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Further developments in the comparative
prime-number theory II

(A modification of Chebyshev’s assertion)
by

S. KNAPOWSKI (Poznan) and P. TurAn (Budapest)

1. Chebyshev’s agsertion in question (see Chebyshev [1]) states that

Ly lim 3'(—1)E"2e P — —oo

L—+00 pT2

if p runs through all odd primes; in other words, it says, there are more
primes of the form 4n--3 than of 4n+41, at least in the above “Abelian”
sense. As it was shown by Hardy-Littlewood and Landau (see Hardy-
Littlewood [1], Landan [1]) this holds if and only if the function

' _(=D" .
(1.2) L(S’XI)=7§(‘2;L—+1)“ s = o+it, 0 >0,
does not vanish for ¢ > %. As pointed out by them, the same holds for
the relation

(1.3) lim (—1)@-DPlogpe?/® = —oo.

Tep00 T

This agpect lends an additional interest to the comparative study of the
distribution of primes in progressions (and in other forms) and suggests
above all the necessity to extend (1.1) or (1.3) to general &’s. In our paper
[3] we discussed the case k = 8, the first beyond the Chebyshevian case
%k = 4. With the notation

1 it p=l (mod8),
(1.4) Ee(P; I,l)=1—1 if p=1(mod8),

0 otherwise
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Hardy-Littlewood-Landau’s argument gave (using also strongly some
numerical data furnished by Dr. P. C. Haselgrove) that the relation

(1.5) im Mey(p, 1, hlogpe™” = ——oo (I =3,5,17)

L =00 )

holds if and only if no L(s, x) function belonging to mod 8 with 7
vanishes for ¢ > §. If J, and I, are any two of 3, 5, 7 (= quadratic nor;f'
residues mod 8), we proved lc. without any conjectures that if ¢
(and laber c,,¢,...) denote positive numerical constants, that folli
0<d<e

2 logllilgggl/é

(1.6) max sta(p, Uy, b)logpe ™ > §=11% Tog 18—
6—1/3<x<6_1 D
(i.e. changing I, and I, also

. — ; 29 Jog1/8]0g3 1/0
min 2/ es(P, by b)logp e < — 572 logg 1/0
s~ sags~1% . !

and thus there is a sign-change of the funection Delp, by, b)logpe Pt
in every interval of the form [§~%*, §~7). "

2. Let us analyse the situation for general k. Putting with
L=l mod%k

def 1 —~ _ r L
(21)  fra,(w) =W2"7(x(l1)-x(h)){7 (w; 2)— - (2w, xz)},

we start from the integral

1 n
2.2 J = 1,
(2.2) J =5 ( JJ I (w)@"fy, 1, () dw
Egli(; essentially to Hardy-Littlewood). Since for Rew > 1 we have from

S 1
(23)  fpw) = S 82 logp
P=ly(k) p Dealy(k) p

p“’;laz(lc) D=l (ke Pra i P
e =h®) Pl Pialall)
det logp 2 logp
= —_—r i
2 pw p‘w +fl1,lg (’HJ) ’

Da=ly(k) pa=ly (k)
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where ﬁ;,lz(w) is regular e.g. for Rew ;— and satisfies here the ine-
quality
(2.4) iyt ()] < 62,
we get from (2.2) (adapting the notation (1.4) for general k-moduli)

X 1 r

= D e, by Wlogpe ™ | Dlw)afi, 0)duc

» (2/5)

@ o5

= e, by Wlogpe P40 ()

i
(0 meant uniformly in « and k). On the other hand, shifting the line of
integration to the left, the “essential” part of J is

')~ NV =g =
o m;‘ ((0) — 7)) —

1 _ B
@5 o 3 W —7) X T+

(k) —
LI R - of2
B 2 (2 (0 z(m)%’ue/zm ,

where dash means that the summation is to be extended to all real
characters (with x(I,) # x(L)) and summation over p(y) means that
it ig to be extended to all non-trivial zeros of L(s, y) with a fixed y. Let
us consider the “most suspicious” case for preponderance, when [ is
a quadratic residue, I, a non-residue mod %, and suppose the truth of the
Riemann-Piltz conjecture. In this case the third term is unessential,
the second term as we shall see in section 8 is

T

(2.6) > W%m,

where » stands for the number of different odd prime-factors of k. As
to the critical first sum in (2.3), trivial treatment gives only the upper

bound B
We O
= I'(e)l
p(k) % %
which certainly supersedes the value in (2.6) if & is sufficiently large and
nothing better can be accomplished at present (owing to the factor z°).
3. Begide this difficulty also another fact makes it desirable to
find an appropriate modification of Chebyshev’s problem. The relation
(1.5) could be replaced by

(3.1) Zae(p, 1, Hlogp e < —oV
7
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if #> ¢, and the Riemann-Piltz conjecture is true for the L-functions
mod 8 with y # y, and by an inequality of type (1.6) if it is false. Hence
everything remains true if in the sum ‘

D as(py by L) logpe™i®
we drop the terms with ’
(8.2) p <z
(and trivially dropping those with
(3.3) p >10xlog ).
In other words, putting .
¥ = 10z log =

such a preponderance-behaviour was exhibited for all sufficiently large
y’s for primes of the form 8n+41, and 8n-+1, in the interval

(3.4) @', )

To push the lower bound in (3.4) above ¥/ 5, i.e. to strengthen the “accu-
mulation”, however desirable, seems hopeless at present, even in the
Chebyshevian case & = 4.

4. The main result of this paper can be expressed shortly that re-
Placing the factors ¢=P* hy

L
(4.1) e T

with a suitable ( “small”) » = r(z), one can come much closer to both
desideratums. This holds in particular for the “good” ks, i.e. for thoge
for which with an B(k) no L(s, y)-function mod % vanishes for

(4.2) 0<o<l, |t <B

(Haselgrove-property). This property has been verified in a number of
cases, notably for all k < 10. The extension of them seems very desirable
bo us; particularly, a proof that Hagelgrove-property holds for an infi-
nity of k¥’s would be of great significance. Out of our results the 1most
complete are those comparing primes ==1, resp. =={mod & when J is
a quadratic non-residue mod % (which obviously comprises the Che-
byshevian case). We formulate first

TrrOREM I. For any fimed “good” ¥ and for all quadratio non-residues
lmod %, (1, k) = 1, the relation

.1.1 gﬁg

lim Zsh(p, 1, 1)logpe T ®E 00
Tsto00 T
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for every r = r(x) satisfying a,(k) <r < logw is true if and only if none of
the L(s, x)-functions mod k with '+ 3, vanishes for o > %.
Slightly more generally we formulate :
TeBOoREM II. For any fized “good” &k and fized quadratic non-residue
lmod k, (I,k)=1,
—110822
lim 251:(177 i, 1)logpe " T= foo
L—-+00 - X
for every r = r(x) satisfying a,(k) <r <logw is true if and only if none
of the L(s, y)-functions mod & with x(I) # 1 vanishes for o> }.
To deduce Theorem I from Theorem IT we have only to remark that
if for a character yx*, for all non-residues I, y*(I) =1, then x* = y,.
Namely if o is an arbitrary quadratic residue mod %, (a, k) =11 and I
is an arbitrary non-residue mod & with (I, %)= 1, then al =1 = non-
residue, i.e. y*(a) = x*(I')x(l) = 1.
5. In turn, Theorem IT will be a consequence of Theorem ITI and
IV. Here we shall assume (which goes without loss of generality) that

(5.1) E{k) < Viog k [k.

TeroreM IXIL. If for a “good” k and a prescribed qua,dmtiot non-re-
sidue 1 no L(s, x) with y(I) # 1 vanishes for o > %, then for suitable c,,
G5y C5 and

logk
Yo = G4 B
the inequality
- los 2 Va
D alp, 1, Dlogpe > eV

»
holds whenever
ry L7 < loga

and
o > e k™.
Since the contribution of primes p with

P> melm/r]ogx and p< ma—lolfrlogx

is o(l/-ai), Theorem IIT asserts under the given circum.stance_s the? pre-
ponderance of primes = I(k) over those = 1(%) in the given sense in the
interval

(5.2) (@ o~ 10V7Iogw , 2610V TI0BE ).
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Putting

¥ = melol/rlogm

this means a preponderance of primes == (k) over those := 1(k) in the
intervals
(5.3)
for all sufficiently large #’s.

THEOREM IV. If for a “good™ k and o quadratic non-residue | there is
an L(s, x1) with ¥, (1) # 1 such that
(5.4) Lo, 1) = 0.

then for all T with

(ye ™", y)

0 = Pyt Bo>4, v =0,

2
dvg 21

RIERyT ek e(ﬁo--lli }
k] 1

(5.5) > max(c,, € ¢
there exist integers v, and r, with

(5.6) 210g°"T — 410g*'T < vy, 7y < 210g%" T+ 41og®*T
and xy, ¥, with
(5.7)

such that

» o072
i < Wy, 0y < Teuag T

L yog?

Nelp, t, 1)logpe 7"

B

I . 5
iy, g (Lrrlor® T

and
L 2 —(1 »I~v§)log‘5/7’l‘

Neup, 1, Dlogpe T T —Tbog

»
Again the contribution of primes p with

p>Td"™ ang  p < gttty

is o(VT); hence the theorem asserts roughly that under the given cir-
cumstances there are ‘‘densely” (m, r,), resp. (xy, r,)-pairs such that the
intervals (x,6™"1, ,¢) eontain “much more” primes == I(k) than = 1 (k)
and also “‘densely” intervals of type (w,e™"2, m,e) with ““much more”
primes = 1(k) than ==I(k).

But we can express this state of affairs in a much more pregnant
form. This is given in

. TEEOREM V. Under the restrictions (5.4) and (5.8) there ewist U,, U,,
Us,, U, with

(5.8)

—5logl0/2ly . 20/21p
1Jrg—Slog /217 <U, < U, < Peflog 0/ ].'l,

- 20/214 ;
(5_9) Te 5log’ T < U3 < U4 < TeSlﬂgZO/“.’l'
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such that
(5.10) 1= 3 1 et
and
(5.11) > = 1< — qoog IO
e v

6. We shall deduce this theorem from Theorem IV right now. Putting

2= Y 1E g,

<
p=l(k)

(6.1)
<z
p=1(k)
the first assertion of Theorem IV can be written in the form

o 1 » 9
~-=log?—— —(1+¥2)10g5 1T
[ e Plograg(r) > The " °
0
or

o ~mog? 1 (2 7 p
5.9 e 22 10g L logr—1Y @ > The
©2) [ g(re r{h og-logr } r >

0

~(1+7og®/ 1T

As to the integral on the left, putting, with a suitable 0 < # <1 to be
determined later,

logb:t‘
)

B,
£ =608,k = e

we split it into

§ & 00
(6.3) [ 4 [+ [ S ntaatd,
] & g

First we remark that owing to (5.6) and (5.7), choosing ¢, in (5.5)
sufficiently large, it follows easily that the only zero #* > 1 of the equation

2 ?
—logrlog— —1 =0
) g gml

satisfies the inequality
(6.4) @ < r* < 2.
Using also the trivial inequality

lgni <7,
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we get at once
. R 1 .
(6.5) [5] < f?"(—e ZRaE logr) dr
& .

1022
log%, log?%z
15 1)

‘ bad _L[Og‘z—l.
=(m1e logfz—i—fe LT Plogrdr.
)

Choosing & so that

203> 1,
ie. ‘
(6.6) 4 >3, ,
the first term in (6.5) is bounded. As to the second, it is
© —é’iw
=a [ e (y+loga)dy,

10g9x1

and owing to the inequalities

y+logm < &, y<y'lir,,
valid in our range, a fortiori '
0 (=]
v
<. f e"ﬂzmldy <@, f i-e‘”z/”ldy - mle—logzﬂmllzrl,
7
lngﬂml logozl

which is bounded again owing to (6.6.). Hence |J;| is bounded and the
same holds for |Ji| (even simpler). As to J, in (6.3), we write it as

re &y
(6.7) J+/
& »
and hence
LA DA L
(6.8) J,< — min g(r)-f (e Tl wllogr) dr -+
firare &
f —-—}-log.r2i ’
+ max y(r)-f (——o " ”llogr) dr
rershy e v ‘ .
Lot Celog2 il
< { max g(r)— min g(r)}e ' logr*+-e 7l *95,log&,.
mraty frr S

Oho<?sing U,, resp. U,, as values for which the last max and min ave
atta.u.led respectively and also fact that the last term. in (6.7) is bounded,
the first assertion of Theorem V follows at once from (6.2), (6.8), (6.8),
(6.4) and (5.7), choosing e.g. # = 1. The second half goes amnalogously.

icm
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7. Theorem III will be again a special case of
TrEOREM VL. If for a “good” k, prescribed quadratic residue 1y and qua-
dratic non-residue 1, mod k no L(s, y) with (1) # y (L) vanishes for ¢ > %,
then for suttable ¢, c5, 05 and
‘ logk .
(7.1) Yo = 04W
the inequality

1 - 11022

Den(p, by W)logpe T > ol/m

»
holds whenever

re < r < loga
and
(7.2) @ > 6 k.
We cannot prove at present a similar generalization of Theorem 1V.
Hence we have to prove only Theorems IV and VI; the former will be
the more difficult one. o ‘
In the Appendix we shall make some simple remarks on the com-

parison of primes of two progressions

=0(k), resp. =UL(k),
’ (lyB) = (by o) =1, Ky #k,.
8. We ghall need the one-sided theorem (see Turdn {1]) which we
state as

Lemma 1. If )
(8.1) EAR AR R L
and with a 0 < % < =2 we have
(8.2) » < Jargs| <=,

further for the complex d; -numbers we have
2
. minRe) & >D >0,
S A
then for each m > 0 we have integer »; and v, with
(8.4) m<Ly, v mtn(34tmn/x)
such that (1) ' '

(8.3)

o n . w )2n D lz ‘vl
A _—
Rezdﬂf >( 8e{m-+n(3+n/x) 3n

(1) As in all applications, we know only an upper bound N for n. Completing,
if necessary, the zs by zeros, we.obtain.at once that n can everywhere. be replaced
by N. . -
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and
Oy | n L /]
Re B S — —— |2
7‘-;1 G5 (86(m+n(3+n/z)) 3n 2
Further we shall need a lemma due in a somewhat weaker form to
the first of us (see Knapowski [1]).
LeMMA 2. Let fy, fs, ... be a real sequence and «y, a, ... another one
such that with o positive U and y >1 we have
(8.5) la,] 2 U,
..1 1

(8.6) _1}4 TEal SV (< oo).

I ¥y

Then, if only
(8.7) A4 >1/U,

there exists a & with

(8.8) r<éEST4-4
such that for all v's the inequality
1 1 1 1
(8.9) S bt f—[ab+p] <1m—r
2V 1T (r bl b < g Ty

holds.
For a short proof of this lemma we first fix » and consider a,24f,.
If « runs over the interval (8.8) then (e, 2+ #,) runs over an interval of
length a,4 which contains at most
14-{a, |4
points with integer abscissae. Fixing an arbitrary one, 1 say, the a-values
satisfying the inequality

@ f— 2] € e

2V T+ (al
(and (8.8)) form an interval of length
<t 11
12V 14+l o

and hence for a fixed » the total measure of “bad” w-values is (2)

S = 1217'?;‘1';]7' oy @t 4}

(*) Taking also in account that two more “bad” hall-ink 1 7
our intrval (65 infervals may belong to
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Summing for » the measure of the set of “bad” x-values is at most

. Z—Ha,M 1 Y def
o L RIS LS
® uT’ la,, 1+ (o) 12V{|él+ml_>lll 8148)

For S, we have from (8.5) and (8.7)

. ~ [ 2 2 \
. § = M[— < 4
e b .,#iﬁ(| )< 5+

611
2
< 34 21 <34 Z—— <647V.
1+|a,|”

jal<1 a,1<1

For S, we have, owing to

< a4,
the inequality
1
8, <34 2 <347.
2 1+ e,
lay|>1

From this, (8.10) and (8.11) we get for the measure of the set of “bad”
#-values in (8.8) the upper bound

34 <4,
which proves Lemma 2.
‘We shall further need the
LuemMMA 3. In the vertical strip
1 1
To0 <7 <50
for an arbitrary modulus k there evists a broken line H consisting alterna-
tely of horicontal and vertical segments, each horizontal sirip of width 1 con-
taining at most one of the horizontal segments and on which for each L(s, x)
belonging to mod k the inequalities

’;Lf(s: Z)‘ < 07‘P(k)1032k(1+ 1),

|2 (25, 0| < cop(hog?ia+ )

hold.
Since the proof of this lemma follows mutatis mutandis the (simple)
one given in Appendix IIT of the book of one of us (see Tursn [2]), we

shall omit it here.
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9. Now we turn to the proof of Theorem VI. We have fixed l-qua-
dratie residue and l,-quadratic non-residue mod ¥ and suppose that none
of the L(s, y)-functions belonging to % and for which

(9.1) | () # 7(b)
vanishes in the half-plane
(9.2) o> 4.

Suppose r > 7, and b > 2 (b to be determined later); we start from the
integral (r, from (7.1), f; ;,(w) defined in (2.1))

1 i
(9.3) o= J I L () du.
)

Using (2.3), we get
logp s — J gt lom g

v
De=ly(k) 2)

1 o1 W
- Z logp o— f (UHOrit~ulogp gy, 4 o f o0l i, () do
P2 & @7

9.4) J, =

(2.4) gives for the absolute value of the last integral the upper bound

oo

(9.5) if = Prtagy, P st Wi
T o
Since
~ P 1 P ~
- O Ha—wlogng, b= (logp—rb2)” 1_ J &0 18,
2ms 271

] (0)
1 w2t ogp-ros?
e r

F;/;,..; ,

we obtain from this, (9.3), (9.4) and (9.5)

o .erb2/4
9.6) |Ji— e N er(p, b, 1) logpe
l 4 l/nr/;‘ % (D5 by 1) logp

10, Shifting the line of integration to. the broken line H, given by
Lemma 3, we get

(10.1) J, = '@Z("(ll)"’?‘w26"’“’)2"“““5;,;’(;;;’“2( (L)~ (52)) -

o(x)

)2 1
70) Z () —7(w) D) ooty — [ goiing, . o).

e(x?) ()

-1 —sbj2)?
7 (logp—1b/2) (/51 b)~r/4

Ly ez €

i 7'
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We shall repeatedly use the fact that the number of non-trivial zeros of
any of the L(s, x)’s in the horizontal strip

X<t< X+41
cannot exceed

(10.2) Gloghk{1+4|X]).
Hence the first sum in (10.1) is absolutely

(10.3) <4 (cglogk - RV =B s 2 elogk(1+ #).6((1/2+D)2—#2}f14)

< erolog - e(/2+0 =B /s .
Similarly the third sum in (10.1) is absolutely
(10.4) o < ey logh- gt+DIs
Using Lemma 3 and (10.2), one gets easily for the absolute value of the
integral on the right of (10.1) the upper bound
(10.5) ey lelogl- gs0+0rls

In order to evaluate the remaining sum on the right of (10.1), we remark
that if

b= 2%pTipe2 . pf7, 2<p<py<.. <P,

g, are primitive roots mod p,* (» =1,2, ...

6’8 are determined by ‘

n = gy(mod p}»),

> 2 determined by

yj) and for a given n the

v=1,2,...,9,

further &;, 8," are for w,

8

n=(—1) °5 ’(mod 2%,
0< 8 <1, 0<d <ip@2%)—1,
then the real characters have the form

, v
)“1‘1+“z"z+---+“1"f+"7'+1°o+“1+2’o .

x(n) = (—1 ;
here
0<e, <1, »=1,2,...,j+2,
if wy>=3,
0<ae, <1,y=1,2,...,j+1, a.,=0,
if w,=2 and

0<a, <1, »=1,2,...,4, @ =aj,=0,

Acta Arithmetjca X.3
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if w, < 1. Hence for a fixed n in the case wy = 3

D xln) =0

xreal
if a single of &, 0g5 .-y &, 8, 8, is odd, i.e. if » is a quadratic non-residue
mod %; this holds ev1dent1y also for w, < 2. If w, >3 and » is a quadra-
tic res1due mod k, then all &’s nad &, 8o are even and hence

D xlm) =2

xreal
correspondingly
(n) = 2+, resp. ¥,

xreal

if w, = 2, resp. o, < 1. Hence the second sum in (10.1) is

(2D o] 1 QUZHOHI4

= 2¢(k)

__1
= 2¢(k)

Collecting all these, (9.6) gives

24 ~ ;logp-br/2)? o b s

o Zek(p, Iy, L)logpe /We
P

1 2
2 .
cmlogk {6(1/z+b)2,./4._E(k)2r/4 6(1/4+b)2r/4 k6(1/50+b] ri4 - 6(2/5 1-b) r/4} .

(10.6)

" X ¢, in (7.1) is sufficiently large, then (10.6) assumes the form
o - F(logp—trj2)? o rbs b/100,| /16
Dew(p, by Wlogpe ™ > 1/5{—470— — 20,log b (e™® 4 ke )}e .
4 .
Choosing (%)

loga
r

(10.8) b=2

and making ¢ in (7.2) sufficiently large we have

b]4 > 25 log k- }log ¢; > 26log k-+10g(32¢y5)°
from which
k< g

(®) Here, since b > 2, we come to the restriction r <logw.

Devglopments in the comparative prime-number theory Il
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and

. 61'17/20

1
4¢3 loghk < —
13 1088 < %

eagily follow. This, (10.7), (10.8) and (7.1) result, using also (5.1),

’-;1)/"

1
_]ogz

Dei(p, 1oy ) logpe 7
v

— V> cslfa_a, q.e.d.

11. The proof of Theorem IV is more difficult. We start again from
integral (9.3) with b > 100, with integer » > 2 instead of ri4, I, =1 and
l, =1, where (I, k) = 1; then (9.6) gives

(logp—2bry> ¢ s 12

—- £ 1,1)lo — <—2 ¢
1/—2 k'py gp-e 21/;

For J, we have again the representation (10.1); nevertheless, since now
the truth of the Riemann-Piltz- -conjecture is not supposed, the sums
regarding the ¢’s must be replaced by 3", where the prime indicates that
the summation extends to the g’s resp. o/2’s right from H. For the inte-
gral on the right the estimation (10.5) holds again. The second sum on
the right of (10.1) is trivially absolutely < ¢"®2*+?* and the same holds
for the third sum. All in all we have (a bit roughly)

(11.2)

s
~ 5 (ogp—20n)*

2 oW rer - " e by? |
e Zek(p, I,1)]logp-e — ﬁ Re Z(l~x(l))2 e("“’)»

x )
’ x(H#1 o

< ey Vr 2o’y logk.

We shall estimate roughly the contribution of the g’s with

(§>) jarg (e +0)| >3

uging (10.2). This is absolutely

— 2 2
<agVr D) log(kp)- g TN
bV

< oV Z log (ku)- 6™ < ee~™"logk.
w>bV3
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Hence from (11.2), we get

1 2
~ 4 (logp—2br) _

(11.3) Zek(p, 1,1)logp-e

- e
— 2(]:/(75: Re 2(1"1(1)) Z (6" ey

e(x)
x(H)#1 | Imel< (b-+1)V3

< oV 61 Elogh.
12. For the sum
_ , N det
(12.1) Re Z (l -—~x(l)) Z (ee2 20y — 7 (p)

3 elx)
2(1)z1 {Ime]|<(b+1)V3

we shall give “large positive” lower bound, resp. “large negative” upper
bound choosing appropriately r in Lemma 1; the fulfilledness of the cri-
tical argument-condition (4.2) will be secured by a proper choice of b.
The réle of the z’s will obviously be played by the numbers eez“’"';
hence putting

0 = 0,1,
we have

t 1
arge; = 28,0+Im (o) = 27:(;" b+2_n Im(.g2)).

We apply Lemma 2 with

1 ¢
= Tm(o =t
‘ By o m(g), p
Then we choose
11 1
==, U==—08k
LT - 2@

so that
V = cyyk logk.
For the T’y in. (5.5) we define = of Lemma 2 by

(12.2) T =e¢", ¢=logI

and choose 4 = V7. The restriction (8.7) of this lemma is owing to (5.5)
satisfied. Hence we may choose b == b, as & of this lemma; thus for all j’s
2n 1 ' on 1
. < argz; mod2n < 2n— .
24¢,klogk 1+‘w_t£, 11710 | ‘ \ . 24-019‘7010g7o 14 4

110 *

T
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Since from (11.3)

lto] < (Bo+1)V3
and from (12.2) and (5.5)

(12.3) > ezk/7,
we get, using also
(14.2) T <by < T4+V7,

for all #’s in Z(r) the estimation

2 1
> ar > . —~10/9
(T"' ) ! gzil 2401910g21 Vg 1110 >7
1+ (T (r+1/¥+1))
(if ¢, in (5.5) is sufficiently large). Hence we can choose a8 » of Lemma 1

(125) = 1_10/9,

13. Now we apply Lemma 1. The réle of d;s will obviously be pla-
yed by the numbers 1—%(I) and hence as D we can choose

(13.1) D = 8k2.
Owing to (10.2), (12.3) and (12.4), we have
' 7 < cypkbylog (kby) < 6y 7logz,
and hence N can be chosen as
(13.2) N = ¢y tloghe.

As m of Lemma 1 we choose
(18.3) m=—

Then Lemma 1 gives the existence of integers »; and r, with

a0 .y " . e "
(13.4 — Ty, T <(————+a 7*log’ 1:)<——'—+r
) 27, 1y T2 = 20, 22 = 25, )
50 that
) {e 20917l0g2z e st _
(13.5) Z{r) > (?%) ;10_2;;_; g1 18 L |1t

(choosing ¢, in (5.5) sufficiently large) and .

(13.6) Zn) < __6—11084,'1.Iz111'2_
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14. We have to give lower bounds for |2, and |#[™. The first is
owing to (13.4) and (12.2)

2 ) — 252 21 0p517
0p+2bge, b 2<a Yo' vglo; T
(141) = 1607 U > (Pmyfo. g > TPog 0 > Thog 1O e

and the same for |z This, (13.5), (12.2) and (11.3) give, putting

(14.2) e =m,, »=1,2,
the inequality
1 ?
- lop? A
Zek(.'py l,1)logp-e e o
p .
Vi o _
> ——k-l— (T%oe EECELI — eV, IFlogh).

(13.4), (12.3), (12.4) and (12.2) give
e €V o, Klogh < eygloght-e” " - g HHEHVATR /T gog2ir
if ¢, is sufficiently large, i.e.

2 P

1
Zsk(p7 I, 1)logp-e ’;;1‘108 1
P

Vr

20/217
— 1T
- k

,900—(1+v§)lug5/7r 6—-(170——1/2)1031‘4-(54-7:%)103

{2—
But owing to (5.5)
(Bo—1)log T > (4 -+ 98)log®* T;

taking also in account that

“ S .-

Vr >(_1__._) T

' 1:-}-]/; 2 ’ 5 ,
we have
—(147D)10g™ T

- —l—-lnz2 2
2 &(p, 1, 1)logp-e M?‘ T > Phog
»

and analogously
——t g R ‘
S 6u(py 1, Dlogp-e” ¥ T < ey O T

»
Further, from (14.2), (13.4) and (12.2') we have

Tz =T
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and )
@, < er7lz+,7/32(, +v7) < Teuog”m.’l'

indeed. Since finally

1‘,,'1/2 T712 15/2 ( 1 1 1
Py 22— 2 |1 | > =12 = Z1og® T —log¥'T
= 2bo = 2(T+]/T) = 5 1/;) 3 T T 3 og’ 0g
and
72 ’
r, < ‘_[_ _}_1'113 <‘]‘-_1_5/2_!-_,:7/2 — —1~10g5’7T—{—10g2/3T
2, 2 2 !

(5.6) is obviously shown too and the proof is complete.

Appendix

Ag remarked by (. G. Lorentz, the comparison of primes in the
progressions =l mod%k and =1l mod% with o(k) = (k) leads to
still more difficult problems. Here we shall make only such remarks
which are immediate corollaries of our previous work. The simplest case
is obviously

by =38, ky=4¢.
We want to compare first the progressions (3v+1) and (4v-+1). As easy
to see we have

n(w,3,1)—n(z, 4,1) = x(z,12, ) —n(z, 12, 5)

and both 7 and 5 are quadratic non-residues mod 12. Since for the mod-
ulus 12 the Haselgrove-condition is satisfied, Theorem 1.1 of ours (see
Knapowski-Turdn [1]) gives mutatis mutandis
CoROLLARY 1. For T > ¢y we have
‘ o logTlog3T
max {z(v,3,1)—wn(w,4,1} >VTe &7
gl ) .

and
3 logTlogaT .

—2
min: {w(,3,)—n(@,4, 1)} < —VTe 8T
M8gegT . .

Comparing the progressions (37)+ 2) and (4v+1), we have evideﬁtlyg

(@, 3, 2)—a(@,4,1) = n(0,12,11) —a(z,12, 1) +1; -
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gince 1 resp. 11 are guadratic residues, resp. non-residues mod 12, this
case is different from the previous ome. Nevertheless Theorem 5 of
our paper [2] leads to the following :

COROLLARY 2. For T > ¢, we have

logx
max g {n(z,3,2)—=n(z,4,1)} >1
loggT'<a<T 1/; )
and
1
og_w {n(z, 3, 2)—q(w, 4, 1)} <-—1.
logy T<a<T &
For
a(w,4,3)—n(=, 3, 2),
Tesp.

(%, 4,3)—m(r,3,1)

we have evidently the same behaviour.
These remarks settle the case with

p(k:) = @(ky) = 2.
The next case, when
p(l) = @(ky) =4

(which is essentially only the case of %, = 5, k, = 8) seems to be more
difficult; we hope to return to it later.
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