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I. Introduction

The divisor function o,(n) is defined by
o) =D&

am
where the sum is over all positive integral divisors of n; in the following
pages it will be assumed that » is a positive integer. The aim of this paper
is to investigate a certain divisibility property of o,(n).

Let ¢ be a prime and m a positive integer, and assume that both
are fixed and independent of z. Denote by Dp(», ¢;2) the number of
positive integers » < « for which ¢™ | o,(n), where the notation || means
that ¢" divides o,(n) but ¢"*' does not. In this paper an asymptotic
equation for D, (v, ¢; x) will be established. Define y by ¢ | v, and let
m' = [m/(y+1)] and & = (¢—1)/(v,¢—1). Then the precise result
to be obtained is as follows:

TrEOREM 1. (i) If q and h are both odd, then, as x — oo, °

D(v, g; 2) ~ A"w.
(ii) If q is odd and h is even, then, as & — oo,
D, (v, q; 8) ~ Az (logloga)™ (logz)~".
(iii) As & — oo,
Di(v, 25 ) ~ AfMz(loglogz)™* (loga)™".

A, A™ ) AP™ are positive constants depending only on v, g

and m.

The corresponding results for the case m = 0 have been obtained
by R. A. Rankin in a paper [1] published in 1961. The function D,(», ¢; @)

* The contents of this paper formed part of the author’s Ph. D. thesis which
was presented to the University of Glasgow.
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represents the number of positive integers n <@ for which ¢ does not
divide o,(n). If, more generally, N (v,%; ), for any positive integer %,
is defined to be the number of positive integers » < for which & does not
divide o,(n), then

1) Dy(v,y g3 2) = N(v, ¢; 2).

This latter notation is that used by Rankin in [1] when he proved that,
a8 ¢ - 00,

APz if ¢ and h are odd, )
(2) N, gq;0) ~{APs(logz)™™  if ¢ is odd and h is even, (i)
AP if qg=2, (i)

where A", A, A" are positive consbants depending on » and g¢; in
fact ALY = 142712,

If m > 2, it follows from the definition that N (», ¢™; ) is the num-
ber of positive integers n < « for which one of ¢" | 6, (n), » = 0,1,2, ...,
m—1, holds, and hence

M1
®) Ny g"50) = Y D, g5 ).

Pl
An asymptotic equation for N (v, ¢™;®) can be (and, in part V of this
paper, will be) deduced from Theorem 1, (2) and (3), and the result
obtained is an improvement, for the case & = ¢, in an estimate establi-
shed for N (, k; z), when » is odd, by G. N. Watson in a paper [2] publi-
s}'led in 1935; corresponding improvements were deduced from (2) by Ran-
kin. Watson proved that, when » is odd and % is any positive integer,

4) N (v, k;0) = O (v(loga)~"7®)

a8 @ -» oo, where ¢(k) is Euler’s function. When » and ¢ are odd, % is
even and hence part (ii) of Theorem 1 and (2) are used to obtain the
est%ma;te, already mentioned as being more precise than (4), for N (v, ¢™; o).
It is also possible to obtain from Theorem 1 and (2) an improvemént of
(4), and in some cases an asymptotic equation for N (v, k; @), when &
is not & power of a prime, and this is done in part 'V of this paper.

The proof of Theorem 1 falls into two parts. Define ‘

an(n) = {3 it " o),

otherwige.
Then clearly
@x
(5) Dm(v, q; a’}) = Zam(rn),
Tow )]

where without loé&} -o;f generality # can be taken to be an integer, and to
prove Theorem 1 it is mecessary to find an estimate for the sum on the
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right of (B). The first stage in obtaining this estimate is to express the
generating function
Fals) = Y aw(nn™ (s = o+it)
N1
in terms of the Riemann zeta-function and Dirichlet L-funetions, and

the following result is proved.
THEOREM 2. (i) If g and h are both odd,

Fnl8) = £()9(6),

where £(s) is the Riemann zeta-function and g(s) is holomorphic for o > %

and bounded for o> 3%1+06 (6>0).
(i) If ¢ is odd and h is even,

Fm(®) = {LEP 3 logZ ()" Hu(s),
U=0

where each H,(s) (0 < u < m') is a function involving Dirichlet L-functions
associated with mon-principal characters and fumctions satisfying the con-
ditions on g¢(s) in (i).

(iii) If ¢ =2,

fu(s) = D {logl(s)}"Hu(s),
U=0

where each H,(s) (0 < u < m) satisfies the conditions given in ().
The second stage in estimating Dy, (v, ¢; #) entails deriving Theorem 1
from Theorem 2. Theorem 1 (i) follows immediately from Theorem 2 (i)
and the Wiener-Tkehara Theorem (which is stated in Lemma 10). How-
ever another result has to be proved in order that the rest of Theorem 1

can be deduced. Let
h(s) = {£(s)}'~ " {logL(s)}“H (s),

where 0'< f <1, % is a non-negative integer and H(s) is a product of
powers of Dirichlet L-functions associated with non-principal characters,
non-negative powers of the logarithm of such functions, and a function.
holomorphie for ¢ >} and bounded for ¢ > %6 (4 > 0). Furthermore
suppose that %h(s) can be expressed in the form

h(s) = f b(n)n~°,

N==1

where b(n) > 0. Then:
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TaEOREM 3. (i) If 0 < f <1 and « =1, then

2 b(n) =fgg)ﬁ)m(loglogm)“(logm)"’”-[w()(a;(loglogm)“"‘ B (log) ).

Rl

({ii) If =1 and u = 2, then

xr
Zb(n) = wH (1)z(loglogw) ' (logw) ' --0 (w(log].ogw)""‘""“(logm)‘“l).
=1

k2

(iv) If =1 and u =1, then
x

Zb(n) = H(1)a(logz)™'+0 (@ (loglogx)'* (loga) ).

A=1

(V) If =1 and w = 0, then
Zb(n) = 0 (w(logw)~*).
Na= 1

A proof of part (iv) of this theorem with H (s) = 1 forms part of one
of the proofs of the Prime Number Theorem; Rankin [1] applied paxt
(i) of this result with # == 1/h, and Watson’s paper [2] includes the proof
of a similar result with % replaced by ¢ (k). However, although some cases
of this theorem are already known, to the author’s knowledge the statio-
ment and proof of the general result have not previously appeared in
print.

Theorem 1 (ii) and (iii) will be deduced from Theorems 2 and 3 in
part V of this paper. By the method of the following pages one can prove
results analogous to Theorem 1 for the funetions d(n) and @(n), where
d(n) is the number of divisors of n and ¢(n) is Buler’s funetion. The results
which can be obtained in this way will be stated in part V. The proofs of
Theorem 2 (i) and (i) and Theorem 1 (i) are contained in part LI, In order
to simplify the details of the proof of Theorem 2, the cagse ¢ == 2, stated
in part (iii), is proved separately in part ITI although the method used is
essentially the same as that contained in part IT. Part TV contains the
proof of Theorem 3.

I wish to thank Professor R. A. Rankin for suggesting o mo the
problem from which this paper arose and for all his valuable advice,
and Professor H. Halberstam for hig helpful criticism of an earlier draft
of this paper,
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II. Proof of Theorem 2 (i) and (ii) and Theorem 1 (i)

The main object of part IT is to prove Theorem 2 when ¢ is an odd
prime; hence we shall assume throughout part II that g # 2. Our aim
is to find an expression for

i) = X an(mn=;
N=1

to do this we first find (in Lemma 5) the positive integers o for which
@y (p°) = 1, where p is a prime, and, since we shall see that a,(n) is not
multiplicative, the next step, given in Lemma 8, is to express a,(n) in
terms of a,(p”) (0 <7 <m). It will then be shown that the required
result folows.

In § 4 we shall deduce Theorem 1 (i) from Theorem 2 (i) and the
‘Wiener-Ikehara Theorem.

1. A preliminary result. Let p denote a prime. The purpose of this
section is to obtain an expression for the order of p" modulo powers of
¢, and hence to prove Lemma 4, which will be needed later. Let ¢ be a pri-
mitive root (mod ¢") for all positive integers ». Then every prime p, p # ¢,
satisfies a congruence relation of the form

1<o(r) < o(f) = ¢ (g—1).

If 7y > 1y, p = g™ = ¢V (mod ¢1) and hence

(6)  p=gP"(modq”) where
] ep(rs) = ¢p(r) (mod e (¢)).

Define ¢, (r) to be the highest power of ¢ dividing ¢,(r), so that ¢»? || ¢,(r)
where, clearly, 0 <e,(r) <r—1. From (7) it follows that

(8) g(n) = min(sp (1), ""1—1)7

and hence )

9) ep(r+1) = gy(r) or egy(r)+1.
LeMMA 1. If v > 2 and gq|cy(r), then q]cy(2) and

(10) 0p(2) = g0y,

where ¢y = ¢p(1). If ¥ >2 and ¢ || cy(r), then

ep(r) = ¢ cy.
Proof. If we put », =2 and r, = » in (8), we see that if q.[op(fr),
then ¢ | ¢,(2). On putting »; =1 and r, = 2 in (7) and using the inequa-
lity in (6), we obtain

(11)

65(2) = 6p--u(g—1) where O <u<g—1.


GUEST


250 E. J. S8courfield
If q | 0,(2), it follows that q | (¢, —u); since ¢, — u| < ¢, we have 4 = Cp-
This gives (10).

Suppose now that »>2 and ¢ '( e, (r). Then e&,(r) = r—1, and
it follows from (8) that e,(r—1) =7r—2, ,(r—2) =r—3,...,8,(2) = 1.
If 3 <i<r, wehave from (7) that

e(3) = ey(i—1)+u; 672 (g—1) where 0 <u <g—1.

It ¢, (i—1) ;-}q"‘“op and ¢ || (i), it follows that u; = ¢, and ¢, (i)
= q70; this is p‘rue fori=3,4,...,7. Since ¢ | ¢,(r), (10) holds so that,
when ¢ = 8, ¢,(¢—1) == ¢"?0,; hence if 7> 2 and ¢ | ¢,(r), then
(1) = ¢,
We recall that
t=1(p) by

¢ v and that h = (¢g—1)/(»,q¢—1). Define

¢ | (@"—1);

we shall assume now that r >¢. Our next lemma gives an expression
?or the orde'r of p’ .(mod ¢") when ¢ > 1, and Lemma 3 gives a correspond-
ing ?xpresmlon' valid for ¢ = 0. We adopt the convention that the order
of " (mod¢') is 1; if » < ¢, then the order of p” (mod ¢) is not defined.
If > ¢, then clearly the order of p* (mod ¢") must exceed 1.

Lemma. 2 If 1>t and 1> 1, then the order of p’(mod ") is ¢"*.

This result iy proved by LeVeque [3] in Theorem 4-6, and will be
deduced from Lemma 3.

Levma 8. The order of p' (mod ¢') is

Ao (1) [(h, cp),
where
By = |ETT0 A r=ly—e() 20,
p(7) =
1 if  r—=l—yp—gyr) 0.

. Prfoof. We shall uge (6). The order of g (mod ¢") is o(q") by defini-
lon of a primitive root. Hence the order of ¢ 4
is given by g" (mod ¢"), h(r) say,

pd) _ T g1 ="
Pro@) 0.0 Cre=1) " |n
It follows that, if r—1—y >0, the order of ¢ (mod 4" G i

od that ig th

order of p” (mod ¢'), is equal t(g . “) B

h(r)

(h(r), 0,,(1‘)) h

if
if

Pomly 20,
Pom Ly £ 0,

h'l‘)m

=Ly
q

. h o
= c‘,(r)) (hy%(’")) N

h
(B, o)

= qr— 1- y—ap(‘r)

(¢

icm®
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provided that r—1—y—e,(r) > 0; the fact that (b, e,(r) = (k, o),
which is used in the last step, follows from (7) on putting »; =1 and
Py =7, sinee h|(g—1). If r—1—y <0, replace ¢~*~* by 1, and if
r—1—y—g(r) <0, replace ¢"~7?~" by 1; thus in either of these cases
the order of p* (mod ¢') is &/(k, ¢,). This completes the proof of the lemma.

We observe that, by (9), A,(r+1) = gip(r) or A,(r) according as
y(r+1) = g,(r) or £,(r)+1. It is not immediately evident that Lemmas
2 and 3 are equivalent if ¢ > 1, so we shall now deduce Lemma 2 from
Lemma 3. The order of p”* (mod ¢) is 1, and 80 h/(h, ¢,) = 1 and A,(¢) = 1;
if 7 >t, the order of p’ (mod ¢') is A,(r) = ¢"~'"*"") by Lemma 2, and
Ay(#) > 1. Henece, sinee 1,(t+1) >1 and 2,(8) =1, A,(t+1) =g and
gp(t-+1) = &,(t) by the remark at the beginning of this paragraph, so
that e,(¢+1) <t—1 < ¢. On pufting », = ¢+1 and r, = 7 in (8), We ob-
tain e, (r) = &,(f). Hence, since A,(1) =1 so that {—1—y—ep(t) =0,
yep(r) = p+ep(f) =1—1, and 50 Ay(r) = ¢ =g,

We define u,(r) (r = 1) to be the order of p” (mod ¢" +1). by Lemmas
2 and 3,
it  p"# 1 (modyg),

it p"'=1 (modyg),

12) () = lf(?’)h/(h, ep) = Ap(r) iy

q
where u, = up(1). We observe that w,(r) > u, > 2 always, and thab
up(r) = pp =3 i p” =1 (mod g).

LuEMMA 4. If b is even, then uy(r) =2 and py(r+1) = quy(r) hold
simultaneously if and only if r =y-+1 and p is congruent to ome of
@) (v, g—1) elements of a reduced residue system (mod ¢"*).

Proof. p,(r) =2 cannot hold unless £ = 0; hence we may assume
that ¢ = 0. Clearly if u,(r) =2, then u, =2 and 1,(r) =1. Since
tp = h[(h, 6), pp = 2 if and only if ¢, is an odd multiple of }4; this is
50 When
1<u<(r,q—1),

¢p = $h(2u—1) where

the bounds for the integer u following since 1 <6, <g¢—1, so that
2
%(g +1) <u<32—1W 1) = (v, ¢—1)+%.

Thus there are exactly (v, ¢—1) values of ¢, which are such that u, = 2,
and hence u, = 2 if and only if p is congruent to one of (v, ¢—1) elements
of a reduced residue system (mod ¢).

We now find the number of values of ¢,(r+1), corresponding to
a given value of ¢,, for which g, (r+1) = quy, (1) = qup. Clearly 4,(r+1)=g¢q
but A,(r) = A,(r—1) .. =2y(2) =1; thus

r+1)—l—y—gy(r+1) =1

and r—l—y—g(r) =20,
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giving &(r+1) = &(r) =7—1—y, provided 7 >y+1. By (8)
gp(r—y) = min(e,(r), r—1—y) =r—1—y,

a,rng., hence g,(r+1) = 8,(r) = ... = g,(r—y) = r—1—y. Therefore
4" lep(r—y), and, by (11), e,(r—yp) = ¢"""?¢,; thus to each ¢, there
corresponds exactly one ¢,(r—y). Now, by (7)

6 (r+1) = ¢y (r—y)+ug~ """ (g—1)
80 that

where 0 < u < ¢!,

Cp (7' +1) = qr-«l--y('ap -+ u((l”" 1 )) .

Hence, if ¢"*=7|{¢,(r--1), g 1 (¢,~u). This means that » can take any
value between 0 and ¢"*'—1 except '

Cpy bptqs ooy O+ (¢ —1)q,

and 5o u, and hence ¢,(r+1), can take ¢"'--¢” = p(g""") values for
each given value of ¢,.

It follows that m,(r--1) = qu,(r) = %¢ if and only if p is congruent
to one of p(¢"*') (v, ¢—1) elements of a reduced residue gystem (mod g™
prowded rzy+1. I r <y+1, we observe that P (T4 1) ==y (r) = p,
for all p, so that no p satisfies the roquired conditions. This comp‘lebe;
the proof of the lemma. ‘

2. The evaluation of E @ (p°). We have already defined

==l
if q7‘ ” O',,(W:),

a.(n) =
i 0 otherwise

fqr r =1; we define also a,(n) by ag(n) = 1 or 0 according as ¢ does not
divide or divides s,(n). Olearly the definitions imply that a(1) = 1 and
(1) = 0 for » = 1. For convenience we shall frequently write a(n) for
a,,(_n). The results of this section and the next which involve a(n), but
not ar(.n) for ?"21, are all proved by Rankin [1]; Lemmas § and 6,
parts (i) and (i), and Lemma 7 ave proved in the first part of § 2 of his
paper. ‘ '
The next Lemma enables us to determine the forr
! o8 stern o for )
) T ey nwm of « when
Levma 5. (1) If p # ¢, a(p®) =1 if and only of a < 1
intager . y a(p®) if and only if o wpy—1 for any
(i) a(g”) =1 for all «.
, W) If 7 >1, p g and w,(r+1) = g (r), then a(p) =1 if and
only if o = uu,(r)—1 where (4, q) =1. ‘

(V) If » > 1 and ei = = a
for o f and either p = q or u,(r+1) = p,(r), then a,(p®) = 0

icm

On the divisibility of o, (n) 253

Proof. We have
0,(p%) = 14"+ p+ ...+ ™ = (P —1)/(p"—1),

and ¢ || (p*—1) where t>0. For any r >0, ¢ | o,(p®) implies that
¢+ || (p"°* 9 —1), and this occurs if and only if the order of p*(mod ¢"*),
which is u,(r) by definition, divides a-+1 but the order of p"(mod gy,
which is u,(r-+1), does not. (We recall that the order of p’ (modg?) is
1, and we use this convention also when ¢ = 0.)

(i) It p #q, a(p®) =1 if and only if u, + (a+1), which gives the
result. ’

(ii) 0,(¢") =1 (mod ¢), and hence the result follows.

(iii) If the given conditions are satisfied, then from above a.(p®)=1
if and only if
but

tp(r) | (a+1) Up(r+1) 1 (a+1).

Since u,(r—+1) = quy(r), the result follows.

(iv) This part is an immediate consequence of the proof of (ii) if
p =g and of (i) if up(r+1) = pp(r).

Lemuma 6. (i) If p #4¢q,

D a(p)p™® = (L—p~ ) (L= p ) (L —p).

a=0

1—g"
p#q and py(r+1) = qup(r), then

(i) 2 algg ™
(i) If r>1,

)

a=1

ap(p)p™ = (L—p™ V7 p~ 0o (1 — p=ral) (1 —p=02).
(iv) If r =1 and either p = q or u,(r-+1) = uy(r), then

00

D, e (@)™ = 0.

a=1

Proof. This Lemma follows from the previous one. For example,
to prove (iil) we have, if the given conditions hold, that

o (=] o0 (
~(Upp()—1)8 _ 8 —~upn ()8 —UQuy ()8
21 P~ | Yo ; pra),

U=}

D, a3~ =

a=1 U=
(v,0)=1

and we obtain the result on summing these two geometric series.
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3. The generating functions. Since o,(n) is multiplicative, we can
write

a,(m) = [ (")
o

follows that a(n) is multiplicative; for ¢ + o,(n) if and only if ¢ + a,(p%
for every p“| n. Hence

a(m) = [ [ a(v")

e

o
= 2 a(n)n~*
M=z 1

=¢(s) [T A—p =) [(1—p™*7").

g
Proof. Since a(n) is multiplicative, we have by Lemma 6 (i) and

Let

then we have
LeMMA 7.f(s)

(ii) that
o= e = []1 2 a(p“m-‘“}
n=l o a=0
SRy LS Sy f RS

B e

However, although a(n) is multiplicative, a,(n), m =1, is not;
for ¢" || o,(n) certainly does not hold if ¢™ || o,(p%) for every p“ || n (unless
n = p%). Nevertheless we can obtain an expression for a,(n) in terms
of a(n,) and a,(p”), where n, | n, p* || » and r < m. In the following lemma
we assume that p;t || n for all 4 (with or without a suffix), and that two
primes p with different suffixes are distinct. Let R, denote a set 7, 4,

., 7y, of positive integers, with 1 < r, <7y < ... << 7y, and lot R(m) ropre-
sent the collection of sets R, whose members satis[y 7‘] ATyt s u sy == M,
where & takes all possible values; clearly 1 <% <t m. Lot ‘Bk denote an
ordered set of distinet primes p,, Digy ooy Pigs aud_ Py By, (where
ky >k, and where the first ¥, primes of ¥, are those of Pr,) denote the
ordered set of primes 13;01 IRTRITSY I

Lumma 8. If m >

a(n) = D' {o"(R

Rpeth(m)

e 8

-1 O ay aj, g lh "
% Ay (D), (D). 1, (D7) a(mpy, 0 gy ),
i
T

where (i) the set R, ranges over all sets belonging to R (m), which are such
that & does mot exceed the number of primes dividing n, (ii) the sum over By

icm
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represents the sum over all sets By consisting of k of the distinct primes di-
viding n, and (iil) o*(Ry) is defined below.
Proof. Since o,(r) is multiplicative, we may write
k
o, (n) = [ [ o,(pi) 0 (npi, ™
j=1
where 47| o (p:ff), j=1,2,...,k, and g+ <7('ng),_1 “1...pi, ®); then
we have a,(pi) =1, j __1 2,...,k, and a(npy. pn:lk) =1. It
follows that q’” || o, (n), so that am(n) =1,if and only if ;... 47 = m,
and that there will be only one set EjeR(m), which we denote by Rk,
and certain sets B, which we denote by P, for which this holds.
Consider now the expression

M (Bry Bi) = 0y, () .- 0y, (PiF) a(mpi; 2oy, B

From above an,(n) =1 if and only if M (R, B,) = MR, B) = 1.
We shall now calculate the number o*(E;) of sets %, which, for fixed
Ry, leave M (Ry,PB:) essentially unaltered, that is unaltered except for
a rearrangement in the order of its factors. Suppose that R, has = distinct
elements 77,...,75, where 7} <73 <...<r;, oceurring I,%,...,%k
times respectively in the set; clearly l,4-...41, =k If we rearrange
the primes of the set %; amongst themselves (and there are l,! different
arrangements of %), M (B, %) will remain essentially unaltered (since
every member of %, is associated with vy in M (Ry, By)); similarly if we
rearrange the members of the set P, —P, 1<j<r—1) amongst
themselves, M (Ry, B;) will remain essentially unaltered. Hence we can
arrange the members of the set % in ¢*(R;) ways, where

o (Bp) = LILL... 0L,

Py E),

without essentially altering M (Rj, By). However, if we alter the order
of the members of P, in any way other than those mentioned above,
or if we replace R; by another set Ry, (possibly having a different number
of members) and/or replace %; by another set Py, we shall essentially
alter M (R, By).

If an(n) = 1 and Ry eR(m), it follows from above that M (B, B) = 0
unless Ry is the set Rk. and P, is one of the Q*(R,,) gets iﬁk; if ay(n) =0,
M (R, B;) = 0 for all R,eR(m) and all B;. Hence

o*(B)an(n) i
0 if

m =1,
3 M (B, B) = (™)

RifRem) n(n) = 0.

Unless a,(n) =1 and B, = Rk, the inner sum on the left is zero (for at
least one factor of each term M (R, ;) is zero), hence the result follows.
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We are now in a position to find the generating function
(=]
Fu(8) = AS.JI“’”’(")”
[T

for m > 1. Let S(r) be the set of all primes p for which u,(r+1) = qu,(r).
Then we have

LemMA 9.
Fal) =£6) 3 AR} 3P (1 ()3 8) D P (e e, ()5 ) ..
R;‘ej{(m) P 1)2
. ‘\;]'P(T)IM /-Ln/h.('rk); 3)7
Dig
where N
Plpy s o = 02N 0 —p ) p ) e
Dy tp(T)s S 1= p"("”'])s)(l Ry F_'/p--lmp(y)s)

and where the sum over p; (1 =1,2,...,k) is over all primes peS(ry)
XCEPt 3 D1y Poy +ovs P
Proof. By Lemma 8,

3

(13) fuls) = D1 3 ("B }“IS’V(R:,%)}
n=1 " Rpeh(m) EY

=3 3 wmyr S i 0,

=1 RyaRim)

[

-8

. e (L oty -ty
oy (P P, (npy, ... i, ) (mpy, " iy )

' (MBI Y Y an (ppr N N, (i) pi.

Rpem) oy dpeel Py gl
(25} o0
1 ] N "
. 2 ZJ aty, (PRF) ")_{ a(n)n
Dy o=l Ly
"o (N yPy.. D)1
where the sum overp; (i =1, 2,..., k) is over all primes oxw])b Piyeory Do
By Lemma 6 (i) and 7, we lla,vo Epyotkq,i==1,2,..., % that
0 . il
-8 o . &l
(14) 2 a(n)n™" = [1 {4\.4 a{p“)p "}
N=1 » ()
{(MD1Dg.,.Pf)=1 DEDY,. ,?’/.n

—fs>[] { St

A=) u,mu

k
= 1(6) [ [ =7y (L0 (1 o7 )2,

(LS
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We do not need to consider the above sum with any p; equal to g; for
if p; = ¢, a,j(p;’?) = ay, (g¥) = 0 for all ¢; by Lemma 5 (iv) and the cor-
responding term on the right of (13) is zero. If we substitute (14) in (13)
and use Lemma 6 (iii) and (iv), we obtain the result of the lemma.

The following considerations may help to make the form of the
above result seem logical. We may write

s D 3 @[] 3 Ploy sl )+

RyeRm) i=1 D#q
neS(ri)
* -1
+0( > {o"(Bu)} 2 P(p, uplry,; 8)
RpeR(m)
psS(r,)
m—S(rf)

P.'p’,uﬂ rfu ]__I Z P(pﬂup(“)y ))

ity D)

where the error term is of smaller order of magnitude than the first term,
28 will become apparent in § 5 when m’ > 1, unless |f.(s)/f(s)] = O(1)
for ¢ > } which is 50 in § 4 and in § 5 when m’ = 0. It can easily be shown
that the main term on the rlght of (15) is the coefficient of ™ in the
expansion of

oo

exp{Zm ZP(p’/‘p 7)’8)}

=1

.,

psS(r)

4. Proofs of Theorems 1 (i) and 2 (i). In this section we shall assume
that % is odd. It follows from (12) that u, cannot be even, so that bp >3,
and hence u,(r) >3 for all » > 1. From the definition of Pp, py(r); )
(L+p7)(1+p~"°) (1 p~ @ Val)p~iei-)e

(1—p~ ™) (1 — p~*2C)) (1 — p~%50))
< 2(a)p a4,

IP(piﬂp(/’); S)I <

where Q(0), a function of ¢ = Re s only, is obtained by using the ine-
qualities p >2, g, >3, u,(r) > 3. Hence

) | 3 Plow i 8)| < Y|Pl mpr; o)
msémﬂl m._ »
Q(0) 2 p =1 < (o) 2?”

2]
which is convergent for o> }; thus the sum on the left is absolutely
convergent for ¢ > }.

Acta Arithmetica X.3 17
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Sinee y, =3, the infinite product in the expression for f(.s), given
in Lemma 7, is also absolutely convergent for ¢ > %. Hence it follows
from Lemmas 7 and 9 and above that

fu(8) = £(8)g(8),

where g(s) is holomorphic for o > 4 and bounded for ¢ =44 (6> 0).

This completes the proof of Theorem 2 (i). . -
1 We ngw show that Theorem 1 (i) follows from Theorem 2 (i) and the

Wiener-Tkehara Theorem which we state in . o
LemmA 10. If &(z) s o mon-negative, non-decreasing function in
0 < 1 < oo such that the integral

F(s)= | e"P(r)dx

QHS

converges for ¢ >1, and if for some constani B and some function G (1),
where t =Ims,
s - 2] v
uniformly in every finite interval —a <i<a, then
lim @ (z)e™" = B.

>

This is given in §17 of Chapter V of Widder [4]. To deduce the
result from this, let

0 (e¥]
8P (5) = fu(8) = ) am(n)n™,  O(x) = 8(¢) = Z,Iam(n), B =g(1);
N==l Nwm

then in order to prove Theorem 1 (i) we need to estimate S(w), for

8@) = ) an(n) = Du(», ¢; 2)-

el

Olearly f,(s) is holomorphic for o >1, so that

ful®) = Samma~ = 3 E)=Sn—1}~" = [ y71a8w

=] (- (=]
= [e™as(e) =3 [ e8(¢")dv = s [ e 0 (z)dx
g [} 0

converges for o > 1. Since £(s)—(s—1)~" is holomorphic for ¢ >0 (stz?
Lemma 13 (i)) and g(s) is holomorphic for o > }, it follows that f.(s)s
—g(1)(s—1)"! is holomorphic for o >4, so that

lilﬁ{fm(s)ff“—g(l)(s—l)“} =G(1)

icm®
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uniformly in every finite interval —a <t < a. Hence the conditions
of Lemma 10 are satisfied and an application of it yields

lim &(z)e™" = g(1),
whence o

lim S(z)z = g(1).

Z—>00
Thus as # — oo,

8(@) = D am(n) = D (v, g;2) ~ g(1)a,
which is Theorem 1 (i).

5. Proof of Theorem 2 (ii), We assume first that % is even and
m' = [mf(y+1)] >1. Then it follows from the proof of Lemma 4 that
for any positive integer r there exist primes p for which tp(r) = 2. For
such a prime p we have by the definition of P (p, u,(r); s) that

1 p—2a-Ys
(7) P(p, py(r);8) = P(p, 2;3) = {T_?W}p“ﬂ
_ {1_— p—-Z(q—I)s_p—ZQS}p_S.
1__p—zqa

Let 8,(r) e the set of all primes p which satisty p S (r), p # g, up(*) = 2;
we recall that peS(r) if u,(r+1) = qu,(r). Then

(18) D Plromrais) = > o (s,
Tﬂi#g,ﬁ{é-(--.;’i—l PeS(rs)
pieS(r;

where the sums on the left and right are non-empty if and only if r; > y+1
by Lemma 4, and, by the arguments used at the beginning of § 4, y;(s)
is holomorphic for ¢ > % and bounded for o > 446 for any & > 0.
Levma 11. Assume that r > y+1. Let by, j=1,2,...,%, where
% =@(¢" ) (v, g—1), be the distinct elements of a reduced residue system
(mod ¢"**) which ocour in the proof of Lemma &, and let y be a character
and y, the principal character (mod ¢"*"). If L(s, y) is the Dirichlet L-series
associated with the character y, and G (s, x) is a certain function which is
holomorphic for o > % and bounded for o =%+ 6 for any 8 > 0, then

21’"3 = (v, q—1)¢""{log¢(s)+log(1—g=*)} +
DeSy(r)
- gV logL(s, ) G(s, %)
r _1 1 { 2 y }’
+47(g—1) ; 7%: ) +;’ P

where the sum over y is over all characters y(mod ¢"*") ewcept, when indi-
cated, 7.



GUEST


E. J. Scourfield

260
Proof. By Lemma 4,
Al - -8
(19) Y= ) P
DeSy(7) = pEbj(mOdﬂr+1)

and the b; can be determined from the proof of Lemma 4. It is well known

that )
el N2
? ’2 Z U

where the sum over y i over all characters (mod ¢"*'), and thab

;x(p)p“" =logL(s, x)— ; Z%

Us=2

o)

p=bjmodd’+ b

U
";’;) — logL(s, ) +6(s, 7)
(say), where G(s,y) satisfies the conditions gi.ven in the statement of
the lemma; these results appear, fo-r example, in §13 and § 14 of Hasse
[5]. Since L(s, xo) = (1—g7")¢(s), it follows that

-8

(20) P

p=bj(modg"+ 1

~y log L(s, 1) Z
2(by)

— ol ogta—a e+ D 2E T

X# X0

G(‘?’ZQ,},

and hence the result of the lemma follows from this and (19).
LA 12. Let g be a primitive root (mod q) and let x(n) be the char-
acter defined by

2(n) = e(B/h) for m=g’ (modyg),

where €(z) = exp(2niz). Then
F(8) = T )} (s),

where y(s) is holomorphic for o > } and bounded for o 2 §-- 8 for any 4 > 0,
and where
n

F(s) = [[{ZL(s, ) /L8, £}

r=1
h—1 =1

=[] a—p=y ey [T 26, H{[] Lte, )7

Dk Teal

With the exception of the last representation for F(s), this lemma is
proved by Rankin [1] in the paragraphs leading up to equation (14)
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of his paper. To prove the last part, we observe that, since x is a character
(mod h),

h—1 h—1
F(s) = [ Lis, O { [ Lo, 20} 7 (Lo, 2797

r:;h
th—1

h-—-1
=[[a—p77 @y [] B, O] Bts, 4}
Db =1 r=1

We are now able to complete the proof of Theorem 2 (i) when m' > 1.
From (18) and Lemmas 9 and 11 we obtain

@) fns) .
=i ) @[] {(v, 4—1)¢ " {log(s) +log (1 —g ")} +

RyeR(m) i=1
—r; g\ log L(s, ) G(s, )
Tilg—1)"! ’ -+ ’ )
ey 2 {()2 s 27 Z 20 () }J”’”L(s)’
A ) ey

where 4% i5 a character (mod ¢“*'), and R} represents a set of positive
integers 7y, 7s,...,7; satisfying y+1 <r <7 <... <7, (so that the
set of all R} is a subset of the set of all Ry). Clearly the term on the right
containing the highest power of log¢(s) will ocecur when the product con-
tains its maximum number of terms which implies that % takes its maxi-
mum value. Now %k will be greatest when the 7, are as near to the value
y+1 as possible, and hence the maximum value of % is

[mi(y+1)] =m';

n this case 7 = y+147, i =1,2,...,m, where

mi
O<r<m—m (y+1)<p+1 and D'r
i=1

1

m—m'(y-+1).

Now Ry, represents a set of the form y-+147), y+1475, ..., y+1 47,
and the number of sets B}, e R(m) is o(m, ), where g(m, y) is the number
of nnrestricted partitions of m—m'(y--1) into at most m’ parts. It fol-
lows that the term on the right of (21) which contains the highest
power of logl(s) is

(22)

where

F(8)e(m, v)(v, g— 1) g™ " {log ()™,

D B,

Rj, eR(m)

o(m,y) =
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the sum having 4(m,y) terms. The remaining terms will be of the form

fs) Qogt )y [ [ {logLis, 2} m(s)},

i=1

(23)

where 0 <u<m, 0<v<m —u and 1< m—u(y--1), where the
r; are not necessarily all distinet, and 4 is a non-principal character
(mod ¢"*'), and where 7;(s), & function of s and the characters occurring
in (21), is holomorphic for o> § and bounded for ¢ = §+ 4 for any
5= 0. From Lemma 12 and (21) to (23), it follows that

fnls) = (£ ) ogl(s) Ha(s),
w=0

where H,(s), 0 <u <, satisfies the conditions of Theorem 2 (i),
and H,.(s) can be obtained from (22) and Lemma 12.

In order to complete the proof of Theorem 2 (ii), we now assume
that m’ = 0, and as before that % i even. Since m =0, m <y 80 that
¢ |v. If r <m <y, then by (12) and Lemma 4,

W) =2 and  p(r+1) = gpp(r)

cannot both hold; for if p’ == 1 (mod q), u,(r) = up for r < y-+1, and if
P =1 (mod q), u,(r)=¢" =>q>3. Hence, for r <m,

)"1

prav]

DAL DT oD ]
DS (rg)

P(ph ‘”m("‘i)i 8)

is absolutely convergent for o > 4 by the arguments which lead to (16).
From Lemma 9 it follows that

Jn(8) = f(8)n(s),

where #(s) is holomorphic for ¢ > } and bounded for ¢ > }--d for any
8> 0. Since % is even there exist primes p for which u, == 2, and honce
by Lemma 12

Fu(8) = {C()} M H (s),

where H,(s) satisties the conditions of Theorem 2 (ii).

IIL Proof of Theorem 2 (iii)

We have proved Theorem 2 when ¢ is an odd prime, and we shall
now sketeh the proof of part (iii) for which we agsume that ¢ == 2. Where
possible we shall refer the reader to part IT of the paper; to facilitate
thig, when a lemama or equation has to be restated or a section replaced,
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it will be given the same number followed by ' . The main differences
occur in the first section (owing to the peculiarities of the prime 2),
and sections 4 and 5 are replaced by a new section.

1. A preliminary result. If r > 3, every odd prime p satisfies
(6"

where we take the -4 or — sign according as p =1 or 3 (mod 4). Equations
(7)y and (8) become

(7
(8"
and equation (9) still holds; Lemma 1 is not relevant when ¢ = 2.

When ¢ = 2, b = 1. We define ¢ as before by 2| (p’—1). Further-
more if p =3 (mod4) we define ¢ =t (p) by

2| ((—pr—1);

then ¢ = ¢ when » is even, but ¢ > 2 and ¢ = 1 when » is odd. Clearly
t>1 always. We assume that » >¢ and r > 3.
Lemva 2. If r >t and ¢ >3, then the order of p’ (mod 2") 48 27
This result can be deduced from
Levma 3. The order of p” (mod 27) 48 2,(7), where

p == +5%" (mod2) where 1 <g(r)<2?,

p(7;) = ¢y (1)) (mod 2172,

&p(ry) = min (Ep (ra)y 11— 2) y

2r--r=w  if e 2e—py—g,(r) =0,

r) = =
% () 1 if r—2—y—g(r) <0
except when v is odd, p = 3 (mod 4) and p’ = —1 (mod 2"), in which case
Ay(r) = 2.

Proof. When p =1 (mod 4), the proof is similar to the proof of
Lemma 3., Hence suppose that p = 3 (mod 4), so that —p = 1 (mod 4).
If 7>, the order of (—p) (mod2") is 2”277~ = J,(r) > 1. Thus,
since (—1)*® — 41, the order of p’ (mod 2") is 4,(r) in this case. If
r <t,(—p) =1 (mod 27, and hence p* = (—1)" (mod 2"). We are assum-
ing that r >1, and hence r =t =t when » is even, and so the order
of p”(mod 2) is A,(r) = 1. However when » is odd, p' = —1 (mod 2")
and the order of p"(mod 2" is 2.

When ¢ > 3, so that 8 | (p’—1), Lemma 2’ gives us a simpler expres-
sion for the order of p’(mod 2") than Lemma 3'; (the fact that these
expressions are equivalent follows as in part II). We can also simplify
Lemma 3 when t = 1 or 2 as we show in the following
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COROLLARY. If t =2 or t =1 and p =3 (mod 8), then the order of
9 (mod 2") is 2% If t = 1 and p = 7 (mod 8), then the order of p” (mod 2",

that is Ay(r), is given by
Ap(r) =2

Proof. If t = 1 or 2, then » must be odd, so that y = 0; for if » is
even, p’ =1 (mod8) and ¢{>3. If t=2, 80 that 4| (p"—1), then
p=>5(mod 8), and if ¢ =1 and p =3 (mod 8), then p == —5 (mod 8);
in either case ¢,(3) =1, &(3) =0 and 1,(3) = 2. By (7))

if s3<r<t and ) =2"" if r>7.

¢y (1) = 0,(3) (mod 2)

for » > 3, and hence ¢,(r) is odd, so that &,(r) = 0. Thus by Lemma 3,
r) = 2"

i )If t =1, then p = 3 (mod 4), and the onlv cage left to consider is

p =17 (mod 8). Since » is odd and 2| (p"+1), 2" (p--1), and hence
= —5"" (mod 2"), giving o,(t) = 2~ and &,() =t —2. By the

lemma, 4,(r) = 2 for 3 <7 <t'. The argument used to deduce Le’mma

2 from Lemma 3 can be used to show that A,(t'4-1) = 2, 50 that (¢’ +1)

= g,(f') = t'—2 and hence if 7 > ¢, &,(r) = & (') = ¢'—2. From Lemma

8', it follows that

P>

Jp(r) = 2"%  for

We again define u, () to be the order of p* (mod 2"+Y; then from
above
2 if
or-1 if =
Jpr1) i =2,

r+t>t>2,
r>2,t=1 and p==3 (mod 8),
t =1 and p =7 (mod 8),

(129 pp(r) =

where 4,(r+1) is given by the Corollary. Note that if ¢ > 2, u, =2
and if £ =1, pu,(2) = 2; for completeness we define w, = 2 when. ¢ = 1,

Lovma 4" If t = 2, then p, = 2 and for all v = 1, py(r--1) = 2u,(r).
If t =1 and p = 3 (mod 8), then u,(2) =2 and for all * =2, w,(r-+1)
=2u,(r). If t=1 and p==7(mod 8), then for 2 <r <t, uy(r) =2
and  for all T2t up(r1) = 2u,(r).

This lemma follows from the definition of u,(r). We observe that
when ¢ =1 and p =7 (mod 8), p = 2"—1 (mod 2"*Y) and ¢ =38

2'. The evaluation of 3 a,(p%). Lemmas 5 and 6, parts (i) and (ii),
a=]

hold without modification when g = 2. The proof of Lemma 5 (iii) and
(iv) is valid in most cases. However if 2 || (p’~1), a,(p") = 0 for all «;
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ot

for » is 0dd and p = 3 (mod 4) and 80 g, = u,(2) = 2, and result follows
from the proof of Lemma 5. Hence we have

Ledua 5. (iil) If p £ 2, if 7 > 2 when 2 || (p'—1) and r >1 other-
wise, and if p, r+1) = 2 u,(r), then a,.(p*) = 1 if and only if a = up,(r)—
where (u, 2) =

(v) Ifrz=and if p=2 or r=1 when 2| (p’—~1) or uy(r+1)
= u,(r), then a,(p*) =0 for all a.

Lemma 6'. (iil) If p # 2, 9 r >
wise, and if u,(r+1) = 2u,(r), then

2 when 2 || (p*—1) and r = 1 other-

D a,(p)p~ = p~ P (1 — prentrh),
a=1

(iv) If r >
= /‘p(r)y then

Land ¢f p=2 or r =1 when 2 || (p"—1) or uy(r+1)

D w (@)™ =
a=1

3. The generating functions.
LeMmA 7'

fs) = (1+27°)¢(2s).

This follows from Lemma 7 since u, = 2. Lemma 8 continues to hold
when ¢ = 2.

LEMMA 9.
fml8) = fls) > {o* (B} 2 (P, (1) S’P (Pas tipy (72) 3 8). .-
Rye(m)
"ZP(IJIH :“p;c(rk); 8)’
N
where

P(p, tp(r)s ) = (1—p=2)p~ (=12 (1 p=2et0e),
and where the sum over p; (i =1,2,..
except 2, Py, Pay ...
p = 3 (mod 4).

The notation is the same as in Lemma 9. The necessity of the
additional condition needed when » is odd in the sums involving
7; = 1 arises from Lemma 6’ (iv); for if » is odd and p = 3 (mod 4),
2| (p"—1).

., k) 98 over all primes peS(r;)
y Piey and, when v is odd and r; = 1, those p satisfying
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5. Proof of Theorem 2 (iii). From Lemma 4 we observe that
pp(r) =2 tp(r+1) = 2p,(7)

do not both hold unless (i) » is even and r =1, (ii) v is odd, » =1 and
p =1 (mod 4), (iii) » is odd, r = 2 and p =3 (mod 8) or (iv) » is odd,
r>38 and p=2"—1 (mod 2”1); thus for every odd prime p there ig
exactly one value of r for which peS,(r). It follows that

S

and

if v is even and r =1,

DE2
(24) D pt=10 if » is even and r > 1,
250 l p~® if v is odd and r =1

p=9T—1(mod2r+1)

As in § 5 of part IT,

>

DALy P
DeS(r)

where ;(s) is holomorphic for ¢ > } and bounded for ¢ > %-- 4 for any
8 > 0; we see from (24) that the sum on the right of (18'y may be empty,
but it follows from Lemma 4 that the sum on the left of (18’) is never
empty.

Suppose that v is even. It is well known that

Zp—s _IOgC(S)—ZL/ up*®

PHE2

(18") P(pi, ()5 8) = D 07+ wils),

peSy(r)

—27% = log{(s)+G(s)

(say), where G(s) is holomorphic for ¢ >} and bounded for ¢ = ¥4
for any & > 0. Hence from (24), (18') and Lemmas 7' and 9" we obtain

Fuls)
=(1+27¢@2s) Y > {o* (B H{logc )+G () + ()} [] 9i(8),

7=0 pfenm) Tl ef 1

where the set of BY is that subset of the set of B, for which # == 1 for
1<i<j,and r,>1 for j+1 < ¢ < k. It follows that

Fus) = D' {logl(s))"H.(s),
U=

1 —8
(127 (2s)

isfies the conditions of Theorem 2 (iii).

where H,,(8) = and where I,(s) (0 << u << m) sab-
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Suppose now that v is odd. Then by (20)

(207 D
p=9"1(mod2™+1)
— _ 7 log L (s, %) G (s, %) }
=277 log(1—27°
fogtts)-prog(1 -7+ 3128 4 X1
xF20 z
where y runs through all characters (mod 2"*') except, when indicated,
%o- Hence from (24), (18') and (20') and Lemmas 7’ and 9,

k
Inle) = 1270220 ) (0" @ [ | IZ*’i{logC(s)+1og(1—2-8)+
RypeR(m) i=1
log L(s, ) G(s, 1)
L R 1) +2}5<’T(§;:T)} +p:(8)(,
AP0 )

where 4 is a character (mod 2"*'). The maximum value of % is m and
when k = m, 1, =7, = ... =17, = 1; thus the highest power of log{(s)
appearing on the right is {log{(s)}™. Hence

= Z {logZ(s)}"H,(s),

1 ‘oo
where H,,(s) = Wz“’”(1+2—3):(23), and H,(s) (0 <u < m) satisfies

the conditions of Theorem 2 (iii).

IV. Proot of Theorem 3

In part I we defined %(s) to be a function which can be expressed
both as an infinite sum of the form

hig) = Db,

M=

where b(n) > 0, and as a product of the form

h(s) = {Z()}' " {log L (s)}“H (s),
where 0 < f <1, % is a non-negative integer, and H(s) iz a product of
powers of Dlnchlet L-functions agsociated with non-principal characters,
non-negative powers of the logarithms of such functions, and a function
holomorphic for ¢ > % and bounded for ¢ = %+48 (6 > 0). More pre-
cisely we can write H (s) in the form
A iy

H(s) = H {log L(s, £ [ [{Z (s, #)} " (s),
ge=1

1=1
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where the »;, ¢=1,2,...,4, are non-negative integers, the w,,
1=1,2,..., %, are positive numbers, the w;, ¢ = L+1, L-+2,..., A,
are negative numbers, where the %, for j =1, 2 and all 4, are non-prin-
cipal characters (mod %) and where y(s) is holomorphic for ¢ >} and
bounded for o> %+ (6 >0).
@z
The aim of part IV is to obtain an estimate for 3'b(n). The method
Tomal
used to do this follows in principle the corresponding part of one of the
methods used o prove the Prime Number Theorem (givon, for example,
in Landau [6]). Briefly, we integrate the function 2'h(s)s™® round a cer-
tain contour I"ingide and on which A(s) is holomorphic in order to obtain,
in Lemma 20, an estimate for

D) b(n)log (w/n).

Nm=]
The required result is deduced from this.

1. Preliminary lemmas. In the next two lemmas we shall state some
properties of {(s) and of L(s, y) which we shall need in order to determine
the behaviour of %(s). In these lemmas ¢, ¢, ... denote positive con-
stants, and in Lemma 14 these constants depend on the character y
occuring in the lemma.

Levma 13. (i) £(s)—(s—1)"' is holomorphic for o> 0.

(il) There ewists ¢, such that £(s) # 0 for o = 1—¢ {loglt|}~°, [¢| >3,
and for o> 1—c{logd3}~°, |t] < 3.

(iii) There ewisis e, such that

1£(8)] < exlogli]

foro z1—{log|t|}™", |t| =3, and o, such that

llogZ ()] < ¢, {log [}’

Jor o >1—e {loglt)}~*, [t =
(iv) There exist ¢4, 0g omol 6 such that

G <o and  [logl(s)] < ¢
for 1—o{log 3}7° o €1 —¢s <1, | <3.

) Th.e properties given in parts (i), (ii) and (iii) of the lemma are con-
tained in § 42 to § 48 and § 64 of Landau [6]; part (iv) is an immediate
consequence of the rest of the lemma.
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Lemma 14. Let y be a non-principal character (mod k); then:
(i) L(s, ) is holomorphic for o> 0.
(il) There exist ¢,y cg, 0y and cyy such that

[L(s, )| < o;loglt]

fore=1—{log [t[}7%, |t| >3, and
IL(s, 2)| > e {log [t]}™°  and  |logL(s, )| < ¢ {log [¢]}'
for 0 > 1—cu{log [t} |t >3

(iil) There exist ¢y, ¢y and e;3 such that

0<on <|L(s; )l < ey and
for 1—ey{log 3}77 1, <3

With the exception of the bound for [log L(s,y)|, the properties
given in parts (i) and (ii) of the lemma are contained in § 114 to § 117
of Landau [6]. The bound for |log L(s, )] can be deduced from that
of |L'(s, x)/L(s (Whieh is ¢ {log [t|}’, as is given in §117 of Landau
[6]) in the same way as the bound for [logf(s)| is deduced from that
of |Z'(s)/¢(s)| in § 64 of Landau [6]. Part (iii) is an immediate consequence
of the rest of the lemma. We observe that the lower bound for |L(s, y)]
implies that L(s, ¥) s 0. It is known that the powers of log |#| appearing
in Lemmas 13 and 14 may be replaced by numerically smaller powers,
but no advantage would be gained by using this development in this
paper.

The next lemma follows immediately from Lemmas 13 and 14 and
the definition of h(s). We observe that, if ¢ = 3+ 6 (6 > 0), p(s)] < ¢35
since p(s) is bounded For suitable positive constants d,, dy, d3, Wwe have

LEMMA 15. (i) The function h(s) 4s holomorphic for ¢ > 1—d, {log|t]}~°,
[t| =3 and for o > 1—d, {log3}™°, |t| <3 except for a singularity at s = 1.

(i) |h(s)| < d,{log ltl} for o = 1—d,{log |t]}~°, |¢| >3, where & >0,
and |h(s)| < dy foro=1—d{log3}™", |{ <3

It follows from Lemmas 13 and 14 and the definition of h(s) that
we may take

log L(s, x)| < e1s

43

A A2
k= (1—/3)+9%+21'7'Ui+2wi+ Z B |wy,
= b

G=dgt1

and that the constants d, and d; are products of the constants ¢. The
constant d; must be chosen so that all parts of Lemma 13 and, for all
characters y appearing in the definition of k(s), all parts of Lemma 14
are applicable in the corresponding regions of Lemma 15.
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Leaoa 16, If |s—1| < dy {log3}~?,
h(s)s™*—H(1)(s—1)""*{—log(s—1)}*

= ) (4) t—togla—1)* (s~ 1 S ons—1p,

j=0 k=1
o T 1
where the wy, are constanis, and D) wp(s—1)""" 48 convergent for each j.
k=1

Proof. By Lemma 13 (i), (s—1)Z(s) is holomorphic for o > 0, and

lim(s—1){(s) =1;

81

(25)

also, by Lemma 13 (ii), it is certainly true that
L(s) #0

it |s—1] < d;{log 3}~°. Hence K(s) =log{{(s)(s—1)} is holomorphic
when |s—1| < d, {log 3}"°, and
(26) limK(s) = 0.
831
Now

B(s)s™® == {&(s)}~"{log (3)}“H (s)s72,

where H(s)s~* is holomorphic and bounded when |s—1| <
by Lemma 14, From above we may write

d,{log 8}~°

h(s)s™* = (s—1)P "1 {—log(s— 1)+ K (s)}*{(s — 1) (s)}*"PH (s)s™*

U
— (=1 3 (¥){(—Logle— 1)) (K (&)} {s— D@ H (s)s5™.
F=0
For all j, {K(s){{(s—1)¢(s)}'""H(s)s~* is holomorphic when |[s—1]
< dy{log 3}™°, and hence it can be expanded as a (convergent) power
series in the form
Z wp(8—1)".
Jo=0
From (25) and (26) we have that
@ =hm{K(8)}’{(8—1)C )} H (s)s7F =

for all j >1, and that

@ = lim{(s—1)¢ @Y H(s)s™" = H(1).
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Hence
h(s)s™ = H(1)(s—1)"{~ 1og Y+
s—1)y* (“) —log (s— 1)} w(s—1
+(s—1) g] {—log (s— 1" 3 e(s— 1",
which gives the result of the lemma.
z
2. An estimate for } b(n)log(z/n)-
M=1
LeMmA 17.
N [0 i 0<y<I,
— YsTds = .
2mt o logy if y=1.
This is proved in § 49 of Landau [6].
LeMMA 18.

24100

. 1
Zb(n)log(m/n) =omi

n=1

2°h(s)s~2ds.

Proof.
1 24100 1 24100
e 25 s2ds — —— s2 s
2md f oh(s)s™ds 27"1, f Z b(n)(@[n) ds
2—1i00 21 n=1
24400 x
8.—2 70 __
=53 Zb (n) _L (#/n)’s™*ds = ;b(n)log(m/n)

by Lemma 17.

Our next aim is to estimate the integral appearing on the nght in
Lemma 18. To do this we cut the complex plane along the real axis from
the point s = 1 to the left. Let I' be the contour AABCDEEDCBA,
where the vertices above the real axis are defined by A = 2+ ia’,
B =1—d,{loga®}°+iz®, € =1—d,{log3}°+3i, D=1~—d{log3}™>
E=1—6 for a small, positive § (which will tend to zero later),
and where 4, B, C, D, E are the complex conjugates of 4, B, C,
D, E; curves joining neighbouring vertices are straight lines except for
BC which is the curve ¢ = 1—d,{log #}~° (#* >t > 3), BC which is the
image in the real axis of BC, and EE which is the circle [s—1| = 4.
The constant d, has been chosen so that A(s) is holomorphic in the region
bounded by I'; this follows from Lemma 15 (i). Hence by Cauchy’s
Theorem

fm"h(s)s’zds =0,
r
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i

so that
(27) [ o°his)s™*ds = — f O

A4 ABCDEEDCIBA

@

Let 2y (z) = 2 n)log(z/ n).

LeMmA 19.
- - 1/11
Ty () = —Q—J{J f} h(s)s~ds O (we~ 108,
Proof. From Lemma 18 and (27) we obtain
1 P R 24400
(28) zl(w)=___{f + [+ f}m"h(s)s““dﬂ
2 A J
2—1e0 A4 oyix?

2-iz? 2-41c0

=i{f - Lm+ f}w“‘h(s)s“zds.

ABUDEEDCBA 244z
We now show that all the integrals on the right except those along DF
and ED are sufficiently small in absolute value to be included in the
error term of the lemma.
(i) By Lemma 15 (i),

2+4ic0 00 0
| J ohis)s a8 < [ @@+ttt < o [ dy(ogtft-ta
apia? 2 a?

<@ [ Qrtteds = 0(a™)
22

for any small ¢ > 0.
(ii) Since |AB| < 2, we have by Lemma 15 (ii) that
| [ o'h(s)s"ds| < o d (loga)w~'2 = 0 (a=*+*)
AB
for any small & > 0.

(iii) On BQ, ¢ =1—d,{logt}™® and o >¢>3; hence by Lemma
5 (i),

22
{ f w“h(s)s‘”dsl < f wl‘dltl"‘”"gdg(logt)"t‘zl9d1(1ogt)'"t'"1~|-i|dt
BC 3

z2

=0 (m(logm)" f w"dl(““‘)"gt“zdt).
3

°
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Lety = exp {(logz)"*"}; then

R

22 E

v
—dy(logt)~%,—2 7, __ —d(logt)—%—2
@ R =] 4 | o™ t2dt

j )

22
= O(w‘dl(logy)“9)+0 U‘ -2 dt) - O(e—dl(l"gx)mo).{_()(y*l)‘

v

Therefore

‘ J wsh(s)s‘zds’ = O(m(logw)k{e"d1‘1°g”’1/1u+ e Oosa 10y O (e /y |
Bo

(iv) By Lemma 15 (ii)

| [ ath(s)stds| = O(a~Tutors ™),

(v) By Lemma 16
] J&°h(s)s72ds| = O(a***log o]6"~ 2 );
EE

since § > 0,
lim {z***|log 8|6} = 0,
S0

and thus
{ J m*h(s)s"ds} = 0.
850
By symmetry the bounds for the integrals along curves in the lower
half plane are the same as the bounds for the corresponding integral
(i), (i), (iii) or (iv) in the upper half plane. The result of the lemma now
follows from (28) and (i) to (v).
Lemma 20. (i) If 0 < B <1 and u > 1, then

Z(w) = % z(logloga)” (log#)~"4-0 (= (logloga)*~* (log x)~*).
(i) If 0 < B <1 and u =0, then
H( —8
Zi(x) = Ti—f (logw) +0(z(oga)™).

iii) If f =1 and u > 2, then
Zy(x) = wH 1)z (loglogw)“* (logz) ™" +0 (2 (loglogx)*~* (log ») ).
(iv) If B =1 and w =1, then

% (2) = H(1)w(loga)™' 40 (wloglogs (logz) ™).

Acta Arithmetica X.3 18
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v) If B =i and u = 0, then
Z, (@) = O(z(loga)™).

Proof. Let § = 1—d,(log 3)~°. Suppose first that p and u satisfy
the conditions of (i), (ii) or (iii). If 6 <s<1, then. by Lemma 16

1zc“h(s)s—2——H(1)m"{—log(s—-1)}“(3—1)ﬁ“l|
_ R bl 1y (g— 1) % » 1yt
= 0(a" Y iog(s— 1)y (s—1Y1] 3 weo— 1/

J=0
=02 Y |{logls—1)}*"(s—1)"I)
J=0
since f o (8—1)F~ is convergent, When 6 < 8 <1, |{log (s — 1)}~ (s—1¥|
k=1
= 0(1) since 8 > 0; hence

[ 3 ogls— 1)y (e—1¥\ds = 0 [ &) = 0(aloga)™).

6 f=0 0

Hence .
{f+ f}w"h(s)s"zds = [H@)2"™ {—log(s* —1)}*(s" —1)~"ds*
DE  FH ]

— le(l)m"" {—log(s~ —1)}*(s~ —1)"~*ds~+-O (w(logz)~Y),
0 |

where s* and s~ indicate the upper edge and lower edge respecﬁively of
the cut. Since (87 —1) = (1—s%)e™ and (s~ —1) = (L—s+)e™™, it follows
that

(29) {f+ f}w’h(s)s"zds
BE  #p
7D
—_—H(l)fw"+(1——s'“)”“‘{{—-log(l——s‘“)—-ni}“@""‘p"l)-——
— {—log(L—s*)-ni}e=™C~N} dg* -0 (w (loga)™)
1 u
=H(Q) [2*1—s) Y (;) {—log (1— 8)}¥=" {( — nf)"e™ WY —
[ M=
— (mi)™ eV} ds 10 (w(log )7
u 1
- W) (YO _ (rgymmi@=1 [ 48 (1 _ g)~15¢
(@) 33 () (=i 60— (wiy?em e} [ (1 )
x {—log(1—8)}*~"ds+ O (w(logz)™)

on writing s for st.
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Assume now that the conditions of (i) are satisfied, so that 0 < § < 1
and % >1, and consider the integral

1
I = [a*(1—sy{—log(l—s)"ds
]

where 0 <k <w. On using the substitution s = 1— , We obtain

.
logz

(1~06)logz
I =a(loga)? |

0

e’ {loglogw—log 5} dy

(1—6)logz

J

0

&
= w(logm)""z (—1)’(7:) (loglog w)®-" e~ (log ) dy.
r=0

Now

(1—8)logx )

[ e ogny dn = [ e~9"~ (logn) dn-+0 ((loga)’~*+a1+)

0 0

for any & satisfying 0 < ¢ << 1—pB. The integral on the right is absolutely
convergent for all 7, and in particular when r = 0 its value is I'(8). Hence
(30) I = I'(B)a(logloga)* (log@)~"+0 (z(loglog )" (log)~#

unless k =0, in which case the error term is O{a’(logz)~"). Hence
by (29)

{f+ f}m‘h(s)s“zds
DE  Ep

= H(1)I'(f)2isinm (8 —1)a(loglogx)* (logz)~* 40 (z (loglogx)*~* (log x)*)

_ —omiH(1)

=07 (loglog)*(logz)™*+0 (» (loglogz)*~" (logz)~*)

since I'(8)I'(1— ) = =/sinnp. Part (i) of the lemma now follows from
Lemma 19.

Similarly in ecase (i), when 0 < g < 1 and % = 0, the integral I is
given by ’

1
I=[a(1—sy~"ds = I'(§)z(loga)~"+0 (¢ (loga)™Y).
]
As above it follows that
+ [ta°h(s)s™ds =
[+ )

and on using Lemma 19 we obtain the result of Lemma 20 (ii).

—2riH (1)

Ta—p) #(loge)~"+0(x(loga)™Y),
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We turn now to case (iii), so that g = 1 and » > 2. Then (29) becomes

{f+ f}whs)s"zds

DE  FhH

- H(1) Zu‘(;jh) {(—mi)y"—

M=0

(t) }j #*{—log (L —8)}"* ™ ds -+ O (w(logw)~);
we observe that the term corresponding to m = 0 iy zero. Now I'(1) = 1,
and hence by (30)

I= fm {—log(1—s)}*ds

= (logloge)* (logw) ™" -0 (w(loglogw)*~*(logx)™")

unless ¥ = 0, in which case

I = (w—a")loga.
Hence

{f+ f}whs)s‘zds

= — 2miuH (1)x (logloge)*~* (logz)™* -+ O (w(loglogm)“~*( logw) 9,

and the result of part (iii) follows from Lemma 19.

Assume now that the conditions of case (iv) hold, so that =1
and » = 1. In this case the function to be integrated round [ is the prod-
uct of the holomorphic function H(s) and #°s™*log{(s), the function
integrated round a similar contour in one proof (given in § 64 of Landaun
[6]) of the Prime Number Theorem. Proceeding as above, we obtain from
Lemma 16

&R (s)s~* —H (1)a" {—log (s —1)}| = O (a°|s —1|]log (s—1)]}.
Hence, since
1
[ @*ls—1| llog(s—1)|ds = O (sloglogw(loga)~?),
[
which is proved by wsing the substitution & == 1— -

logw’
1

{ [+ [}o'nes~2as = [ B(1)o"™ {—log(s* — 1)} ds* —
DE %D 1]
—_ f H(1)

= —2miH (1) (logw)~* +0 (wloglogw (logx) ™).

The result of (iv) now follows from Lemms 19.

o {—log(s~ —1)}ds™ +0(vlogloga(logw)~)

icm®
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For part (v) of the lemma, f =1 and % == 0 and so h(s) = H(s).
Hence h(s) is holomorphic inside the contour 44 BODDCBA, where the
complex plane iy no longer cut so that D = D, and where the rest of the
contour is the same shape as the corresponding part of I". Using the results
of Lemma 19 and integrating round this contour we obtain

O(z(logx)™?)
which is (v). This completes the proof of Lemma 20.

2y (@) = O (e~ =

- T
3. Proof of Theorem 3. Let Z,(z) = 3 b(n). Then we have
=1
LeMMA 21. Suppose that
(31)  Z\(w) = Ba*(logloga) (logz)~" +0(»"(loglogz)" (logw)~"1),
where B, a,B,v, b1,y are non-negative constants and B #0,
and where either y;, <y and f < By < p+2o0ry, =y and § < By
Then
Z,(w) = Baa"(logloga)’ (logz) =" +-0(a* (loglog ) ") (log ) ~4P+P1)

Proof. Let 6 = 6(x) = o(1) be a positive function of z to be cho-
sen later, and suppose that z(1+ 8) is an integer. Then, since

logz (14 8) = logz+-0(8) = loglogz+0(8(loga)™),
(32) Zi(z(1+6)) = B(L+ 8)"a"(loglogo)’ (logw)~*
x {1+0(8{logzloglogz)~*)+0(8 (logz)™")} +
+0(#*(loglogz)t (logz)~%1)
= Ba"(loglogz)’(logz)~*{1+-ad+0(8*+0(é (logz) ™)} +
+0 (z°(loglogx)" (logw)~").

a#0,
<p+2.

and loglogx (14 8)

By definition
Z(1+4-6) x
(33)  Z(a(48)—Zi(a) = D bn)loga(l+8)/n— D' b(n)loga/n
n=1 =l
2(1+8)
=1log(1+4) Zb (m)+ D) bn)loga(i+5)/n
n=1 N=T4-1
= log(1+ 6) %, (w)
since the second sum is not negative. Similarly
2(1+-6) 2(14-6)
(34) Do+ 8)—Zi(e) =log(1+6) > bim+ D bmloga/n
Na=1 N=r+41
<log(1+6)Z,(2(1+9))

since the second sum is not positive.
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By (31), (32) and (33)
(35) (@) < {Z(o(1+ 8)— 5 (2)} log (14 8)
= {Zi o1+ 8)) =21 (%)} {1+0(8)} 67
= Bo" (logloge)’ (loga)~"{a+0(8)+0((loga)™") +
—|—0((10g10gm)”1”’6”1(logw)‘ﬁﬂ-ﬂ)}.
By (31), (32) and (34)
(36)  Hfe(+0) > (Zi(e(1+0)— Ti(@)| log(1+9)
= Ba"(logloga)” (loga)~"{a-+-0(8)+0((log@)™*) 4
+0((logloga)=7s~1 (loga)~ftf)},
If we replace x by «/(1+4d) in (36), we obtain
(87)  Zy(x) > Bu'(loglogz)(logz)~"{a+0(8)+0((logw)™") -+
+0((logloga)"1775™" (loga)~1t+#)

We now choose ¢ so that all the error terms of (35) and (37) are of
a smaller order of magnitude than the first term; since f < 8, < f4-2,
we can take & = 4 '[x6'], where

—_ (Ioglogm)“"l“"’(logm)‘*(”l"ﬂ),
and then the error terms of (35) and (37) are
0(»" (loglog )’ (logx)~* (loglog #)}?*1~" (log ) ~HP1~P)
= 0(a"(loglogw)!?+") (log ) ~HP+1).
Hence from (35) and (37) it follows that
2y (@) = Boa®(loglog )’ (logw)~" +0(s" (loglog @)+ (log o) ~#7+A)

which is the result of the lemma.

We observe that if 8, > $4-2, the result of the lemma holds pro-
vided that we replace the error term by

O(m (logloga)” (loga)~~1).
COROLLARY. If Zi(w) = O(w(logw)™), then Z,(w) = O(w(logw)~*").
Proof. By the above method, we can ghow that
23 (@) = Ofw(logz)™*87") = O(a(loga)~""
if we choose & = o7 '[wd'] where &' = (logw)~Y.
We can now deduce Theorem 3 from Lemmas 20 and 21. If we take

v(i)a=1 y=uz=l, y=u— 1, B = ﬁ<1,
(n)a=1,y—y1~u~0,ﬂ<ﬂ1_1,

icm
On the divisibility of o, (n) 279

{i) a=1,y=u—121, yy =u—2, §=f; =1,

{iv) e=1, y=u—1=0,n=1,p=1, =2
in Lemma 21, the estimates for X, (x) appearing in the statement of this
lemma being those given in the corresponding part of Lemma 20, then
we obtain, in turn, the first four parts of Theorem 3. We obtain the last
part of Theorem 3 from Lemma 20 (v) and the Corollary to Lemma 21.

V. Some deductions

1. Proof of Theorem 1 (ii) and (iii). If ¢ is odd and % is even, then
by Theorem 2 (ii),

Fm(8) = {L(8)} D {log ¢ ()} Hau(s),

where each H,(s) (0 <% < m') is a sum of functions satisfying the con-
ditions imposed on H(s) in Theorem 3. Hence, if m' > 1, we have from
Theorem 3 (i) and (ii) (with § = 1/h < 1) that

(v,g;0) = 2 O (1) = Fg G /h) T @ ogloga)™ (loga) ™"+

+0(z(logloga)™~*(logz)~""),

where the oonstant H,,.(1) can be obtained from (22) and Lemma 12.
Similarly if m" = 0 we have from Theorem 3 (ii) that

H,(1)

D (v, g5 2) = wm(logm)“”"—{—o(w(logw)—i(lﬂlh)),

where H,(1) may he obtained from the end of § 5 and Lemma 12. This
proves Theorem 1 (ii). .
If ¢ = 2, then by Theorem 2 (iii),

n(5) = D {logl(s))“Hau(s),

where each H,(s) (0 < u < m) is a sum of functions satisfying the con-
ditions imposed on H(s) in Theorem 3. Hence if m > 2 we have from
Theorem 3 (iii), (iv) and (v) that

Dy (v, 2; 8) = mH, (1)x(loglogz)™ " (loga)™" +0 (w(loglogx)™~** (logx) ™),
and if m = 1 we have from Theorem 3 (iv) and (v) that

Dy(v, 25 ) = H,(1)z(logz)™" 40 (z(loglogx)'* (log ) ~**);
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in either case

1 1 1 . .
W(1+2 1C(2) =~Z-~m if v is even,
Hm(l) == 1 = 1
2m_m_" (1+2—l)(;(2) ='4T"' 2,,,,”;' if » is odd.

The result of Theorem 1 (iii) now follows.

2. An asymptotic expression for N(v, ¢";z). We have already
seen in equation (3) that
"1
(38) N, g"2) = D' Dy(v, q; ),
P=0
and that Dy (v, q; ») = N (v, ¢; ») is given by (2). Let | == [(m—1)/(y+1)]
and assume that m > 2; then we have
COROLLARY 1. 4s % — oo

B™g if q and h are both odd,
N (v, q"; @) ~ B{"w(logloga)(logz)™™ if q is odd and h 4s even,
B{"z(logloga)™*(logz)™" if q = 2,

M—1 m-—1
where B{™ = 3 AQ, B = 3 A, B = A("D,
=0 r=i(y+1)
Proof. If ¢ =2, or if ¢ is odd, h is even and ¢ tv (so that y = 0),
then from (38) and Theorem 1 (ii) and (iii), we obtain.

N, g";8) ~Dyu_y (v, ¢; w),

and the result follows in these cases. If ¢ and % are both odd, the result
follows immediately from (38) and Theorem 1 (i). Finally suppose that
q is odd, % is even and q | » (so that y > 1). Then it iy clear from (38) and
Theorem 1 (ii) that

M1

N('u, qm; @) ,\,2 A&r)m(lOglng)[r/("“'““](logm)“”w“,

us0
Sinﬁeogﬁl[r/(y—kl)]= [(m—1)/(y+1)] =1, and since [r/(y--1)] ==

when I(y+1) <r <m—1, the result of the Corollary follows,

3. Some results for N (v, k; ). In this section we assume that J is
divisible by at least two distinet primes and we shall deduce some esti-
mates for N (v, %; #). Some results in thig direction have already been
obtained by Rankin in § 4 of his paper [1], and these results are impro-
vements on Watson’s estimate for N (»y k; @), stated in (4). .
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Let
i
b= q'm,

where g, y,..., ¢ are primes and 2 =g, < B <g<.. <g, and
where m, > 0 and m, > 1 for 1 <7 < t; since k is divisible by at least
two primes, ¢t > 1 if m; >0 and ¢t > 2 if my = 0. As in (19) and (21)
of [1],

i
(39) max N (v, 5 w) < N (v, ks @) < D' N (v, g'r; @);
r=0

o<t

for if ¢ | o,(n) for some r satisfying 0 <r < t, it does not necessarily
follow that k| o,(n), but if k| o, (n) then ¢ | o,(n) for all r satisfying
0 <r <t. We observe that
N(v,2™;0) = O(N("7 q"; m))

for all odd primes ¢ and all possible values of m, and m. If m, = 0, we
take the value of N(»,2™9; z) in (39) to be zero.

For 1 <r <, define h, = (¢,—1)/(v, ¢,—1) and y, by ¢’ | »; if all
the k. are even, define

A=max k, and u = max[(m,—1)/(y,+1)].
1<t 1<:<t

-Then we have

COROLLARY 2. (i) If h, is odd when v = 1 for ewactly one value of ©
satisfying 1 <4 <t, and h, i even otherwise, then as © — oo

N(v, k3 2) ~ B{™p,
(i) If all the h, are even, and if the relations
by =4 and [(m—1)[(y,+1)]=u

hold  simultaneously when r =1 for ewactly one value of i satisfying
1<i<t, and not otherwise, then as x — oo

N(v, k; @) ~ B{"z(loglogx)* (logaw)~ '/,

Proof. These results follow immediately from (39) and Corollary 1
since under the conditions stated

t
D N, g @) ~ N(v, ¢f%; @) = max N (s, g'r; ).
r=0

o<rt

The constants B{™ and B{™ are given by Corollary 1.
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COROLLARY 3.
1<r<t, then

(i) If h, is odd for at least two integers r 3atisfying

0, < lim a7 "N (v, k; »)

2—co

< 0y,

where Oy and C, are positive constants and Cy # O,.
(i) If all the h, are even, and if the relations
[(me—1)[(pr4-1)] = u

hold simultanecously for at least two integers r salisfying 1 <r

he =24 and

<1, then
0, <lim{z~*(logloga)~" (log®)* N (v, k; @)} < O,
L-r00

where O3 and C, are positive constants and Oy % C,.
Proof. (i) Suppose that h, is odd when r = r;, ¢ =1, 2, ..., §, where
2 <j <t, and h, is even otherwise. Then by Corollary 1, as @ -» oo,

i j
ZON(V, ar @) ~ {%7 B} o = 0,0,

and
max N (v, ¢;; ©) ~ {max Bgm")}w = (,»;
ogrst 1<t
clearly C, # C,. The result now follows from (39).
The proof of (ii) is similar.

4. Results for d(n) and ¢(n). We have said that the proof of
Theorem 1 can be adapted to prove results analogous to Theorem 1 for
the functions d(n) and g(n). In this section we state these results, and
we consider d(n) first.

If n=[]p° then d(n H a+1). Detine
P
1 if grdn 1 it g | dn
bo(n) = q _( ) by(n) = gl ‘( )
0  otherwise, 0 otherwise
for > 1, where ¢ is a prime. Let
(0, ¢;2) = }j b (n
LTS
for m =0, and

(s) = Z”'bm('"')”' ¢

=]
Then we have

icm
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THEOREM 4. (i) If ¢ 2 and m >0,
m(8) = C(8)p(s),
where y(s) is holomorphic for o> % and bounded for ¢ =%+ 6 (6> 0).
Hence
D (0, g52) ~p(L)w
i) If ¢ =2 and m >0,
m
m(s) = D {logZ () vu(s),
u=0
where v, (s) is holomorphw for ¢ > % and bounded for ¢ =%+ (6> 0),

and yy(s) =;n—,:(2s). Hence

2
D (0,2; 2) N(m—il—)!—~E6—w(10glogm)m"1(10gm)“1.
If q=2 and m =0,
go(8) = £(28),
and hence
D,(0,2; ) ~a'®

We observe that Dy(0, ¢; z) represents the number of positive inte-
gers n < « for which ¢ + d(n). If ¢ # 2, from the proof of Theorem 4 it
can be deduced that

40
&
t(g—1)
This result is an immediate consequence of a result proved by L. G. Sathe

in a paper [7] published in 1943. In fact from Sathe’s result it follows
that

Dy(0, g5 2) ~

¢(g) -

Dy(0,q; %) = 20 (2@ Vog ).

0(0, g5 @) fg—1) +0( g )

We turn now to g(n). If n = [[p%, g(n) = [] p* *(p—1). Define
Pm
1 i gre), 1 it ¢ [en),
(n) = ) er(n) = .
0  otherwise, 0 otherwise

for » > 1, where ¢ is a prime. Let

Dr(g; @) =

2 6m(n)

Ne=]


GUEST


284 E. J. Scourfield

for m >0, and

hn(8) = D om(m)n™".

Neml

Then we have
TemorEM 5. (i) If ¢ #2 and m > 0,

m
() = {£ ()10 3 {log g (5)}“Ha (s),
U=l
where each H,(s) (0 < u < m) satisfies the conditions given in Theorem
2 (ii). Hence

Hp (1)

Fi—1j@=1) w(loglogz)™ (logm)~ Y@1Y,

Dj(g; @) ~

@) If ¢ =2 and m >0,

hn(s) = ) {logl ()} HL(s),

U=

1
where Hp,(s) = W2“"'(1+2"’) and each H,(s) (0 € u < m) salisfies

the conditions given in Theorem 2 (ii). Hence

D (2; 1) ~ 3.7 z(loglogz)™ ! (logx)~*.
2 (m—1)!
If =2 and m =0,
ho(8) = 1-4-2-*
and hence for all @ > 2
Dy (2; 2) = 2.

The proofs of Theorems 4 and 5 are more straightforward than the
proof of Theorem 1. From the definitions we can immediately obtain the
?esult analogous to Lemma 5, and no section analogous to § 1 ol part IT
1s necessary; Lemma 8 can again be used. The generating funetions
gm (8) and hyy, (s) can be obtained by following the method of part II. No
variation of the method of proof is required to obtain gﬂ,,(ée); To obtain
hyn(s) the only additional fact required in the proof is an estimate of

(1—p~°), and otherwise the method of proof iy unaltered. Clearly
p=1(modg)

We can use Theorem 3 or the Wiener-Ikehara Theorem, whichever is
applicable, to deduce the asymptotic equations for D, (0, ¢; @) and Di(g; @)
from g, (s) and h,(s) respectively. '
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