequality for u large with respect to X.

For all u, v >u; = 4aloglog X, then by (2.8)

0 < Jo(w)—Ju(m) < [ r(t)dt = 0((log X)),

0 <p(X* X)— (X", X) < [[(1—ayp™) " —p(X", X)

<z
< A,(3) (log X)*(¢” — (a7, (1))
A (N)(1ogX ) (e —I(a) , (u )) +0((loglog ¥ )X (log X)*")

< O((loglog ¥)* (log X)* ).
As J, (00) = I'(a)e” by Theorem 3.2. Hence

(X", X)—4,(N) (10g X)'T () 7, (w)] = O{(loglog NY¥ut(log X)* )
= 0{(loglog)* D, (x) lgloga)".
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Theorem 3.1 is only applicable when X is sufficiently large with
respect to log N, or else the error term is larger than the main term. We
shall now correct this omission.

LeMMA 3.2. For some C5 >0,

p(x*, X)— [T 1—ayp™)7] = 0(e~%"(loglog N)*(log X .

PLT I
Proof. Let Hx(o) = ]] 1—a,p )" where 0 >1—¢, ¢ = (log X)™*

xlog(1+406), the 6 is deﬁned by (3.3). Then by (3.3), 1—a,p~ " > £6.
Also [logHy (o) = O(loglogXN), the proof being identical to that to
prove (3.8). Hence, as a, =0,

E a,n~ < Hy(l1—e), pn) <X,
n>a¥
or

D ant < XTHy(1—¢) = O(X~(loglogN)<(log X))
e at

which is equivalent to Lemma 3.2.

fae)
We recall that we defined F.(u) = f T (tydt, so

%

Jo(u) -+ Fo(u) = I'a)e™.

LEMMA 3.3. If » < X" p(n) <X, then
” (1—a,p~ ") — (X", X) = A, (N)(e) " F,(u)(log X)*
DT

4-0((loglog N Du(X)loglog X).
Proof. By (3.8),

(315) [[—ap )7 = Au(W) [ | (1—p~)~*+0((loglog N)* (log X)*~)

P DT
= A,(N)e™ (log X)*+0{(loglog N)™ (log X))

by Merten’s Theorem on []J(1—p~ ")~ Our lemma then follows imme-
DT
diately by Theorem 3.1.
§ 2. We now return to the formulae of Chapter I and state the final
results.
T\ was a set of primes less than N%, 4 > 0; @ was the set of all posi-
tive integers all of whose prime factors were in T',1. Now

SHe)?, n< X neq,
"
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equals
y%n U= p(NPR, NN,

{i.e., if p¢T,2, we have let a) = 0).
Thus, Theorem 1.1 combined with Theorem 3.1 immediately yields

Theorem 1, namely if
)T el
then
M(8x, Ty2) < Bo( W) (36207 )TN (log N)™“+ A7 “O{N (log N)~*~112)
B.(N)Jo{3627") "N (log N)a~“(140(1)).

//\

The reason we can replace f; by ﬂ is that J,(u) is continuous for
% > 0. In the following, we will also write § for /31
By Theorem 1.2, for geTx*, n < (N7/¢)'*, p(n) < ¢, we have

(316) M (Sy, Iv) > Nf1— Y@ (X Fm) )"} +0(N (log )=
q n '
> N{1— Y a, g p((N"1g) ", g} +0 (N (log N)="-Y).
2
To evaluate the right-hand side of (3.16) we use the identit y; for

g< N »
(3.17) II (I—a,g™") =1— quq ” 1—ayp™).

n<q

o Hr= exp ((log N) (loglog )"}, and it we let X* = (N*/q)"*, X = q
in Lemnia 3.2, we have '

(838) - 2 auq ™yl o)~ [] (1= ayp™)

»<Q

=0 ( X %q“l(logq)“eXP{~06(1og10g1v)}) = 0((log ¥)™.

a<T

If o = (log N'/q), then by Theorem 3.1 and Lemma 3.3, for ¢ > T,

(329) w{(¥g)", ¢~ [] (1—a,p?)

»<g

—_=Aa(N)e““”Fa(%('U—1))JR(%(1;— 1))~ (logg)~ “+0((logq) Gt
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If we multiply (3.19) by a,¢~° and sum over all ¢, T < g < N%,

we have by partial summation, for § = 1(log ¥%)/(logT),
(320) N aq (¥ )0, = [] @ —wp)

T<q n<q

= a4, (N)e?) ! (log N?)™* f F(3(v—1)) (3 (o—1)) 0" v+
+0{(log ¥)™* )

= oA (N)e?) T (E)(log )™ [ Folu—3)d,(u—3 " "u" " du

1,-1
3P4

+o((log¥)™7)
= a4, (N) e"”)*‘1~“Ga(g;ﬁz“)(1ogzv)°(1 +o(1),

by the definition (2.11).
By (3.15), for ¢ < N* we then have

[T = a,g™) = (A2 e?) 4 (log N) (1 + 0(1)-
q
Using the last equation, and placing (3.17), (3.18) and (3.20) into. (3.16)
we have shown
M(Sy, Tx?) = (Ao (N)e™) ™ 27N (log N)™*(1— G (384~ WL +o(1))-

This completes the proof of Theorem 1 recalling that B, (N) =
(I{a) Aa(N))7

1V. Applications

§ 1. Let « be a positive integer; d;, ds, ..., d, distinct integers which
do not form a complete set of residues for any prime;

o

E(y) = [ x+d),

7=1
SN={K(n)[n=1,2,...,N}, TMZ{PIP=N1}~

Tf @, denotes the number of distinet d; (modp), then for meSy,

D1 =Nap ) +Ey Byl <a

pim

Set f(d)™' = (gdapp'l); then
N1 = Nf@) ' +Ra, |Ral <,

dym
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It p 1 [[(&—d), then f(p)™ =ap~'. Thus, § =1 and
ik

(£1)  M(Sy, Ty?) < B "N (logN)™ 7, (327 (140 (1)),
(£2)  M(Sy, Tx") = ([(@)e”) 7 B,A"N (log N) “(1—Ga($27"))(L + 0 (1)).

We note that B, can be taken to be independent of &, and if 4! < 2,
then by the definition of J,(u),
(4.3) M8y, T < «2°B,N(logN)™* (1+ o(1)).

. was defined by &, (£.) = 1. Thus, if A7 > 2¢,, then M Sy T M) = 0
‘We have thus shown that there emst infinitely many % for which the least
prime factor of K (n)is > nd” . Hence, K (n) does not have more than
a2{, prime factors. By Theorem 2.1, £, < (1.25)« for a suffici iently large.

However, if we are concerned with the problem of finding » for
which K (n) has a small number of prime divisors, not how large we can

make the least prime divisors, we can strengthen this result ¢ onsiderably.
Let »(m) denote the number of distinct prime divisors of .

TuroREM 4.1. If « s sufficiently large, there ewists wnfinttely many n
for which » (K (n)) < a(loga-+2).

Proof. Let meSy all of whose prime factors are > N'™«, We then

define “weights” a, such that if »(m) is too large Y a, = 1.
nim

If Sy(p) denotes the subset of Sy which are divisible by p, we prove
(4.4) S‘a,,
To prove (4.4), define
7= fa(log2s,)—14+ 4%, = {}— (logp)(log N)"1}r~!
for the primes between NY%e ang Nl/2 Note that if all prime factors of

m are greater than N'/*= and »(m) > 2r+2a, then

Z“F Ir(m)—d)r > 1.

pim
The set 7' consists of all primes, and we let N* stand for 'I’ . By the
upper bound ‘

(4.5) Z%M(SN@),N”“"){Bmca)“zv<1og'N>'"“}""
»

P), N < M (S, N'1a),

2% o(28,(1— (logp) (log ¥) 1)) -
12

<Lafr f(%——t)t’lJa(zcu(l~t))'“ldt

1448y
< 0/r(}(10822)— (3 —1/4¢,)) 7, (o0) "
< il 1 40(1))

vd
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by the choice of r. In the above we use that J(u) = J;(oc0)(1+0(1))
for u > ¢,. Now
(4.6) M(S(N), NV {B(4L,)" N (log N)~*}~!

4Lq

= k(L) [ Julu—3) T wr e = J,(co) (L4 0(1)).
la

(4.5) coupled with (4.6) and our results about the asymptotic value
of {, proves Theorem 4.1.

§ 2. We now consider a special case of the previous example. Let
' Sy ={nn+2)} n <N},
and 7' the set of all primes.

We Iea,dlly see that f(p)™' = 2/p for p >2 and ==} for p = 2.
Hence,
@n B =2][a-2pa-1p i =2][1—-(p-1)7

b2 »=2

and
(4.8) M (Sy, N {B,67°N (log N) "} = J,(c0) {1 —64(3)} {(L+o(1))

3
= 2(3)7F frlz(u——~) wdu>2(3 [ o(u—3) Tudu > .25,
&y 212

Define
a, = }—(logp)(logN)', NV <p< N
Then

(+.9) M a, M (8y(p), N*){B,6*N (log N)~*}~*
D

<2 Zp 7 2(3(log N [p) (log N*°) )7 L+ 0 (1))

1,72
= [ Q—2u)u T, (8(1—w)  duto(1),
176
by partial integration,
<.23.
The last inequalities were derived numerically with the aid of Table 2.
If all the prime factors of m, m = n(n-+2), are > NV then
(4.10) Ma, =1
Fi
if y(n) =4, v(n+2) =4, or v(n) =»(n+2) = 3.
Bquations (4.8) and (4.9) combined with (4.10) prove the follow-
ing theorem:
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THEOREM 4.2. There crist infinitely many n such that v(n) < 2 and
p{n+2) <3, or v(n) <3 and v(n+2) < 2.
(For results of a similar nature, sce Rademacher [11] and Vino-

gradov [19].)
If we had let 8y = {n(N—n)in < N}, for & even, the same method

immediately implies; if N is sufficiently large, N = r+4s where »(r) <73
and »(s) <3, or »(r) <2 and r(s) < 3.
§ 3. Let #(N,) = N (then z(N;) denotes the number of primes < N,),
and let
Sy = {g+2] ¢ a prime < N,;}. )
On the E. R. H. (Extended Riemann Hypothesis), if d is odd, then
(see Ankeny [1])
1= Np@) ' +0(NPlogd), ¢ <Ny, dlg+2.
a
Thus, we may apply the sieve with a =1, f =4, and
Bi=2[[{~(@-1))1=p )" = b
n>2
By the definition of J,(u) and ¢,
(£11) M (Sy, NV){6B,N(logN)""}"" = J,(00) ' (1— G, (6/4))
3/2

= %j Jy(u—F) " tdu-o(1)
o

32

=3 f (u— 3 'du+to(1) > 418.
Let a, =1} for NY* <p < N'B, thon

(4.12) Za,,M(SN ), N {6B, N (log N')~'}~*

%ZP“Jl( — (logp) (log ¥)~)} "+ o (1)

13 s
fJ (t—w) utduto(l) < § f wltdu < .347.
176 176

Hence,
Do M (S (p), N9 < M(Sy, NY).
b

If ¢+ 2 has all of its prime factors > Nl’ﬁ, and if »(g+2) > 4, then

o>

pigr?
Thus, we ha,ve proved the following theorem:

The general sieve 39

THEOREM 4.3. Under the E. R. H., there exist infinitely many primes
q such that g2 has at most 3 prime factors.

We have actually shown there exist primes ¢ for which ¢+ 2 has
at most one prime factor < N,

In an almost identical manner we could prove there exist infinitely
many primes ¢ such that »(}(¢—1)) <3 under the E.R.H.

Also, without any hypothesis, we could prove there exist infinitely
many #n sueh that »(n®+1)<3.

§4. Let 2 = p, < p, < ... be the set of primes. What can we prove
about the differences p;.,—p;? If the twin prime theorem were true,

pjy1—p; would equal 2 infinitely often; but what can be proved? Let

¢ = liminf (p;,, —p;) (logp,)™"
7

Erdos proved ¢, <1 and Rankin sharpened this to e < 1. (See
Erdos [6], and Rankin [15].)

‘We sghall now prove,

THEOREM 4.4.¢, << 15/16.

Proof. Let N be large, q; < go < ... < gs = N be the primes between
N(ogN)~' and N. So, { = N(log ¥N)"'40(N (log ¥)~%). Denote by H(d)
the number of j such that g;,,—¢g; = d. Then
(4.11) NMNH@ =8, ) dH(d) =N-+0(N(logN)™).

a T

On the other hand, H(d) is less than the number of » < N such that
n and n-+d are both primes. Hence, by (4.1)

(4.12) H(d) < 8B, N (log ) 2p(d)(1+ o (1))

where
pid) =[] @—p -2, pid, p>2
D
Lemya 4.1, If d runs over all even numbers << X,
Jvid) = BEXH00T),  Mdyld) = 4BFT 0.

Proof. Let t be odd and square free. Define (i) multiplicatively

by w(p) = (p—2)~t. Then y(d) = Y w(t). Also w(f) = 0(#)~'"". Hence,
1id

Dlv(d) = Zw(t)El, td,d <,

d<r twx

=1 Ecu( WOV E) = %Y‘w(t 10V I)

:%H(l.s.(p_z 1) 4-0( VY
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which proves the first equality of our lemma. The second equality fol-
lows in the same manner.

Let ¢ be a positive constant. Then

8B, El p(@)N (log N)™* = N(log Ny 1—H)(N(l()g’l\f)‘ﬂ),
d
clogN < d < (¢+ §)logN
and

8B, Y p(@)dN (log N)™* = 4((c 44}~ ) N+ O(N (log N) ).

d,

(4.13)
Assume H(d) = 0 for d < clogN. Then, as
H(d) < 8Byy(d) N (log N)*(1L+0(1)},

N H(d)d = N+0(N (logN)™)
@
> 8B, v(@) d)( N (log N)~*)(1+0(1))
a

2 4{(e+ 3 ) N {1 +o(1)).

Hence, ¢ < 15/16, thus proving Lemma 4.1.

Using more complicated methods we can sharpen the bound slightly.
Under the E. R. H., we can improve our result by 3 to ¢, < 7/8. How-
ever, if we combine the sieve method with the “circle” method we could
prove ¢; < §. (See Rankin [15].)

TABLE 1*

Ga(x)

1.0027117

99624306

1.002664300
.997648370
1.0018957
.99767852
1.003276300
.999535960
1003249000 !
.999838950
1.002180100
.999014950

. ; B
The authors would like to thank Dr. J. Muscat for the computations in Table 1
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TABLE 2

u Ja(u) ] % | Ja(u)
1. .5000 18 1.4755
1.05 5512 1.85 | 1.5395
1.1 .6047 1.9 | 1.6029
1.15 .6602 1.95 | 1.6656
1.2 1175 2.0 1.7274
1.25 7763 2.05 | 1.7737
1.3 .8366 21 1.8199
1.35 .8981 2.15 1.8768
1.4 .9605 2.2 1.9362
1.45 1.0238 2.95 1.9868
1.5 1.0877 23 2.0398
1.55 1.1521 2.35 | 2.0911
1.6 1.2168 .24 ) 2.1412
1.65 1.2816 i245 | 2.1894
1.7 1.3465 X 2.2374
1.75 1.4112 i ‘

i

If > {,, we note that
1—Gale) =1—ar™ [ Fu—p)Ju(u—3) """ du
x

=1 —(La® )Gy (o) + ™" j Fo(u—3 o (u— 3 0" du

= al(a)e”s™ [ J,(u—3) " "u " du.

sa

Also, by definition,

7, () U, 0 <y <1,
u) =
! 2u—1—ulogu, 1 <<u <2.
347, 0<u<l,
Jy(u) = 3 2
alv) 20— 2u+f—ulogu, 1 <<u <2
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On a conjecture of Erdés in additive number theory
by

R. L. Gramam (Mwray Hill, N.J.)

1. Introduction. Let ¢ and o be real numbers and let S;(a) denote
the sequence (s, 8., ...) defined by s, = [ta®] (where [ ] denotes the
greatest integer function). It was conjectured by Erdos several years
ago that if ¢ >0 and 1 < a < 2 then every sufficiently large integer

x .
can be expressed as n = ) &5, where & = 0 or 1 and all but a finite
¥=1

number of the ¢, are 0. Tn general, a sequence of integers which has this
property is said to be complete and if every positive integer is 80 expressible
then the sequence is said to be entirely complete. While the additive stru(_z—
ture of 8;(a) is far from being completely understood at present, it is
the object of this paper to shed some light on this question. In particular,
the set T of all points (f, @) of the unit square § = {({, a): 0 << 1,
1 < a < 2} for which S;(«) is complete will be determined. It will be seen
T has an area of approximately 0.85.

2. Preliminary remarks.If 4 = (4, 6, ...) is & sequence of integers
o0
then P(A4) is defined to be the set of all sums of the formkz,: £, 01, 'Where
& =0 or 1 and all but a finite number of the ¢, are 0. In this paper, we
) b

adopt the convention that a sum of the form D is 0 for b < a. We now

k=0
give several results which will be needed later.
TeeorEM 1. (J. Folkman.) Let 4 = (a1, s, --.) be a sequence of
positive integers such thai:
L. Gyt Gnyy S Guys for n >1.
9. There exist m = 0 and r = 0 such that m¢P(4) and

r
Doy <m <ty
k=1

Then A 4s nmot complete.
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