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1. Introduction. In a recent paper [1] methods were introduced
for investigating the accuracy with which certain algebraic numbers
may be approximated by rational numbers. It is the main purpose of
the present paper to deduce, using similar techniques, results concern-
ing the accuracy with which the natural logarithms of certain rational
numbers may be approximated by rational numbers, or, more generally,
by algebraic numbers of bounded degree.

Results of this type were first proved by Morduchai-Boltowskoj in
1923 (see [6]) but the most precise results so far established are due to
Mahler [4] and Feldman [2]. Suppose that a is an algebraic number other
than 0 or 1. Then the work of Mahler leads to inequalities of the form

loga— & > H™*

valid for all algebraic numbers & of degree n and sufficiently large height
H, where x is an explicit function of n, of order ¢", where ¢ is a constant
>1. For small values of n» and rational a these represent the best
inequalities known, but for large n very much stronger results were
recently given by Feldman, indeed with x» of order (nlogn)®.

In the present paper we shall begin by proving

TurorREM 1. Let a, b and n be positive integers and let a = bla. Sup-
pose that » >n and

. a > {(4V2)"h},

where h = b—a >0 and

(2) o = (n+1)(x+41)(x—n)""

Then

(3) (g2, log a2, (loga)’| > X~
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for all integers ®y, ®y, ..., @,, where
(4) X = max (|2, @]y ..., |2a]) >0
and ¢ is given by

(5) ¢ =a""%  where 1= 50x(x41).

It follows that for certain rational numbers o the inequality (3)
holds with = only slightly greater than m, and this is almost the best
possible; for it is well known that (3) could not hold for all integers
@yy L1y oy Oy, NOG all zero, with any constant ¢, if » were less than n.

From Theorem 1 we obtain as an immediate deduction the following

CoROLLARY. Suppose that the hypotheses of Theorem 1 hold and let
6 =mn(x—mn). Then

(1) loga— & > H=""'"° for all algebraic numbers & of degree at most
n ond sufficiently large height H.

(i) There are infinitely many algebraic numbers & of degree at most
n ond hetght H for which |loga— & < H-"1+9,

The proof of Theorem 1 depends on combining a theorem of Mahler,
given in [4], concerning certain polynomials in logw , with a lemma of
an arithmetical nature due essentially to Siegel (see [8]). The corollary
is deduced by direct application of two formulae of Wirsing [9].

The condition (1) may be relaxed if we suppose that » =1, b = 1.
‘We prove

TeEoREM 2. For all integers a > 0, p and ¢ > 0 we have

(6)

log (1+ %) - %‘ > ¢{a)g~"@

where
(1) =125, %(2) =7,
% (@) =2_19g_{4w for a>38,
log {V24*/(a+1)%
and
) o) =107, ¢(a) = (V2a)™ for a2,

Here 1(a) is decreasing and tends to 2 as a tends to infinity. Ior
a > 15 we see that »(a) < 3 and thus we obtain, for example, the follow-

: TS 1
Ing measure of irrationality for log-i—z—;

for all rationals p/q with ¢ sufficiently large.
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Finally, by way of application, we give a positive lower bound for
the fractional part of the sum of the serieg

(8) 6“9-1—6_29-1-8_30—[—...,

where 0 is any positive rational number. Clearly we need consider only
the case in which the sum ¢ of (8) ig greater than 1. Then the result is
as follows. .
THEOREM 3. Let 0 > 0 be a rational number with denominaior g>0
and suppose that
{=(—1)">1.

Then the fractional part of ¢ is greater than ¢(1)g~** where ¢(1) is given
by (7).

I am indebted to Prof. Davenport for valuable suggestions in con-
nection with the present work.

2. Lemmas. The following lemma is due essentially to Siegel.

Levma 1. Let n be a positive integer and let ¢; (6,5 = 0,1, ey )
be (n-+1) integers with absolute values at most Q such that the matriz )
is non-singular. Suppose that &, ..., &, are real or complex numbers and let

(9) ¢i= qio+qn§1+---+qm£n

Jor i =0,1,...,n. Suppose that the D; have absolute values at most P.
If @y, 1, ..., @, are integers, not all zero with absoluie values at most X and

(10) V=t omé+t. w6
then
(11) [?] > (n!Q") ' —ndXQ.

Proof. Since (g;;) is non-singular, there are n of the linear forms
(9)in 1, &, ..., &, which together with the linear form (10) make up a line-
arly independent set. Without loss of generality we can take them to be
the last n forms. We have

Dy e Qi Qo qu - Gin

QNO q'nl b q’ﬂﬂ
A

.........

P Qo1 e Gun
w &y .. Xy Ly

I

and the determinant on the right is a non-zero integer. Expanding the
determinant on the left, and estimating each term, we obtain

Q" ||+ n(nQXP) > 1,
which gives (11).
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LeMma 2. Let o be a real number such thot 1 < a <2 and let m,n
be positive iniegers. Then there ewist (n-+1)° polynomials Ay(wm) (2,4 =
=0,1,...,n) in © of degree at most m with the following properties.

(i) The determinant of order (n+1) with Ay(a) in the i-th row and j-th
eolumn (4,5 = 0,1,...,m) is not zero.

(il) Bach polynomial Ay (x) has integer coefficients with absolute values
at most

3
! Zn_im (m-1 )2n+ 1 (4 1/5)(11.-; ym
(iii) The (n+1) functions

(12) Bi(@) = > Ay(@)(logay (6 =0,1,...,m)

satisfy the inequalities

3
(13) [Ri(@)] <mi2 ™ (eVmy™ o™ (VB (n+ 1)~ loga}+m,

Proof. This is a special case of Theorem 1 of Mahler [4] (see p. 378).
We have interchanged m and » and restricted the number a so that
1 <a<2. Then
n—+1 > 2|log al

and thus a condition required by Mahler’s Theorem is satisfied.

On the basis of Lemma 2 we introduce the following notation. Corres-
ponding to each pair of positive integers m,n.and each pair of integers
@, b such that ¢ >0 and 1 < o < 2, where a = b/a, we define numbers
% = ¢ (m, n, a,b) by the equations

(14) gy = a"Ay(a)  (4,§ = 0,1,...,n),

where the A;(x) are the polynomials given by Lemma 2 corresponding
to m,n, a. Since the A;(x) are of degree at most m it follows that thé
Qi are integers. Also from (i) of Lemma 2 it is clear that the matrix (i)
i8 non-singular. We now pusb

(15) &= (loga) for ¢=1,2,..,n

and define the numbers @, = Dy(myn, a,b) (1=0,1,...,0) by (9).
Then clearly, for each s, ‘

(16) (b,; == amRi(a),

where the R;(2) are the functions given by (12) of Lemma 2. Finally
we note that if the @; have absolute values at most D, By, @y, ..., @, arO
integers, not all zero, with absolute values at. mogt ¥ ,and ¥ is given by
(10) then all the hypotheses of Lemma 1 are satisfied and hence (11) holds:
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3. Proof of Theorem 1 and Corollary. We note first that, from (1)
and (2), a > h, so that o is a rational between 1 and 2 exclusive.

Let y, @1, ..., 2, be integers, not all zero, and let X be given by
(4). Suppose that £; is given by (15) and that ¥ is defined by (10). We
proceed to prove that (3) holds, that is

an P >eX~*.
‘We put
(18) w = {(h(4V2) (n+ 1)
and suppose first that
(19) X = (afw)s0xlosa,

From (2) it is clear that ¢ > n+1 and it follows from (1) and (18) that
a > w. Thus there is a positive integer m such that

(20) (a/w)™ ! < n"HX < (ajw)™.
The supposition (19) then implies that
(21) m > 50xloga.

Our next object is to calculate upper bounds for the numbers
¢y = q;(m,n,a,b) and &; = D;(m,n,a,b) defined as above. Several
preliminary inequalities will be required. First we note that

m m
(22) Dla < Yoo,
r=0 r=0

Secondly it is clear that ¢ > ‘2; a.ﬁd from (1) we obtain a > 32h. Hence
myl
(23) ‘ o = (1—]——) C M o gz,
' a

Thirdly, since ¢* > 1+ for each x>0, it follows that
(24) loga < hja. o
Next we prove that
(25) 27 > g (mA- 1), ‘
From (1) and (2) we obtain ‘ .
log a > n(n+1)log(4V2) > 3n
and it follows from (21) that m > (12n)". It is then easily verified that
log(m+1) < ¥m and hence

(26) (2n+1)log(m+1) < 3ny/m <im < zmlog2.
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Also we obtain

(27) nlogn+(n+1)log2 < 2n® < ;mlog2,

and then (25) is deduced by adding (26) and (27). Finally we shall require
the inequality

(28) om > nnen+1m(n+1)/2

which is clear from (25). s
Now from (ii) of Lemma 2, (14) and (22) we see that the integers

¢; have absolute values at most

m
(lm(’i’b!) on—3mj2 (m+ 1)2n+1(4 1/5)(1»4-1)7” 2 o

< am,,::;n—m/2+l(m+ 1)2n.y1(41/“2)(vb+1)m’
and, from (25), it follows that this is less than @ where
(29) Q = a™(4V/2)m,
From (13), (16), (23) and (24) we deduce that the &; have absolute valueg
at most
a2~ (oY m) 2™ (YE (m A1) R @l
- a"""’2'“mn”e”“m(”“)lz{l/gh('Vb+ 1)—1}(n+l)m’

and, from (28), this is less than & where

(30) D = a~""{Y/8h (n-1)"1}rEm
We now use Lemma 1. From (11) we obtain
(31) || = (@) " {L—n"T'0XQ" Y.

Since from (18), (29), (30) and the right-hand inequality of (20),
2" OXQ" ! L (ajw)PQ T = 2 HIm

it follows from (31) that
(32) |¥] > 3(n@)™".

We next prove that
(33) (afw)™ 7 > g".
From (1), (2) and (18) we deduce that

P {h( 4]/§)n}(n+1)(n+1)

> 2{R(4V2)" (0 + 1) (AVEYHD = 20 (4Y2)M,

and hence
(34) S e (Y0 kR

Approzimations to the logarithms 321

Further, from (21) we obtain
(35) a" = ¢80 < g¥loga - gm
It follows from (34) and (35) that
am e s g1 g y/ 2y ,
and this is equivalent to (33). Then from (20) and (33) we obtain

(’IZ’H—IX)” > Qn
so that, from (32),

(36) 1% > 0X,
where
(37) 0 = nr=ttnr,

It is clear from (1), (2) and (37) that

C > (2n)~ e+« o—(x+1loga >0,
where ¢ i given by (5), and hence (17) certainly holds for all integers
Xyy L1y .ovy By Such that (19) is satisfied.

Now suppose that x,,z, ..., «, are integers, not all zero, for which
(19) does not hold. Then X < u where u is the integer given by

(38) U = [(a/w)SOnloga]+1_

Since at least one of the (n--1) integers ULy y UTy, ..., U, has absolute
value at least u, we may apply the result (36), just established, with this
set of integers in place of @, @y, ..., s, and 4X in place of X. We obtain

u|¥] > O(uX)™™,

that is

(39) 1P| > Ou~*1X—*,
Finally we show that

(40) ‘ Cu~"* >¢.
From (38),

uu-{-l < 2n+l(a/w)llog'a,
where 1 i given by (5), and it follows from (1), (2) and (37) that
Ou—-x—l > (4n/w)—(n+l)(x+l)a,—viloga,_
It i3 clear from (18) that
w > (2V2)" ) > 4y

. and thus (40) holds as required. Then (17) follows from (39) and (40)

and this completes the proof of Theorem 1.
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As for the proof of the corollary, the results follow by an immediate
application of two inequalities given in Wirsing [9]. With the notation
of that paper, Theorem 1 implies that

wy(loga) < x.
Then from (3) of [9] (see p. 68) it follows that
wy(loga) < wy (loga) < x,
and from (7) of [9] we obtain
wh(loga) = w,(loga)/(w, (loga)—n-1) > x/(x-—n--1).
However » < n+d (for n > 1) and
wf(x—n+1) = (n*48)[(n-+8) >n—4,
where ¢ = n(x—mn), and, by the definition of w}(loga), this proves the
corollary.

4. Proof of Theorem 2. We distinguish two cases according as a > 1
or @ = 1. In the first case we repeat the arguments of Theorem 1 with
n =1, b =1 but base these arguments on stronger estimates. In the
case o = 1 it is necessary to modify the methods of Theorem 1 and we
proceed in a similar manner to Mahler [4]. Theorem 5 of [4] contains
the result that (6) holds with »(1) = 48 and by means of suitable estima-
tes for the numbers g;(m, 2,1, 2) and P;(m; 2,1, 2) this may be impro-
ved to %(1) =12-5. The proofs follow directly on the lines indicated
and we omit the details.

5. Proof of Theorem 3. Let a = [{]. From Theorem 2 we obtain

(41) log (1—{—%)-—0' > e(a)g "%,

where c(a) is given by (7). We proceed to prove that ¢(a) in (41) can be
replaced by ¢(1)a™" and the required result then follows by application
of the mean-value theorem. It ig clear from the form of ¢ that there is
only one significant value of a, if @ > 4, namely the integer neavest to
(6-*—1%). Since also ¢(a) > c¢(1) for a < 32, it suffices to consider the
case ¢ > @ > 32. The proof now follows in a similar manner to that of
Theorem 1 with n =1, » =1 and we again omit the details.
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