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ACTA ARITHMETICA
IX (1964)

Some remarks on certain generalized Dedekind sums
by
H. RapeMACHER (Philadelphia, Pa.)

Dedicated to L. J. Mordell
on the occassion of his 75th birthday

1. In recent investigations concerning the functions
[=~] o0
1.1) O (0’ 7) = H a- 62n"ih/f62ni1(m+g/f,) ” 1— G—Onih[fezmlr(n—ﬂlf))
m=0 n=1

Curt Meyer [1] and Ulrich Dieter [2] have introduced the following
generalized Dedekind sums

0 o= 3 (2 )

pmod e

They derived a whole theory of these sums, including also a reciproeity
theorem.

The functions (1.1) have been introduced by F. Klein [3], in the
theory of “division” of o-functions. C. Meyer uses these functions for
investigations of clags numbers of Abelian fields over quadratic ground
fields, following the lead of Hecke. They appear, also, not recognized
a8 Klein’s o, however, in papers by J. Lehner [4] and J. Livingood [5]
where they play the role of conjugates of the generating function for
certain partition numbers. In these papers one also finds certain generali-
zations of Dedekind sums, which turn out to be special cases of the sums
(1.2). .

I observe now that the rationality of ¢g/f and L/f is completely irre-
levant in the theory of the sums (1.2) and that the true generalization of
the above kind is contained in the definition:

o= 3 ()

- 2 (=) ()
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where # and y are real numbers and h, % are coprime integers, &k > 0.
The symbol ((#)) means here as usual the function

r—[2]—4,
0, @ integer.

x not integer,

((w)) =

The definition (1.3) shows immediately that s(h, k; @, y) has the period
1 in # as well as in y. We may therefore restrict our considerations to
the range
(1.4)

For # =y = 0 (and thus also for », y both integers) the new sums are
the classical Dedekind sums. The sumg (1.2) are gpecial cases of (1.3)
with b =a, k =¢, & = hif, y = g/f.

2. We need further on the

I<e<l, 0<y<l.

THEOREM 1.
k 1 1
(2.1) 8(1,%;0,0) =s(1,k) :E+6—k .hz;
k 1
(2.2) $(1,k; 0,y) = =+ Buly)  for 0 <y <1,

where B, (y) 4¢ the second Bernowlli fumction, By(y) = y*—y-+1/6.
Proof. The case y = 0 is known from the theory of Dedekind sums
and results from

won- S0 - Sty

by straightforward calculation.
The case 0 <<y < 1 requires

Bl k-1
N (e S I
3(1,k,0,y)~§(( % ))‘,;: ko2

from which (2:2) followsﬂ by simple caleulation.
COROLLARY. Because of the periodicity in @ and y we have also
1

I 1
$(L,%;0,9) = — 4+ — ——

5t 1 for y integer,

ko1
8(1,%;0,9) =15 T3 for y mot integer,
where we use here and subsequently the abbreviation

(2.3) v (¥) = By(y—1[vy]).
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For the establishment of the reciprocity formula we use a device
by U. Dieter [2]. We need first the :

LeMMA,
\Y [{p+w
D) (( . ))=((w>).

rmod

(2.4)

Proof. Let us investigate the difference

N

rmod &

D(w) =

This difference has obviously the period 1 in w, since both terms have it.
We need thus only consider 0 < w < 1. For w = 0 we have

D(0) =
pmod k

and for 0 <w <1
Fow1

Dy = 3 (% =) o

=0
Sutw 1 1
= 25" =3)~(=-3)
=0
__.7‘“:_£+w_1€~(w_i)_0
3 2 )

Therefore D(w) = 0 for all w, which proves the lemma.
3. We study now, with h > 0,% > 0, (h, k) =1,

(3.1) S =s(h, k; w,y)+s(k, b; y,)

- Db S )

smod k rmod h

Applying now (2.4) to the two sums we obtain

sa 5= 5 3 (et e«

3 Zl )

rmodh pmodk

n
|

#modk vmodn

k-1 h—1

5 2= (5

H=0 =0

I
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We have to study only the range (1.4), with the exception of the cage
# =0, ¥ = 0, which iy covered by the classical reciprocity formula for
Dedekind sums. We have thus only
0 <oty <2
It is preferable to postpone also the case » = 0 or y =0 and to begin
with
I<o<l, O0<y<l.

Then we get
k=1 h—1

S

H=0 =0

Let us now look at the sum

k-1 h-1 5
_\ wt+y  vtao )_(/A—H){_ Ve l"
B4 T= 2 {(( v T BT 1]
pu=0 »=0
;-1 Bl .
-2 250 -
N s T R
p=0 »=0
k-1 h-1 —{_y to n *_
23 S )
n=0 ;
—1 h—jl __'_ -—]—-a) 2
) z,< oz )
or, say, fi=0 =0
(3.5) T = 8;—28,+8;.

‘We discuss these sums separately, In 8, the variables w# and » need only
to be taken modulo % and %, respectively. Then we have

. hu+kv  hy-+ Tk
= 2 (M)

#mod k
ymodh
Ty - e \\2
((—Li?%ﬁ)) = 8(1, hk; 0, hy - k).
emodhk ‘

4. Now we have to distinguish two cases:
L hy+ke not integer, IL hy-- ks integer.

We continue until further notice solely with Case I. Then we obtain
from the Corollary to Theorem 1

(4.1) 8 =—+ w2(7w+kw)
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Comparing (3.3), (3.4), (3.5) we recognize that
(4.2) 8, = 8.

Furthermore, we have

k=1 h—1

e S S ey

This sum is continuous in  and y. We obtain first

k-1 N h—-1 R
g =g M (f_u (j_w
=0 I EE] 4 V! | et

7
= 7-:;
k-1 + k1 n h—1 .
N p- /\ﬁi & NTH y“‘lzw z
+2 0 2 A'Z-‘]J__Hk 2k -
p= p= =

The computation yields finally

43 s _—]LB ]GB 0( ( 1) hl
(4.3) YT 2(1’/)‘!‘7{ 2 (@) + 2 a;—~-—) iy -5-?«

If on the other hand we use ((z))—
ger, then definition (3.4) for T gives

—[2]—1/2 in case z is not inte-

k-1 h-1
P bty vt 1}2
(4.4) J’_g;{—[ Y ]4—2

since in Case I none of the values

vty | vt+a
k B

=0y, k=1, %=0,.., h—1,

can be an integer. We have thus

k-1 h—1
c » . 1k
o N\ ety | vt .([,WIQJ_ W—HU]_) Ik
r :#%4 % - h Ok r 7 1+4

Since with 0 <# <1,0 <y <1 and within the range of x and » the
+3 @
bracket [# ry v—;

+

gum i 0 and we obtain thus

] can only have the values 0 or 1, the double

(4.5) T = hh/4.
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4

Putting together now formulae (3.5) and (4.1) to (4.5) we have

(4.6) 8 = 8 —T+58)
with

. 1 ) hik
(4.7) 8T = W%(’W-I— k) — n

and thus, finally,

k 1 } e
@) 2wl o)+ Ll

(£8) S =(@)(y)+ %{ A hlk

where we have replaced B, (2), B;(y) DY v, (@), . (y), which is permissible
in the range (4.1) of « and 4.

5. We come now to Case II, hy--ks integer, but still 0 < o < 1,
0 <y<1. Formula (4.6) remaing true here also, from the definitions.
However, in this case a few modifications of our argument are necessary.
We notice that now (u+y)/k+(v--2)/h may be an integer for certain
# and v. Indeed, this would require

pht-vk = — (hy + ko) (mod hk),

which has exactly one solution g, », in the range of p and » since h and &
are coprime. Equation (3.5) remains valid. But now we have, accord-
ing to Theorem 1 and its Corollary,

(5.1)
hk 1 1 hi 1 1
8y = 81, hk; 0, hy+ha) = — 4 . = Foap) — =
1 ( ’ 3 Yy ./+ ) 12 + 6hk 4 12 "|‘ bk 7/’2("‘?/"",0'1’) 4 M
The exiplicit result (4.5) for 7 will have to be revised since we have to re-
member the exceptional pair of values oy v We have then from (3.4)

k=1 h—1

- _fpty  viw] 1V toty | vw e
PP A R B Eearae

(%) (sg,v9)

k=1 h—1
_ ety ote] 1P Mty wta] 1)1l
> D[ ]*5}“{‘[7“+‘°r]+"5}“§“‘7

a0 v=0

Bfutbecauseofo St <k, 0 <y <h, 0<n<1, 0 <y < 1 the value
o

Moty | votaw
[ KT 3 ]
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can ouly be 1. We obtain therefore this time

k-1 h-1

- _fpry el AP L R 1
1_22{ [k + h]+2}—4_4 4

p=0 v=0

We see here and in (5.1) that in Case II S, and T are both diminished
by }, compared to Case I. Hence S;— 7 retains the value (4.7) it had
for Oase I. Since, moreover, §; is continuous in & and y, it is not effected
in the distinction of Cases I and II. Therefore, since (4.6) remains true
here also, the result (4.8) is correct also for Case II.

6. There remains now only the case z = 0, 0 < ¥ < 1 (or the symme-
tric one 0 < # <1, ¥ = 0). We start anew from (3.2) with

(e e

pg=0 v=0

Here the case v = 0 has to be gpecially treated.

s S S s S
-3 St e )

p=0 v=0
1
= 8,4 ) ((y)
according to (3.4), (3.5), and (2.4). Thus (3.5) yields
(6.1) 28 = 8 —T+8:+((%))-

We know that 8,—7 does not depend on the arithmetical natuve of
hy+%-0 and is given by (4.7). Moreover, §; is confinous. For = =0,
0 <y <1 it can be written as

h k hk
8y == z"l’z(y)'k‘i%(o)- (((V))'{"é"-

Tf we put this and (4.7) into (6.1) we obtain

1 Lk 1 3
S = E{% :(0) ﬁ%(hyw—ngw)}-

Since ((0)) = 0, this turns out to be the special case = 0 of (4.8).
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We can now lift the restriction of the range (4.1) on 2 and y. Our
result is
TaeorEM 2. For a,y both integers the classical formula

N _ 11 (k1
s(hyky @y y)+s(k, by y,w) =8, k)+s(k, h) = - FRETAVA -+ W “+ /1.“)

remains i force.
If z,y are not both integers then the reeiprocity formala s

s(hy ks @, y)+s(k, b ¥y, 2)

! 1(h k
@D+ 5 {15 wlhwt kot o)

¢. The reciprocity theorem can be used in case of the ordinary De-
dekind sums to compute § (%, k) by means of & Buclidean algorithm, This
can be done here also, however only with the rule given by the follow-
ing theorem.

THEOREM 3. Let m be an integer. Then
(7.1) s(hy k5 @, y) = s(h—mk, k; z-+-my, 4).
Proof. We have from the definition (1.3)

2 l[m-m{s) eass))(52)

Bmod k

2 (e (=) - (E5)

smod %

2 (3 ()

rmod %

= s(h; &5 @, 9).

s(th—k, k; a+y,9)

I

It

i

This settles the case m = 1, For any integer m the theorem follows now
by iteration.
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