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Professor A. Walfisz published scientific papers, expository
papers and books on various topics of the theory of numbers, altogether
a 100 in number. We shall begin with his work on the lattice points the-
ory, Walfisz’s favourite subject, to which he has contributed about 30
papers and a large book.

Let Ay(x) stand for the number of lattice points of the sphere

i ... & < @, where &k > 2. Van der Corput has shown that for ar-
bitrary £ >0

Ay (@) =z = 0(2"+),

where 0 is a constant less than 1/3. It is proved in [3], on expanding
Ay(w)—nx in a Fourier series, that 0 = 37/112.

As is well-known, Hardy published in 1918 — without a detailed
proof — the important formula for the number of representations of
positive integer n as a sum' of k¥ squares of integers
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where S(h, ¢) are Gaussian sums. Walfisz was the first to have proved
this formula with all particulars (in [5], using Hardy-Littlewood’s meth-
od). He also generalized it to the case of the representation of n by
positive quadratic forms in % variables with integer coefficients. From
this formula, he derives the best possible estimate

P(z) = 0(z"*Y),

where P(x) denotes the difference of the number of lattice points of
a k-dimensional rational ellipsoid < # and its volume. This estimate
holds if k¥ > 8, but in case of a sphere if & > 5. Paper [5] proved to be not
only a starting point of further investigations of Walfisz, but also stim-
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ulated a great deal of work Ly other scholars: Ch. H. Miintz, . Landau,
H. Petersson, V. Jarnik, H. D. Kloosterman.
In [7] it is proved, by using the method of [3], that for an arbitrary
g>0
dy(@) = ra*’ 0 (&™),

In [12], Walfisz showed by means of his estimate for a summatorial
function connected with the sum of divisors, that

xzlogw )
logloga/

A (x) = ~:—~ w2+0(

This estimate sharpens a previous one, due to Landau. Further, it is
shown that

2

A, (@) — ’—;— @ = Q(alogloga) (1).

The same paper containg also an improvement of the above-mentioned
estimate of [3], to the effect that

Ay () = -0 (251,

In [13], one finds a number of Q-results for P(x).

Paper [18] is the first by any writer in this field to deal with the
gimplest irrational ellipsoids @ < @, namely those given by @ (@, ..., )
= a@y Q1 (s, ..., @), Where a i§ a positive irrationality. It is proved
that for k > 10 and an arbitrary a,

P(a) = o(a"*),
10 and almost all o’s
P(x) = O(a"

Paper [23] deals with k-dimensional irrational ellipsoids @ =« of

diagonal type, and it is proved there that for &k = 5
Pr) = O(2*).

In [33], on using the method of H. Weyl of estimation of exponen-
tial sumg and the theory of modular forms of Hecke for four-dimensio-
nal integer ellipsoids, Walfisz derives the estimate

zloga
Plz) = O|—2).
(@) =0 (loglogw)

while for ¥ >
6/a10g1/4 )

(*) Here and in the following by f(z) = 2(s), f(x) = Q,(s) and f(x) = 2_(s),
for ¢ > 0, we understand that there is a constant K such that respectively for an
infinity of values of «, |f(z)| > Ks, f(x) > Ks and f(z) < —Ks.
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This is an improvement on the previously known estimate of Kloosterman
which held only for diagonal four-dimensional ellipsoids.

In [43], using again the theory of modular forms of Hecke, it is
shown for four-dimensional rational ellipsoids that

A
fP”(u) du = xa® 0 (x°*log” x),

where » = xp is a certain pos1t1ve constant. Further, the constant
for the forms Q = a?+ @i+ al+a?, o} o+ 205 245, o+ 20 2a0 4 427,
@+ 27 4 4wy -+ 8« is determined, and in case of the first three forms the
remainder is reduced to O(ms/zlogm).

In paper [49] a method of Jarnik, concerning double contour inte-
grals, has been perfected and the estimation of the integral of [43] fol-
lows directly without recourse to the theory of Hecke’s modular forms.
What is more, in place of the former constant x, the singular series

= 18 (h, B)*
~ 6D P

B =1
(h,k)_l

is introduced. Here D is the determinant of @,
k-1

. h
S(h, k) = 2 exp2nmi—Q(ay, ...

,,,,,

AR

This series can be summed for all forms Q = &}--a3-+d(xi+a}) (d is
a positive integer). Let r,(n) denote the number of representations of
integer % by a form @ of s =3 or s = 4 variables. It is proved in the
paper that

D) rim) = Tu(Q)a’+0(a*log’a),

o<n<w

D rim) =

o

T3(Q)a" +0 (2" loga),

where T,(Q) and T,;(Q) are certain singular series of type S(Q). The first
of these can be summed for all forms Q = #?+ 22+ d(w3--#5), the second
for Q = a} 4 d(ak-+-x3).

In [52], using the method of I. M. Vinogradov for trigonometric
sums, Walfisz improves the remainder-term of the above-mentioned
formula, of [33] to O(zlog"°zloglogw).

In [59] the series S(Q) and T (Q) of [49] are summed for forms
Q = ax}+bai+ ews -+ dwl, as’-+bws--cws. Further, one finds o-results
for the error-term Pj(z) corresponding to the number of lattice
points of the k-dimensional sphere with even % > 8.
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It is proved in {63] that for k == 0 (mod4), & = 8,

Py(@) = ﬂh{(l—f"’”)&(«fﬁi)}- (~ D)ttty (%) +

Wz 1
\ J
o e . @ €
B 1)(‘»-) - 24 ()} @12 -
F(—1) 2 K P\ - O( )
IL—"U(I\;U(I‘E)

and for k= 2 (mod4), &k =10,

o0

AV -
Pr(a) = M}c{L(”ZG-)} (—g(—1)(“_1)/2%1"“’21/;(%)—1-(—1)("*2)/4;(2,”)14:/2 5
x @ &—n
<o) o) - 55

)}) mln/z«l +0(m(7c—-3)[2)’
. ' k < o

whero u is 0dd, M, = nk“l’“‘(g), t@) = Y%, L(g) = Y (—1)t-1re,
Usma ],

Ne==1

p(y) =y—[yl—1.
Further, in case of % == 0 (mod 8) there are obtained exact values
of the numbers

L. 2P.(n
o = lim inf ——A-]“,(C/—-z—i—l.

2.
Py, = lim sup Di(n) FTe
N0 %

el T

AN
The corresponding values for the remaining %’s are not known. Fur-
thermore, there is no method known enabling one, given a %, to find
these values K approximately with an arbitrarily preseribed accuracy.

Paper [65] contains rather good approximations to Py, oy for & = 4 (mod 8),
k>=12.

with greater error than those obtained for % == 4 (mod 8).

Papers [67] and [68] contain simpler proofs of estimates of Py(x)
dealt with in [63].

A forml‘lla of [63] displays the main oscillatory term of order o*!
of the function Py, («); the next one, of ovder #*~?% is found in [69].

In [79] we find in a certain sense approximations to the numbers
P, and g for odd I's.

' In’ [85] it is proved, using a theorem of L. K. Fua, that for four-
dimensional rational ellipsoids the following estimate holds
P(z) = O(slog"* w(loglogm)'’).

This estimate is refined to O(zlog® @) in [87] on using a certain new
method of I. M. Vinogradov (1958) for trigonometric sums.
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In the monographs [4] and [5], using methods of Vinogradov
and Korobov (1958) concerning exponential sums, Walfisz improves his
estimate of [12] to

2
Ay (z) = —7;— 2?40 (wlog‘z/alw) .

Paper [19] provides simple proofs of certain. theorems by Peters-
gon concerning lattice points of multi-dimensional spheres. In [88] and
[89], using these theorems by Petersson and estimates of Lursmanaschwili
generalizing those of [63], Walfisz found new O-results for Py (x) and
Pyry1(w), where k >3, with remainders 0 (¢"*logz) and O(«"**"*logz)
respectively.

All the above-quoted results of Walfisz and along with them a num-
ber of closely related results of other scholars, have been incorporated
with detailed proofs in a lengthy book published in German [3] by the
Polish Academy of Sciences in Warsaw and in Russian [4] by the Geor-
gian Academy of Sciences in Tbilissi.

Walfisz devoted a considerable series of papers to questions on the
additive theory of numbers including the additive theory of primes.
Thus in [40] he displays the formula Fo

Ny o(n) = o0 (r 24 )w/ P log ™ n B, s (n) + o(n P log™%n),
where N, ,(n) stands for the number of representations of » as a sum of r
squares of integers and s primes (» > 5, s = 1) and C"J",’s('n) ig the corres-
ponding singular series. The formula was obtained previously by G. K.

Stanley, however, only on the extended Riemann-hypothesis.
In [42], it is proved that for » >4 and an arbitrary & >0

Nyy(n) = w012 =1)S,,(n) [ (n—u)"™ > Li(u)du-+0 (n"*log” ey
2

and

_ 1 P’—p . TS
Q(n) = H(l p(p_l))n(pz__p_l)Ll(n)+0(nlog n),

DA

where @ (1) denotes the number of representations of » as a sum of a square-
free number and a prime number. The first estimate improves its ‘par-
ticular case s = 1 given in [40]. The second estimate is incomparably
better than the one obtained previously by A. Page. This improvement
has been effected by the so-called lemma of Siegel-Walfisz about Pprimes
in an arithmetical progression, which plays such a prominent réle in the
additive theory of primes.
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It is proved in [47] that 1) almost every number == 4 (mod 24) can
be expressed as a sum of four prime squares; 2) almost every number
=3, 27, 51, 99 (mod 120) can be expressed as a sum of three prime
squares; 3) for every class of residues (mod 120) there can be found a o
with 3 < ¢ < 8 such that almost every number of this class can be ex-
pressed as a sum of ¢ prime squares, but almost no number of the class
can be expressed as a sum of less than ¢ prime squares. The proof rests
on an estimate of I. M. Vinogradov and on the above-quoted lemma of
Siegel-Walfisz. The disadvantage of this lemma is that it depends on
a theorem of Siegel whose proof is rather intricate and uses tools from
the theory of algebraic fields, while all of its applications refer to ratio-
nal primes. In order to overcome this disadvantage Walfisz proves [48]
a new lemma concerning primes in an arithmetical progression; this new
lemma is more complicated than that of Siegel-Walfisz, but it dispen-
ses with Siegel’s theorem. Using this new lemma, Walfisz obtains all basic
results of the additive theory of prime numbers, admittedly with slightly
weaker remainders, previously proved by I. M. Vinogradov, T. Estermann,
H. Davenport, H. Heilbronn and himself.

Paper [50] is the first to give an elementary proof of formulae due
to B. Boulyguine for the number of representations of integers as a sum
of 18, 20, 22 and 24 squares.

In papers [83], [64] and [58] there are obtained, using an elementary
method based on certain trigonometrical identities, exact formulae for
the number of representations by 73 quaternary quadratic forms.

In [57], it is proved starting from the familiar theorem of Goldbach-
Vinogradov, that for » > 3,

nr— 1

Neln) = Tiiogn

Pl
&(n)+o(i—),

log'n

where ¥, (n) stands for the number of representations of n as a sum of »
primes.

Paper [74] contains this asymptotic formula: for % > 8
0y 1T b—1 9 .
Te(m, n) = n(”‘”/‘kl*’"/“]’"l(T) AP (m, n)4-0 (n**=*logn),

where r;,(m, n) denotes the number of representations of two given, inte-
gers m and 7 as & sum of k integers and their squares respectively, S, (m, n)
— the corresponding singular series, 4 == kn—m*. An accessible proof
has been published in the expository paper [72].

Let »(P) be the number of representations of an odd P > 6 as o sum
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of three primes and let S(P) be the corresponding singular series. It is
proved in [82] and [84] that for arbitrary integer m >3

»(P) = 8(P)P* D ¢(logP)~"-+0(P* (logP)™"),

g=3

where ¢,s are real numbers depending only upon g. Furthermore, for
qg=3, 4, B, 6, T the constants ¢, have been calculated. The formula
itself is more precise than the well-known one due to I. M. Vinogradov.

A number of Walfisz’ papers have been concerned with the zeta-
function and other functions defined by Dirichlet series. A long time ago
it was proved in paper [1] that functions determined in the half-plane
o >1 by the Dirichlet series }'p~° and }logp-p~° (p — a prime) cannot

n »

Dbe continued over the line ¢ = 0. This result was previously found by
Landau but only on the Riemann hypothesis concerning the zeta-zeros.

Walfisz’s Doctor Thesis [2] provides the following theorem: let
{q(s) be the Dedekind zeta-function of the algebraic number-field K
of degree » > 2, H(z) — the summatorial function of the corresponding
Dirichlet series, » — the class-number of the field, ki — the residue of
la(s) at s =1; then

11

Hm)—hie = 2 (& >).

This theorem improves a theorem of Landau which asserts that for
# < $—1/2% no formula

H(z)— bl = 0 (z”)

holds. Further, paper [2] gives an expansion of H () in a series of hyper-
Bessel functions and it is proved that the series converges for » = 2

Ml]) for x =3 (n are

and can be summed by the Riesz method (n, ["

norms of ideals of the field 8). For an imaginary quadratic field & the
expangion includes the corresponding results of G. Voronoi, Hardy and
Landau.

A more general question, namely the so-called problem of Piltz in
number-fields, is considered in [8] and [16] where the exact order of sum-
mation is obtained. Thus the infinite series for H(z) can be summed by
x_;g -1~a) but not by (n, % 3).

Also paper [3] deals with Riesz summability of Dirichlet series.

Papers [14] and [15], in case of Piltz problem, provide an estimate
generalizing and improving the above-mentioned estimate of paper [2].

the Riesz method (n ,
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For a quadratic number field, paper [11] gives
H(w) = eo+0 (@),

where ¢ is the residue of the zeta function at the pole. Van der Corput
proved previously that
H(z) = ox+0 (2",
It is proved in [4] that
L +it) = O(™™).

This estimate improves Landau’s previous one.
In paper [35] it is shown by using the theorem of Schottky-Landau,
that for arbitrarily given ¢ >0 and &> 0, there exists in

<%

14
< o < 14 Jdogloglog?) 77
loglogt

(logloglogt)™**

t>16 1—
! loglogt

a seb of points M = M (8, ¢, 8) of measure < § on which the Dedekind
zeta function of an arbitrary algebraic field ® takes every value, with
a possible exception of one, non-enumerably many times.

Paper [83] gives abscissae of convergence and of absolute conver-
gence of the Dirichlet series of the Fpstein zeta functions.

In [85] it is proved by using a theorem of L. X. Hua, that

£(14im) = O (log**x(loglogx)?),
and that

I3
du
n(w)——if Tog = 0 {wexp (—Clog" a(logloga)~*/1)} .

In the book [5] Walfisz proves, using methods of Vinogradov
and Korobov, that

1 [ du
m(@; by 1) = Wz Togn +0 {wexp (— Clog** m(loglogx)~ ")} .

Some of Walfisz’s papers deal with the divisor problem. ITe proves

il}ll [12], using H. Weyl’s method of estimation. of exponential functions,
at

Y * 1 r
21 a(n)— %m—l— - 10ga = O( 1‘),5‘5“?_‘ ),
1< 2

2
'rbo(n)m»ﬂ-w2 - 0( mlogJ:‘)’

e 12 Iog@
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where o(n) is the sum of reciprocals of the divisors of n. These estima-
tes improve the previously known estimates of Wigert and Dirichlet
respectively.

In papers [27] and [45], there are obtained estimates for integrals
over the squared left-hand side members of the quoted inequalities.

In the books [4] and [5] Walfisz reduces, using methods of Vino-
gradov and Korobov, the remainders of the above-mentioned formulae
of [12] to O(log*®w) and O(zlog**z) respectively.

Papers [73] and [76] are the first to improve the well-known esti-
mate of Mertens for the Euler function ¢(n). It is proved that

3 R
Z @(n) = 240 (zlog** z (loglogz)*).
1<n<e 7:

The error-term of this formula is reduced to O (wlog”‘w(loglog)™?)
in [85], while in the book [5] it is improved, by methods of Vinogra-
dov and Korobov, to O{zlog”*s(logloga)*’).

Walfisz’s book [5], published recently in Berlin (German Demo-
cratic Republic), expounds the methods of H..Weyl, Vinegradov and
Korobov for exponential sums and applies them to the divisor problem,
to the Fuler function, the zeta function of Riemann, questions of the
distribution of primes and other problems. The book contains all the
recent results of Walfisz mentioned above and also those of other mathe-
maticians. k

A great number of Walfisz’s papers have been concerned with dio-
phantine approximations in connection with the investigation of arithme-
tical character of irrational numbers. In [24], modifying the familiar
metrical theorem of Khintchine, he shows that the inequality

h f(k)
“’—ﬂ<7’

under certain conditions imposed on f(k), has for almost all real &’s an
infinity of integer solutions k, &, where k¥ > 0, &k == 2(mod 4), (b, k) = 1.
In papers [26] and [34], Walfisz estimates the txjigonometric sums

2 a(n) ezmwi,

l€nse

By(2) =

2 - ('n) eznnﬂi’

o<n<e

D(2) =

the estimates depending on the character of the real 6, where 74(n)
denotes the number of representations of the positive integer n as
a sum of % >2 squares of integers and d(n) denotes the number of
divisors of n.
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Paper [29] contains a simple proof of Hardy-Littlewood’s estimate

3 coseendn = O(x),
.
lsn<e
which is trne providing that the denominators of the continued fraction

of the irrational 0 are bounded. In [31], it is proved on the same assump-
tion about 6, that

D (n(n0—[n61— 1} = O(logw).

1egn

Riemann asgerted in his brilliant paper
that for rational 0 the following identity holds

on trigonometric series

o 1 1 o1
Z*W(M-i-%) = *—Z——t(n)gin%no,
n ki "
n=1 =l
where t(n) Z (1) and w(u) = u—[u]—} for non-integer w and

p(u) =0 for 1nteger %. In [39] Walfisz proves this identity 1) for all
rational 6’s 2) for almost all real 0’s 3) for all algebraic irrationalities.
Ramanujan proved that

2 1 = aw(loge +2y—1)+ w4 O (e logw),

mse dm
m=mg(modi)

where «, § are constants depending only on m, and %,y — the Euler con-
stant. In [20] the remainder-term has been reduced to O(x*/**log'“*u).

It is proved in [51] that for almost all n, the Ramanujan function
7(n) is divisible by 2°-3%-5%-7-691. Previously, it was known only that
for almost all , the function z(n) was divisible by 691.

In [61] using some relations between eclass-numbers of positive
binary quadratic forms, it is shown that

Ly, 1
1im sup - Y = 01 11
Towoo ploglogk > ¢ Ly 2{(loglog )™},

where k& runs through those positive integers for which —% iy a funda~

o -
mental discriminant, y is the Huler constant and Ly, = 2 (»::—
“\Nn 'n

The first of these inequalities had been proved by Littlewood on the
hypothesis concerning the zeros of the Dirichlet IL-functions. These

estimates imply also results for the number of clagses of pogitive (mussmn
binary quadratic forms.
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In [70] Walfisz derives by an elementary method, involving no
limiting process, the results of the classical theory of Pell’s equation. He
gives an expository treatment in his tract [2].

In [71] Pell’s equation in an arbitrary imaginary field has been
studied. In the Gaussian field, it had been investigated previously by
Dirichlet.

The present short paper gives only a partial account on the ver-
satile activity of Walfisz in the field of number theory. It should be also
added that we owe to him a number of papers on the algebraic theory
of ideals, on various questions of the theory of functions and the theory
of modular forms.
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