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and r(a) for (43b) becomes (say) r;(a), the number of representations of
QO = @ in terms of the 4t-tuples of rational integers (zy,...,my). Tt is given by

=3) (a3
( 45) af =3 o)
r{a) = —\—1]" -

Byl 14(-3)

for ¢+ =1 and 2, according to Lemma 7.

In the case of V2 and V5 the rational ostenary forms corvespond-
ing to (47a) are too complicated for the identity of type (40¢) or (41c)
to be worth explicit formulation. Of course these rational forms (unlike
the algebraic forms) have nonunit determinant.

In order to present the simplest type of identities we ignored somne
very interesting noneven cases such as the “sum of four squares” in Q(V2)
and Q(l/g) where the theta-functions 6g(1,1; U, —U) and 04(L, 1;
eU, £'U) satisfy the system (36). A partial treatment of these cases appears
in [1], [2] but a more thorough treatment of identities, indeed a treatment
embracing a larger number of tield types, must wait for a later occagion.

(47b)
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1. Let p be a fixed prime and » an integer > 1. Let Z, denote the
ring of integers (mod p”). By a funciion f over Z, will be meant a mapping
of Z, into itself; that is, f(a)eZ, for all acZ,. Two functions f, g over
Z, are equal provided

fa) = g(a)(mod p™)
for all aeZ,.

A polynomial F(x) is a function of the type
(1) F(x) = ap+ oo+ aa*-+. ..

When n = 1 it is well known that every function over Z, can be repre-
sented as a polynomial. When n >1, however, this is no longer true.
For example, the function defined by

0 (a=0),
1 (a=0)

(af EZ,I) .

(2) fla) =

cannot be represented as a polynomial. This follows from the observation
that for any polynomial #(z) we have

3)

clearly (2) and (3) are not compatible.

The representation (1) is, of course, not unique. When »n = 1 the
representation is unique provided degF(x) << p. When n =1, let F(x),
G(w) be two polynomials such that

(4)

F(a-tp) = F(a)(modp);

F(a) = @(a)(modp™)

* Supported in part by National Science Foundation grant G16485.
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for all @eZ,. Then

5) ' H(a) = 0(modp™) (aeZy,),

where H(») = F(2)—G(x). If » <p it is known ([1], p. 22, Th. 27)
that every polynomial satisfying (53) is of the form

D" H @ — o) fi(w),
=
where the fi(x) are polynomials with integral coefficients. If = > p the
gituation is more complicated.
It is of some interest to find conditions that will guarantee that
a given function can be represented as a polynomial. For a polynomial
F(x) it follows from (1) that
”

Z(——l)’““(z)lﬂ(c—}—s Zajz 1)*”() o3

Bexl ] )
Now

)j(

=0

()a+s)’._0 0 <j<

and is divisible by »! when j = . Let u(r) denote the highest power of p

that divides 7!. Then we have

N1y (:)F (04 8) == 0(modp"®),

where ¢ is an arbitrary integer and » > 0. It follows that

6) V(—1 '-“( )F(c+s) == 0(modp"?),
=0

where

(7) n(r) =

We shall now prove the following criterion.
TeeoREM 1. The function f(w) over Z, can be represented by a polyno-
mial over Z, if and only if

= min(n, u(r).

®) 3 (=1y=* (Jfte+6) = 0(moap™)
8=10

for all ¢ceZ, and all v = 0.
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Prooi. We have already proved the necessity of the condition (8).
To prove the sufficiency put

= (-1

where f(e¢) is an arbitrary funection over
mial

) 4f(o) - (:)f(e+s>,

. Now consider the polyno-

N

1 .
Fo) = Zﬁwﬂom(m—n...(w-—j+1>;

J=0

(10)

the integer N will be chosen presently. Since by hypothesis the coeffi-
clent 47f(0)/j! is integral (modp), it is evident that F(2) is a polynomial
over Z,. Then for 0 < ¢ < 9" we have

Fo) = iszl:},ll—Aif(O)c(c——l)...(cmj-{—l)
- 3 arwf) = () v
Fe=0 i=0 8=0

N N
= 200 Y v (iZ)
3=0 F=s

If N > p" the inner sum vanishes unless s = ¢, 5o that
(11)

Since (11) holds for ¢ =0,1,...,9"—1, it follows from the definition
of equality of functions over Z, that f(2) is equal to the polynomial F (z).
This completes the proof of the theorem.

It is evident from the proof that we have proved the following slightly
stronger result.

TaEoREM 2. The function f(z) over Z, can be represented by a poly-
nomial over Z, if and only if

(12) ATf(0) == 0(modp"®)

for 0 <
2. Retwrning to (1), it is easily verified that

= Fo(a)+ kpF, (@) + ...+ (kp)" " Fy_s () (mod p™),

<r <p.

(13)  F(ax+kp)
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where % is an arbitrary integer and the Fy(#) are polynomials with inte-
gral coefficients. This suggests the condition

(14)  fla-+kp) =Fo@)+Tpfi(@) 4 ..+ (kp)" " fua () (modp™),

where & is an arbitrary integer and the f;(2) are functions over 7,. We
shall prove the following result.

THEOREM 3. The fumction f(x) over Z, can be represented by a poly-
nomial over Z, if and only if (14) is satisfied, where k is an arbitrary inte-
ger and the fi(®) are functions over Z,.

It will be convenient to state another parallel vesult. Tt follows from
(1) that

»

(15) Z(wl "“( )Jf‘(a, -8p) = > (4,,-4\01( ------ 1,)""”(:) (- spY.
8==0 Ha

We have also

7

(=15 () k) = ,\’() iy Y (17 (1)

8e=0 = =)

We have already observed that the inner sum on the right is divisible
by p*® and vanishes for ¢ < 7. Hence the right member iy divisible by
PO = ) and (15) yields

e
=)

*
(16) N1y ’( )If’(m-k sp) = 0 (mod p"™)y.
This suggests
THEOREM 4. The function f(x) over Z, can be represented by a poly-

nomial over Z, if and only if

,

17) ' ‘}_;( ()f((*+sp 2 0 (mod p™)
8=a

for 0 <r < p™ ' and all ceZ,.

" 3. 'We shall now prove the equivalence of Theorems 2 and 4. Put

(18) 87(0) = X (=17 {7} flo-+sp).
820

It is easily verified that

@ ek = () d)

F=0

Functions and polynomials (modp™) 71

Then, by (9) and (19),

@) a0 = D1 e

= %’(—1)"‘“”(31,:,)7_; () osce+n

= S0 etn 3 (-1 (e )

7, 8
Put

8y ty5) = D (—1)” (spy-l-t) (;)

8

Then since

) N, (p)
e () P g =Rl

g
where the b, are integers, it follows that

QU JSE ) = 2 (=07 (k)

Now put
v = 307 (,0 )
= !

then we have

(22) D= = p(— 1T, ),

¢

where the summation is over all pth roots of unity.
Next we recall that in the cyelotomic field R (¢*™/?), where R is the
rational field, we have

@) = (1—pPt (B = &),

We infer from (22) that U(¢,r) is divisible by at least %, where

ool -1,

(23) E:H . ] (o—147).

p—1
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On the other hand, since Then assuming that
pir) = H + [12' e (@7 Af(e) = 0(modp'),
—1
it foll e B P P it i evident, that each term in the extreme right member of (26) is divis-
it follows that ‘ ible by p‘("’) Since (12) implies (27), it follows that (12) implies (17).
_r 1 (p—1|r) ‘We have therefore proved the equivalence of (12) and (17) and so
o < -1 = ! the equivalence of Theorems 2 and 4.
wlr) <
l[’“ T ] (p—117). 4. We now prove Theorem 3. If we assume that (14) holds we get
» -1 e § r
Therefore X ;= u(r). Ff(e) == 3 f;(¢) ‘j( —1y* (7)9 (modp").
Returning to (2.1), we see that = =
(24) j!],f 80, t,5) = 0(modp"®). Since the inner swn is divisible by p"™), it is evident that we get
#(rp)
Now agsume that (17) is satisfied, thab i ¥f(e) = 0(modp™™).
‘ Hence (14) implies (17).
(25) C 0 (e) = (modpv(m)) 0 <r < p™). As for the converse, we have alveady seen that (17) implies (12),
Then it follows from (20), (24), (25) that Which in t.urn implies that f(z) can be represented by a l)olyno%nigl.
Moreover, it has already been observed that every polynomial satisfies
’f (e 0(modp™), (14). This completes the proof of the equivalence of (14) and (17). Hence

where we proved Theorem 3.

B = 111111{’”'7 w(p) =3 == () - (1)} 5. We now give a few simple applications. However we remark first

that in applying Theorem 4 it suffices to take ¢ =0,1,...,p—1. This
Since u(jp) = j+ u(p), this reduces to B = v(n). Hence (17) implies DRiying 12 P

(12), g can be proved as follows. Making use of (18) and (19) we get, for & >0,
To prove the converse we mkew 8 (e Tp) = g;:( 1y-* (,;) Flo-+Tp+-sp)
£ o) 31_” A " s
/(0+62)) j=.20 (.7 ) f(@) —_ v( 1)r—.9 (7‘) 37 (k+8) 61f((,
from which it follows that = =
d-r r
(26) #50) = 3 (—1y- (Z) Zp‘(Jp) 210 ~ _;; 8'f(e) 5\-’;‘ 1y () (k: )
800 =0
kgr ”» . o
= 34 3 -2-() (7). =2 e Z =) (),
F=0 Jua) !

since (Iﬁjl.'s) is a polyuonua.l in k of degree r. If we now assume that
Since the inner sum on the extreme right is an »th difference of the poly- !

nomial 8'F(c) = 0(modp™™)

r—1)...(px—j j! ; ;
R rope—1)...(po—j+1)jj!, for some fixed ¢, it follows at once that
it follows that

§f(e-+Tp) = 0(mod p*™
]12( 1 r—3 (’i‘) (Sp) - O(modp”"("))_ j( -+ P) ( y4 )
=0 - for all & = 0. This evidently proves the truth of the assertion made above.
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As a first example we take the function f,(z) detined as follows:

1 (pte),

(28) LCR P

Since
Ffil) =0 (rz1)

for all ¢ it is evident that Theorem 4 applies. Indeed, it is easily verified

that
(29) fi(@) == gp" -y,

Next, for p odd, we take
(30) file) = (i),
»

;lvhere (¢/p) is the Legendxre symbol. Again Theorem 4 applies. Indeed we
ave

(31) fola) = "o,
The function fy(x) defined by

(32) f:;(c) — ‘(.' (2"1'0)7
0 (ple)

is closely related to (28). Clearly
(33) fy(w) = a1

We may also mention the funetion

~1 )
(34) £ile) = {° 2fe),
0 (ple).
Since
Nyt -
=) letsp eletp)...(etrp)’

it is evident that Theorem 4 applies. We find that
(35) filw) = "0

provided p" > 4. The case p™ = 4 is evidently covered by (32) and (83).

icm
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Incidentally we may apply Theorem 2 or 4 to a polynomial to obtain
a congruence. For example, we may mention

(30) Flo) = 00
where k > 1; this may be replaced by the function defined by
o ,
(37) fo) = ‘ (pte),
0 (ple).

In the above examples we have f(¢) = 0 whenever p|c. This is of
courge not necessary. As an instance we cite the following function:

(38) file) = 0 (pte),

1 (ple).
This evidently satisfies
(39) filw) = (L—a"t)".
Moreover, by comparison with (34), it is clear that
(40) fs(@) = 1—fi(2),

although the polynomial representations are not the same.
The function defined by

(41) folo+kp) =" (0 <o<p)
satisties Theorem 4; indeed, we have
(42) falw) = o™

A slightly more interesting example is given by

(43) fule+Hp) =¢ (0 <e¢<p).

More generally we may consider the class of functions over Z, that
satisfy
(44) fle+p) =f(e).
Clearly these functions satisfy (17) and therefore admit of polynomial

representations. We shall prove the following result.
THEOREM 5. A function satisfying (44) can be represented in the form

p-1
(45) flo) = D et —(@—eP )"

c=0
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The proof is simple. The polynomial
(46) Lc({b‘) _— {] o (.’l’ o 0)71—1}*“7:.4»1

satisfies

1
0 (¢ # a(modp)).

D1
Consequently, if we put F(x) = 3 f(¢)Le(@), it is evident that
=)

fa) =f(e) (&
and therefore ['(x) == f(x).

The polynomial (46) is suggested by the Lagrange interpolation for-
mula. In general, this interpolation formula canunot be employed for
functions over Z,; however in the special case covered by Theorem 5
there is no difficulty.

For the funetion defined by (43), we cvidently have

: ¢(mod p))

(47) F(w) = D eli(a).

We remark that

(438) Ly(@) Ly(m) = 0 (a #b), (Lo(@)) = Lq(w)
exactly as in the case n = 1.
It is of some interest to mention the function defined by

(49) fle+kpy =¥%p (0 <e¢<p).
In the fivst place it is evidently a function over Z,. Secondly, we have
f(e) =p, &fle)=2p, &fl)=0 (r

Thus for » =2, p >2, r = 2, (17) i not satistied, so that f(@) is not
& polynomial. Alse for » >2, p = 2, » = 2, (17) it nob satistied. How-
ever, for n = 2, p = 2, (17) is satisfied and we have F(@) == w(x—1).

>2).

6. A few words may be added about funetions and polynomials over
Z, in two variables. Functions f(x,y) are defined in the obvious way.
A polynomial is 2 function of the type
2 agd'y’  (ageZ,).
r

Corresponding to Theorems 2, 3 and 4 we have the following results.

Functions and polynomials (modp™) i

THBEOREM 6. The function f(z,vy) over Z, ean be represented by
a polynomial over Z, if and only if -

AQA;’}f(O, 0) = O(modpE),
or 0 <r < p" I<s < _’p" where
? b

B = wmin(n, u(r)+ u(s)
and

143110,0) = 31 3= 1y-+() ()5, .

7=0 k=0 M

THEOREM 7. The function f(x,y) over Z, can be represented by a poly-
nomial over Z, if and only if

flatrp,y+sp) = > (0 (sp)'fi (e, y) (modp™),

fpkan

where v, s are arbitrary integers amd the fi(®,y) are funetions over Z,.

THBEOREM 8. The function f(x, y) over Z, can be represented by a poly-
nomial over Z, if and only if

(50) On 85 f (@, b) = 0(mod p¥)

-1 1

for 0 <r <", 0 <s<p™' and all a,beZ,, where
B = min(n, u(rp)+ p(sp))

and
-

8700 = 3 Y (=17 () (0) fatip, v+ ).

J=0 k=0

It suifices to assume that (50) holds when 0 <a << p, 0 <b < p.

The proofs of these theorems are exactly like the proofs in the case
of a single variable and will be omitted.

Consider a function f(z, y) such that, for every aeZ,, f(a, y) is a poly-
nomial in y and, for every beZ,, f(x,b) is a polynomial in ». It might
be supposed that such a funection is necessarily a polynomial in @, 4.
That this iz not the case can be seen from the example (compare (49))

(61) fla+ip, b+ kp) = jkp,
where 0 <o <p, 0 <b <9p and j, & are arbitrary integers. Then

0z 8yf (@, b) = fla-+p, b+p)—fla, b+p)—flatp, b)+f(a, b) = p.
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Thus, for # = 2, r = 1, ¢ = 1, (B0) is not satistied and therefore f(w,y)
is not a polynomial in », y. However

P~

Flatip,9) = jly— D v},

Be=0
where I, (y) is defined by (46).
Remark. We note that Rédei and Szele [2] have made a detailed
study of the polynomial representation of functions over rings and in
particular over Z,; the polynomials considered ave in an enlarged ring.
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TueoreM 1. Let k be any field and denote by k(z) and k [x], respective-
ly, the field of rational functions and the ving of polynomials in a single
variable & having coefficients in k. Then any fek[z] which is the sum of
squares of elements of k(x) is the sum of the same number of squares of ele-
ments of k[x].

‘What is essentially new in this enunciation is that the same number
of squares suffices. Without this condition the result stated has been
proved by Artin [1], who adapted a proof by Landau [5] of the fact that
every positive define function in Q[a] (where @ is the field of rationals)
is the sum of eight squares of elements of Q [x] (cf. also Witt [6] for some
related results).

As almost immediate consequences of Theorem 1 we have:

THEOREM 2. Let de<k and suppose that the characteristic of % is not 2.
A necessary and sufficient condition that &+ d be the sum of n > 1 squares
in I(ax) is that

either —1 is the sum of n—1 squares of k
or d is the sum of n—1 squares of k.

TunoreM 3. Let R denote the field of real numbers and let oy, ..., x,
be independent variables over R. Then 2+ ... 2 18 not the sum of n—1
squares of elements of R(®, ..., o).

Theorem 3 answers a problem of Professor N. J. Fine which reached
me via Professor Mordell and Professor Davenport. The case n < 4 has
already been proved by Davenport [4] in another way. I am grateful to
him for showing me his manuseript before publication.

Proof of Theorem 1. The proof is essentially an adaption to the
“power series ease” of Davenport’s proof [3] of my theorem [2] that if
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