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Equivalence classes of functions over a finite field*
by
8. R. Cavior (Buffalo)

1. Introduction. Let GF(g) denote a finite field, and suppose f, g are
functions of ¢ variables, » > 1, with coefficients in the GF(g). In [2]
L. Carlitz defined f and ¢ to be equivalent if there exists an invertible
get of transformations

1.1) o B =qi(og, ..y ) (e, BieGF (q))
such that
(1.2) Jo =gy,

where fo(a, ..., a) = flp(a,..., o). When r =1, ¢ is called a per-
mutation funetion. The functional equation is in fact an equivalence
relation which separates the functions over GF(g) into equivalence clas-
ses. Carlitz in [2] described completely the invariants of these classes.

The chief object of this present paper is to study five different
families of equivalence classes of functions in one variable. They
are determined respectively by the five following funectional equations,
where ¢, ¢;, and @, are permutation functions:

(1.3) g =10 right equivalence,
(1.4) @g="h left equivalence,
(1.5) @99, =h  weak equivalence,
(1.6) ¢ gp =h  similarity,

(1.7) @9 ="n; gp.=1h strong equivalence.

All the functional equations are easily verified to be equivalence relations.

* This research was supported by National Seience Foundation grant (+-164.85.
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For each equivalence we shall attempt to find the number of clas-
ses, the number of functions in a class, and the number of automorphisms,
where an automorphism of a function g, say with respect to (1.4), is
a permutation function ¢ such that pg = g. We shall also discuss the rela-
tions among the various types of equivalence and give a few examples
of them.

In the final section of the paper we obtain necessary and sufficient
conditions for the solvability of some functional equations over a finite
field and derive several formulas for the number of solutions. The equa-
tions we study are:

(1.8) fq =.f7
(1.9) o =71,
(1.10) f=1,
(1.11) fg =h.

We should mention that most of the results in this paper do not
depend on the properties of a finite field. In fact, with the exception
of Theorem 4.2, all the theorems in Sections 4, 5, 6, 7, and 9 will hold
for functions defined over an arbitrary finite set.

2. Preliminaries. Let ¢ = p", where p is an arbitrary prime and
n = 1. GF(g) will denote the unique finite field of order ¢, and its num-
bers will be denoted by lower case a,f,y,and 4.

f will be called a function over GF (g), or simply a function, if f maps
GF (q) into itself. It f is an arbitrary function, R; will denote the range
of f, and f will be called a permutation function if Ry = GF(¢). Functions
in general will be denoted by lower case f,g, and k, but permutation
functions will be written as lower case ¢,y, and #. By the Lagrange
Interpolation Formula ([3], p. 55) an arbitrary function f over GF(g)
can be expressed as a polynomial of degree < gq:

(2.1) fl@) = = Y {@— ) ~1}f(a).

We define IT;, the partition of f, to be the decomposition of GF(q)
into disjoint subsets {§;: 4=1,...,1} such that a,BeS; provided
fla) =f(B). I ael; and f(a) = B, f(8;) is defined to be g, and f'(f)
is defined to be 8;. If 8 is a subset of GF(g), o(S) will denote the num-
ber of elements in 8. For example, URi={a;:i=1,... , 1}, then o (Ry)=t.

I «<GF(g) we define '

t(a) = at o 4ot @™,
We next put

iﬁl(a}
(2.2) e(a) =e®

b
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so that

q (ﬂ = 0):
2.3 V! =
(2.3) Msz)e(am 0 (50).
We define
(2.4) u(f) = D elf(e)
and
(2.5) Ny(a) = N{f(x) = a},

where the N on the right denotes the number of solutions @ of the indi-
cated equation. (2.5) ean be expressed in terms of (2.4) by the formula
([2], Theorem 3.3, p. 408)

M(f) = D e(a)y(a).

a

(2.6)

3. Right equivalence.

DEFINITION. Two functions g, & are called right equivalent (we write
gRh) when there exists a permutation function ¢ such that

(3.1) gp = h.

The equivalence relation R separates all functions into right equivalence
classes, or simply R-classes.

TuroREM 3.1. Let g,h be functions over GF(q). Write
(3.2) O,={8:i=1,..,t g8 =9 (E=1,...,1),
(3.3) I =@t =1,..,k}; h(@)=26 (@E=1,...,k).
Then gRA if and only if

(3.4) {0(8;)} is a permutation of {0(@:)},
and
(3.5) g(8:) = h(Qy),

where © = 1,...,t and the J's are a permutation of the i's.

Proof. Suppose first that gRk; that is, gp = h. We can show easily
that @(Q;) comprises a set in IT,. Suppose a, fe@;, while @(a)eS; and
@(B)¢8;. Then gp(a) = gp(B) or h(a) = h(B), which contradicts (3.3).
8o p(a), p(B)e8;. Next suppose aeQ;, f¢Q;, while p(a), p(f)eS;. Then
gp(a) = gp(B), or h(a) = h(B), econtradicting (3.3). Therefore ¢(a),
@(B) belong to a single set §; if and only if a, B belong to a single set @);.
Consequently ¢(Q;)ell, and we write ¢(Q;) = 8; for simplicity. This
proves (3.4) and (3.5).
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The sufficiency of Theorem 3.1 is obvious.

In [2] L. Oarlitz defined right equivalence for functions over GF(q)
of r variables, r >1, and described the invariants of R-classes. The
remaining theorems in thiy section will be statements of his results for
the case r = 1.

TaEOREM 3.2. Let g, b be functions over GF (q). Then gRI if and only
if Ny(a) = Nyla) for all acGF(q), where Ny(a) is defined in (2.5).

THEOREM 3.3. gRL if and only if M(Bg) = M(Bh) for all B+ 0,
where M (f) is defined in (2.4).

The permutation function ¢ is called an R-automorphism of g if
g9 =g, and the totality of R-automorphisms of ¢ form a group G =G,
of order »(g). If gp = h, the group of R-automorphisms G, = ¢~ 'G,e,
and in particular »(g) = »(h). Thus the number of R-automorphisms is
the same for any function of a fixed class K; accordingly we write v(K)
for this number.

THEOREM 3.4. The number of R-automorphisms vy(K) of the class
K is determined by

(K) = [ [ ¥x(a,

where Ngx(a) = Ny(a) for any function g in K.
THEOREM 3.5. The number of functions ugp(XK) in the class K satisfies

ur(E) vg(K) = ¢!.
THEOREM 3.6. The number Ap of R-classes is given by

— (291
lR_(q—l)'

It is convenient to recall Carlitz’s definition of a category of func-
tions. Two functions g, h belong fo the same category if the set of inte-
gers {N,(a)} is some permutation of the set {¥,(a)}. Thus, by Theorem
3.2, if gRh, g and & fall in the same category; in other words, each cate-
gory consists of R-classes. We ghall return to this point in Section 9.

4. Left equivalence.

DerivITIoN. Two functions g, h are lefi-equivalens (yLh) if and only
if there exists a permutation function ¢ such that

(4.1) @ = h.

The equivalence relation L. geparates all functions into left-equivalence
classes, or simply L-classes.

TeeoREM 4.1. gLk if and only &f II, = IT,,.
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Proof. Suppose first that IT, = I, and write

(4.2) I, ={8;: i'=1,...,1},

(4.3) g8 =9 (E=1,...,%),

(4.4) RS =68 (t=1,...,1).

If we choose ¢ to be a permutation function satisfying
ply) =4 (G=1,...,10

thengg = h.

Conversely suppose that ¢g =h. If g(a) = ¢g(B), then ¢@g(a) =
eg(B), s0 h(a) =h(B). It g(a)+#g(B), then ¢g(a)=* @y(B), so h(a)
# h(B).

‘We might note, using (2.1), that if g satisfies (4.2) and (4.3), then
it can be written ,

glo) = — X Y {w—af ' =1}y
1=1 aeS;

Tt clearly follows from Theorem 4.1 that if gLk then the set of inte-
gers {N,(a)} is a permutation of the integers {N(a)}. However, we can-
not make the stronger statement N (a) = Ny(a) for all aeGF(q) unless
g = h. Therefore, N,(a) is not an L-class invariant.

‘We can see with a simple counter-example that M (f) is not an L-class
invariant. Suppose g,k are constant functions, so that gLh. It gla) =17y
and h(a) = 6 for all a<GF(q), then

g if
0 if
Thus by (2.6)

= if
= M@ =% °
a # vy, 0 if

a=94,

a # 4.

M(g) = ) e(a)N,(a) = e(y)q

a

and
MU (h) = D e(a)Ny(a) = e(0)q.

a

Now if y, 6 are chosen so that e(y) # e(8), then M(g) % M(h).

THEOREM 4.2. For every L-class K we have

D M) =o.

feK

(4.5)

Proof. First we see that

D Ni(a) = Y Ny(B).

feK feK

(4.6)
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Using (2.6) and (4.6) we write
(£.7) 2 U@ =3 Se(aN;(@) = o) ¥ N(a).
feK K a e

a

By (2.3), (4.7) will be 0.

TuworREM 4.3. If g is a function over GF (q) such that 0(Fy) =1, the
number pr(K) of palynomials in the L-class K containing g is given by

q!
K) = ——u,
#r(K) —

Proof. By Theorem 4.1 we sce that uy(K) equals the number of
permutations of ¢ objects ¢ at a time.

TrpoREM 4.4. If Ar(g) denotes the mumber of L-classes of Sfunctions
over GF(q), then Ar 4s given by

(4.9) irn(q) = H(g),
where H(q) s defined inductively by

(4.8)

By = Y ()70, HEO) =1

t=0

(4.10)

and has the gemerating function

-1 = ZDQ'H(t)w‘/t!.

1=0

(4.11)

" Proof. Az(g) is simply the number of partitions of ¢ objects. See ([1],
D. 108) for a statement of (4.10) and (4.11).

DEFINITION. ¢ i5 called a L-aufomorphism of g if gg = g.

Remark. ¢ iy an L-automorphism of g if and only if @(a) =a for
all aeRa.

TunoREM 4.5. The totality of L-automorphisms of g form a group
G =G, of order vr(g) = (g—1)!, where t = o(Ry).

Proof. First we show that the set of L-automorphisms forms a group.
If g = g, and yg = g, then (py)g = g, hence the set is closed. To show
’.ﬁhat the’inverse of an L-automorphism belongs to the set, we note that
it gg =g, then g = ¢y Next, regarding the order of the group, we
observe that since ¢ must be an identity on Ry, v1,(g) equals the number
of permutations on (§—t) letters. This completes the proof.
) By Theorems 4.1 and 4.5 we see that v.(9) = vy (h) if gLh. Hence
if ¢ belongs to IL-class K, and o(R;) =t, we define

(4.12) vz (K) = v.(g) = (g—1)!

and refer to the number of L-automorphisms of a . class.

icm
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THEOREM 4.6. The number vi(K) of L-automorphisms of an L-class
K satisfies
(4.13) pr(K)-v (K) = ¢!

Proof. This result follows immediately from (4.8) and (4.12).
THEOREM 4.7. If @g =h, then Gy = ¢Gyp™'.

Proof. Let ype@, and put 6 = pyg~". First we show 0eG,. Suppose
aeRy. Sinee ¢~ '(Ry) = Ry,

¢ (a)eRy.
SincepeGy, yp~'(a) = ¢~ (a), 80
eyt (@) = pp~ (@) = e.
Therefore, 0e@,. Next if v, p. @y, and if @, # v,
pug # oy

Finally, since the order of &, must equal the order of G,, every auto-
morphism 6 in @ must be expressible in the form

6 = gyp~', where

5. Weak equivalence.

DEFINITION. Two functions g, i are weakly equivalent (gWh) if there
exist two permutation functions ¢,, ¢, such that

(5.1)

peGy.

o199 = b

The equivalence relation W separates all functions into weak equivalence
classes, or simply W-classes.
THEOREM 5.1. Suppose g and h are functions over GF(q). Write

I, ={8;: 1 =1,...,1}; (t=1,...,t),

I, ={Qi: 1t =1,...,7} (T=1,...,7).
Then gWh if and only if
(6.2) {o(8:): i =1,...,1} is a permutation of {0(Q;): ¢ =1,...,7}.

g(8:) = ;s
h(Qs) = &

Proof. Suppose first that (5.2) holds. Then we may “assume, for
simplicity, that o(S;) = 0(Q;), ¢ =1,...,1. If we choose ¢, to be a per-
mutation function such that
(5.3) ?2(Q)) = 8,
and ¢, to be a permutation function such that

(5.4)

(i=1,...,1),

ouly) =68 (1=1,...,1),
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then
P19 = h.
Conversely if we suppose that gWh, then it is obvious that (5.2)
holds.
THEOREM 5.2. The number Ay of W-classes is

[
(5.5) I = D'pule) =p(0),
te=]

where p,(q) denotes the number of partitions of q with exactly t parts, and
p(qg) denotes the number of unrestricted partitions of gq.

Proof. The number of W-classes of functions f such that
oB) =t (1L<t<g)
is equal to p;(¢), where p;(q) is defined above. It is clear then that (5.5)
holds. : '

DrriNITION. Suppose that I is a partition consisting of ¢ seté,
1<t <yq, and that exactly k; are of order m;, i =1,...,7. Then we
say that IT induces the number partition

(5.6) g = kym+...+kmy,

where m, >my>...>m 21, kyy.oooy b =21, Itk =1,

We notice that if f belongs to W-class K, then the number parti-
tion induced by II; actually characterizes K. That is, a function g belongs
to K if and only if II, and II; induce the same number partition.

THEOREM 5.3. Suppose a W-class K is defined by the number par-
tition (5.6). Then the number up (K) of functions in K is

! 2
(5.1 o () = LS
(=0t [T (mat)" [T ()

Proof. Let H denote the family of partitions such that ITe n pro-

vided I7 = II; for some function fe K. The number of partitions in n is
g

—"'_“,-’*.T—“. .
ITtmdy [T
Y= =1
Now the number of functions f such that IZ, = IT equals q!/(g—1)!, the

number of permutations of ¢ things ¢ at a time. Hence the total num-
ber of functions in the W-class defined by (5.6) is given by (5.7).

DEFINITION. A pair (@, @,) of permutation functions is called a
W-automorphism of g it ¢1gp =g.

»
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THEOREM 5.4. If ¢ belongs o the W-class K defined by (5.6), the number
v (g) of W-automorphisms of g is given by

r
(5.8) (g—t) [T Bl m)"e.

Proof. A necessary condition for a permutation function ¢, to
satisty ggp, = g is that g, map a set of order m; onto a set of equal order.
Since there are m;! ways to map a fized set of oxder m; onto a fixed set
of equal order, and %;! ways to permute k; objects, there are altogether

H kil (mg))
i==1

choices for g,. Having chosen ¢,, we see there are (g—i)! choices for ¢,
since ¢, is chosen only to map a set of order (¢—¢) onto a set of equal

‘order. (5.8) follows immediately.

TerorEM 5.5. If K is an arbitrary W-class, we have

£5.9) po (K) v (K) = (q!)°.

Proof. This result follows immediately from (5.7) and (5.8).

Recalling now the definition of a category (at the end of Section
3), we note that a W-elass is a category. Therefore a W-class consists
of R-classes. We shall discuss this point in some detail in Section 9.

6. Similarity.

DerFINITION. Two functions g,k ave similar (gAh) if there exists
a permutation function ¢ sueh that

(6.1) (p'lg(p = h.

The equivalence relation A separates all functions into similarity classes,
or simply A-classes.
THEOREM 6.1. Suppose g, h are functions over GF(q). Write
O, ={8:i=1,..,%; 98 =y @E=1,...,1,
I, ={Q;: i=1,...,r}; Rh(Q) =06 (t=1,...,7).
gAh if and only if
(6.3) {o(8y): i =1,...,1} is a permutation of {0(Q;): © =1,...,7}.

(6.4) There is a one-one correspondence between sets of equal order in
I, and II, (as a convention write Q; <> 8;) such that if 6y e@;, then
yke;S’i‘

(6.2)
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Proof. To prove sufficiency, we suppose that o(8;) = 0(Q,), ¢ =
1,...,t. Choose ¢ to be a permutation function such tha.t

@ (@) = Sy,

By (6.3) and (6.4) it is clear we can choose such a function. We have
then that

Q) =S 9080 =i, B(Qi) = 6.

‘We prove next that (6.3) and (6.4) are necessary conditions for gAh.
Since similarity is a special case of weak equivalence, (6.3) is necessary.
To show (6.4) is necegsary, we observe first that ¢ maps a set @; onto
a set §; of equal order. That is, suppose a, feQ;. If q:(a)eﬂ’ while (p(ﬂ ¢8;,
then gp(a) #= gp(f). Since @ is a,permuta,tlon funetion, ¢~ 'gp (a) 7 ¢~ g0 (B),
which contradicts the fact that 2(a) = h(f). Similarly we can show that
if p(a) and ¢(B)eS;, then a,pe@;. Therefore, ¢(Q;) = 8;. Finally, if
¢ g9 = h is to hold, we see that ¢~ '(y;) = O; that is, (&) = »z. This
evidently completes the proof.

Determining the number i, of A-classes is esgentially the follow-
ing unsolved problem about permutations: Suppose Zy = {1, 2,..., N}
and that g, b are functions from Zy into Zy. If & = p~'gp, where p is
a permutation of Zy, we say g and % are in the same clags. The problem
is: what is the total number of classes into which the N¥ functions f:
Zy —>Zy are separated?

(6.5) (&) =y (I=1,..,1.

¢ (w) =08 and

7. Strong equivalence.

DEFINITION. Two functions g, b are strongly equivalent (gSh) if there
exish two permutation functions ¢, @, such that

(7.1) @i =h;  gp =h.

The equivalence relation S separates all functions into strong-equivalence
classes, or simply ‘S-classes.

THEOREM 7.1. If g, h are ‘funm'qns over GF(q), gSh if and only if

(7.2) m,=1I,
and C
(7.3) Ny(a) = Ny(a)  for all acGF(q).

Proof. This theorem follows immediately from Theorems 3.2 and
4.1, which give necessary and sufficient Gondltlons for right- equwalence
a,nd Jeft-equivalence.

-+ Reealling (5.6), we might pom’n out am 1mp0rtant difference between
W qlasses and S-classes. If f belongs to S-class K, and II; induces a num-

icm
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ber partition, then that number partition does not characterize K. In
fact, there are generally several S-classes all of whose members induce
the same number partition.

THEOREM 7.2. If K is an S-class containing ¢, and II, induces the
number portition (5.6), the number us(K) of functions in K is

(7.4) us(K) = [ [ .
i=1
Proof. Put
(7.5) Ryfm; = {a: aeRy,, o{g” (a)) = mg}.
y (7.3) we see that
(7.6) us(K) = no(R,/mi)!.

Since o(R,[m;) clearly equals k;, (7.8) yields (7.6).
THEOREM 7.3. The number Ag of S-classes is given by

s =

where the summation s over oll number partitions of the form (5.6).

Proof. First suppose that /I is a partition that induces the number
partition (5.6). The number of S-classes among the functions f such that
Hf = IT is

(¢!
r r H

[ (mqt) H(k‘

(7.7)

(g—12)

- »(g,?)

(78 WL

where p(q,t) is the number of permutations of ¢ objects ¢ at a time.
Next, the number of partitions 77 which induce the number partition
(5.6) equals

(7.9) —T—i—
TT mat)*e [T k!

t= i=1

=

which is essentially the number of ways of arranging ¢ things in t sets
of which k; have order m; (i =1,...,7), not allowing permutations
of sets of equal order. Finally, summing over all number partitions (5.6),
we have (7.7).

Acta Arithmetica X.2 9
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It might be mentioned that if ¢Sk and k=% =... =k = 1,
then g = h. This follows from (7.4), since u,(K) = 1; that is, the S-class
containing ¢ consists of only one function.

From (7.4) and (7.7) it follows that we have the equality

1 2
(7.10) 2 v (2) 7 = ¢,
(ot [ () T1 ()t

where the summation extends over all number partitions of the form
(5.6). This fact can be verified directly by using generating functions.
Consequently we have a check for (7.4) and (7.7), since

D ps(K) = ¢,
K
where K runs over all S-classes. We also have a check for (5.7), since
> uw(K) = ¢,
K

where K rung over all W-classes.

8. Illustrations. Let W (g) denote the W-clags of an arbitrary fun-
ction, and A(g), its A-class. Clearly A(g) = W(g), and in general, A(f) =
c W(g) if fe W(g). Now suppose there is a function he W(g) such that
h¢A(g). Then A(h)nA(g) is empty, for if there were functions ¢, y such
that

v ihy = o7 g,
then we should have
h=yppigpy™t or h=1nT'gn (g =0y

which implies heA(g), a contradiction. Suppose next there is a function
h;e W(g) such that h,¢A(g), h¢A(h). Then we prove as above that
A (hy) is disjoint from both A(g) and A (k). Continuing this process, we
see that W(g) can be decomposed completely into disjoint .4A-classes:

8.1) W(g) = A ()0 A (h)o...UA ().

Using similar arguments we can prove that a W-clags can be decom-
posed into disjoint R-classes, and also into disjoint L-classes. By means
of the partition criteria for varions types of equivalence, we can prove
that both R-classes and L-classes can be decomposed into S-classes.

Equivalence classes of functions 131

We illustrate these relations with the following chart:

AN

N

N
Fig. 1

As an immediate result of the previous discussion, we state
THEOREM 8.1. For every W-class K, we have

(8.2) D) = o.
JeE
Proof. Since K can be decomposed into L-classes K,,...,K,, we
write
(8.3) DM = DMU({.
feK i=1 feK;

By Theorem 4.2 the inner sum vanishes; that is, the sum of M (f) over
an L-class is 0.

It might be of interest to note, as an example, that the set of per-
mutation funetions comprises an equivalence class with respect to weak,
left, right, and strong equivalence. In other words the decomposition
of the W-class of permutation functions into L, B, and S-classes is
a trivial one. i

If we choose the W-class consisting of all constant functions, we
can describe the decomposition precisely, according to the pattern of
Figure 1:

w
{all constant functions}
o~
T
L R A
{all constant functions} {one function per class} {all constant functions}
—_—

8

{one function per class}

Fig. 2
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We might mention, as another type of example, that over a field of
characteristic p > 2 and order ¢ > 3 all quadratics belong to, but do not
exhaust, a single W-class. To prove this, we suppose f, g are quadratic,
Then {N;(a)} is & permutation of {N,(a)}, hence fWyg. To find a function
of degree greater than 2 that belongs to the class containing the quadrat-
ics, we choose a function h = @g, where p i3 a monomial permutation
function of degree m, and (m,¢—1) =1.

It might be of interest to note, in connection with this last example,
that the set of quadratics is the only set consisting of all the functions
of some fixed degree k (2 <k < ¢—1) over GF(qg) (¢ odd) which belong
to a single W-class. The proof of this fact proceeds by showing that if
f and g are arbitrary functions of degree &k > 2, {N,(«)} is not necessa-
rily a permutation of {¥,(a)}. Suppose m is an integer such that 2 <
m < g—1, and put d = (m, ¢—1). It is a familiar result ([3], p. 45,
Theorem 63) that GF(q) contains (¢—1)/d mth powers. Therefore, if
f(z) = «™, II; consists of (¢—1)/d sets each containing d numbers, and
a gingle set with one number. Let us assume, as case 1, that d < m. If

we put
m

g@) = [ [@—a),
i=1
where a,, ..., a,, are distinct numbers of GF(g), then I7, contains a set
with m numbers. However, since d << m, there is no set of order m in I7;.
Suppose, as case 2, that d =m. Then IT; consists of (¢g—1)/m sets
each with m numbers, and a single set with one number. If we put

W) = (0—a) @—w)f  (r+s =m)

II; contains a set of order 2. Therefore, if m > 2, f and h are not weakly
equivalent. This evidently completes the proof. The fact that the argu-
ment breaks down for m = 2 agrees with our earlier result about qua-
draties.

Over a field of characteristic 2 it is also true, by the last argument,
that the functions of degree % > 2 do not all belong to a single W-class.
Furthermore, neither do the guadratics, since 2° permutes GF(2") and
#* —u does not. Therefore the set of linear funetions is the only set con-
sisting of all the functions of some fixed degree over GF(2™) which belong
to a single W-class.

9. Functional equations.
THEOREM 9.1. Let f be a function over GF(q) and suppose that [T; =
{8zt =1,...,1. Then a function g will satisfy

(9.1) fo=f
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if and only if
(9.2) g8) el (=1,...,1).

Furthermore if 0(8;) =nq, ¢ =1,...,1, the number N of solulions g is
given by

i
(9.3) N = [ [l
i=1

Proof. The sufficiency of Theorem 9.1 is obvious. The necessity
follows by noting that if aeS; and g¢(a)¢S;, then fg(a) # f(a).

'We prove (9.3) by recalling that a set of order n; can be mapped into
itself in ngt ways.

If ¢,, g, are solutions of (9.1), then g,g, is also a solution. Therefore
we see that the solutions of (9.1) comprise a semi-group.

THEOREM 9.2. Let f be a function over GF(q). Then a function g will
satisfy the equation
(9.4) a=f

if and only if g is an identity on R;. Furthermore, if o(R;) = t, the number
N of solutions g 4s given by
(9.5) N =gt

Proof. The necessary and sufficient conditions and the formula

are obvious.
We might note, using (2.1), that when (9.4) holds,

g@) = — Y {e—a)'—1la— D' {@—a)'—1}g(a) = s+ m(a).

Ry Ry

Since each aeR; is a root of m(w), we see that

s@)= [ [ (w—a)

Ry

divides m(z). Therefore,

(9.6) g(x) = x+s(x) n(w).
THEOREM 9.3. A function f will satisfy

(9.7) f=f

if and only if f is an identity on R;. Furthermore, the number N’ of such
functions s

(9.8) N = j (q) el

i
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Proof. The necessary and sufficient conditions follow from The.
orem 9.2, since ff =f is a special case of gf = f.

To prove (9.8) we will specify a set B of numbers, determine which
functions have range E, and then sum over all possible ranges. Suppose
then, that R contains exactly ¢ numbers. By the first result of this
theorem, the restriction of f to R, is the identity, and the restriction
of f to GF(¢g) ~ Ry is arbitrary; that is, f can map GF(q) ~ E; into
GF(g) in ' ways. Since there are (Z) subsets of GF(g) of order 4,
there are

(e~

funejﬁions f; subject to o(R;) = ¢, which satisfy (9.7). Summing over all
possible range lengths, we see there are

v - 3l

functions over GF(q) which satisfy (9.7).

) THEOI.'\&}:QM 9.4. Let f, h be functions over GF (q). A necessary and suffi-
cient condition for the emistence of a fumction g such that

(9.9)
18 that Rj = Rh'

fg =1
_ Proof. This condition is obviously necessary. To prove it is suffi-
clent, we suppose Ry 2 R, and write

H,———{Si:’i=l,...,t—|—k}, ]Y;L:{Qi:’l;zl,...,t},

F8) =h@Q) (i=1,..,1).
If we choose g to be a function such that
9@) €8 (i=1,..,1)

then g will satisty (9.9).

I_t might be of interest to note, in connection with Theorem 9.4,
that if f and h. satisfy (9.9) and % is a Ppermutation function, then f must
be a Permutatwn funetion, and therefore g must be one. We might also
mention, again to illustrate Theorem 9.4, that if Ny(a) = Ny(a) for all
afGF(q_) , thereby implying R; 2 R, then a permutation function g
will satisfy (9.9). This follows from Theorem 3.2.
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TaEOREM 9.5. If b is a function over GF(q), and o(Ry) = ¢, the num-
ber N* of fumetions f for which there is a solution g to (9.9) is

q—t

147 .
3= S e (e

(9.10)

Proof. By Theorem 9.4 there is a solution g to (9.9) if and only if
R; 2 Ry, Therefore we will pick a set 8 = Ry, count the functions whose
range is S, and sum over S.

Accordingly we choose a set S such that

o(8) = o(Bn)+1J,
The number of functions from GF(g) onto S is given by

2 (=1 (4) ati—ap

(9.11) 8 2 Ry, 0<j<qg—t.

Since there are (q;t) sets which satisfy (9.11), the number of functions
f such that

R; 2 Ry,  o(Ry) = o(Ry)+j

is

i+7 .
() 2 =0 () ari i

Summing over j yields (9.10).
DEFINITION. Suppose g and h are functions over GF(g). II, is said
to be finer than I, if each set in 7, is a union of sets in 17,.
THEOREM 9.6. Let g and h be functions over GF(q). A necessary and
sufficient condition for the emistence of a function f such that
(9.12) fo=nh
is that I1, be finer than II,.
Proof. Write

I, ={8;: i =1,...,1t}
I, ={Q;: 1 =1,...,7}

(i=1,...,1),

(i=1,...,7).

g(81) =i
h(Q:) = 6
To prove the necessity, we suppose a, fe8; and that aeQ; but §¢Q;.
We have then that g(a) = ¢g(f) and h(e) 5 h(B). Therefore there can
be no function f satisfying (9.12).
Suppose now that 7, is finer than ;. Then
Qi:USf (7;213-”57')

J(i)
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where J () is an index set depending on 4. If we define a function f by
specifying that on R,

Flyiy =6
and by allowing f to be arbitrary elsewhere, then f will satisfy (9.12).

(GeJ (), i=1,...,7)
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On the abstract theory of primes I
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E. FoceLs (Riga)

Introduction. 1. For a semi-group ® (with respect to multiplication)
of real numbers a > 1 satisfying some given asymptotical laws of distri-
bution Beurling [2] investigated the asymptotical distribution of the
generators b of ®. He proved a general theorem which, applied to the
semi-group of natural integers, gives the prime number theorem of Hada-
mard and Vallée-Poussin (*). Forman and Shapiro [11] divided the num-
bers a into classes H; (1 <4 < h) forming a group K (for any ae<H; and
o' <H; we have aa’«H; where & depends only on 4 and j) and satisfying

D' 1= a0 )

r=aeH;

1)

with some positive constants a;, 4 (¢ <1). They proved that under those
circumstances the numbers =(z, H;) of the generators b <@, beH; are
asymptotically the same for all the classes H; forming a sub-group K,
of K, whereas the number of the remaining generators < (if K, # K)
has a smaller order of magnitude as # — oo (*). As special cases of this
abstract theorem we may deduce the asymptotical laws for primes in
arithmetical progressions or prime ideals in ideal classes.

The aim of all the awork in the abstract theory of primes up to now
has been the proof of the asymptotical law for =x(x, H). In a short note
[9] I have mentioned that in the abstract scheme used by Forman and
Shapiro one can treat the smallest prime problem for different progres-
sions simultaneously. For this purpose it is necessary to change the

(1) Other writers after Beurling (as Nyman [16], Erdds {3]) either start from
different conditions or use, instead of the analytical method of the zeta function,
the elementary method of A. Selberg.

(%) This is an intentionally simplified description. Actually Forman and Sha-
piro start from a free Abelian group G on a countable number of generators and use
a homomorphism into positive rationals such that the images of the generators are
all integral. The distribution of the generators in the classes H of a semi-group is also
the subject of a recent work of Amitsur [1], who replaces the remaining term in (1)
by Of(x/logtux).
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